Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

A Review of Himalayan Medicinal Plants against Cancer

Author(s): Bhuwan C. Joshi*, Piyush Verma, Vijay Juyal and Archana N. Sah

Volume 8, Issue 1, 2022

Published on: 12 January, 2022

Article ID: e241121198254 Pages: 17

DOI: 10.2174/2215083807666211124100506

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Plants contributed numerous novel compounds for prophylactic and curative medicine to modern science. They are an important source of natural agents used in various pharmaceutical industries. Himalayan plants are abundant in various secondary metabolites, such as anthraquinones, flavonoids, tannins, alkaloids, and terpenes. The Himalayan plants are grown in high altitudes and have around 6500 years old history as traditional medicines.

Aim: This review article systematically presents information on Himalayan medicinal plants having anti-cancer potentials.

Methodology: Around 160 articles were reviewed using online search engines, like PubMed, Scopus, Google Scholar, Web of Science, and floras of different Himalayan countries.

Results: An attempt has been made to review anti-cancer plants and active constituents isolated from several anti-cancerous plants of Himalayan regions. Eighty-three anti-cancer plants are reported in this review, and a total of twenty-two active chemical constituents, including phenolic compounds, glycosides, terpenoids, and alkaloids from the plants, were reported active against various cancer cell lines.

Conclusion: Several synthetic agents are used to cure cancer, but many undesired side effects occur during chemotherapy. Hence, the research is going on to investigate natural therapies, such as the use of plant-derived products in cancer treatment. They may reduce adverse side effects.

Keywords: Cancer, anticancer plants, bioactive compounds, molecular targets, tumour suppressor genes, chemotherapy.

Graphical Abstract
[1]
Sultana S, Asif HM, Nazar HM, Akhtar N, Rehman JU, Rehman RU. Medicinal plants combating against cancer-a green anticancer approach. Asian Pac J Cancer Prev 2014; 15(11): 4385-94.
[http://dx.doi.org/10.7314/APJCP.2014.15.11.4385] [PMID: 24969858]
[2]
Akhtar MF, Saleem A, Rasul A, Baig MM, Bin-Jumah M, Abdel Daim MM. Anticancer natural medicines: An overview of cell signaling and other targets of anticancer phytochemicals. Eur J Pharmacol 2020; 888: 173488.
[http://dx.doi.org/10.1016/j.ejphar.2020.173488] [PMID: 32805253]
[3]
Singh A, Hart R, Chandra S, Nautiyal MC, Sayok AK. Traditional herbal knowledge among the inhabitants: A case study in Urgam Valley of Chamoli Garhwal, Uttarakhand, India. Evid Based Complement Alternat Med 2019; 2019: 5656925.
[http://dx.doi.org/10.1155/2019/5656925] [PMID: 31275412]
[4]
Zhou Y, Zheng J, Li Y, et al. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016; 8(8): 515.
[http://dx.doi.org/10.3390/nu8080515] [PMID: 27556486]
[5]
De Silva SF, Alcorn J. Flaxseed lignans as important dietary polyphenols for cancer prevention and treatment: Chemistry, pharmacokinetics, and molecular targets. Pharmaceuticals (Basel) 2019; 12(2): 68.
[http://dx.doi.org/10.3390/ph12020068] [PMID: 31060335]
[6]
Majdalawieh AF, Massri M, Nasrallah GK. A comprehensive review on the anti-cancer properties and mechanisms of action of sesamin, a lignan in sesame seeds (Sesamum indicum). Eur J Pharmacol 2017; 815: 512-21.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.020] [PMID: 29032105]
[7]
Menezes JC, Diederich M. Translational role of natural coumarins and their derivatives as anticancer agents. Future Med Chem 2019; 11(9): 1057-82.
[http://dx.doi.org/10.4155/fmc-2018-0375] [PMID: 31140865]
[8]
Akkol EK, Genc Y, Karpuz B, Sobarzo-Sanchez E, Capasso R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers (Basel) 2020; 12(7): 1959.
[http://dx.doi.org/10.3390/cancers12071959]
[9]
Huang L, Feng ZL, Wang YT, Lin LG. Anticancer carbazole alkaloids and coumarins from Clausena plants: A review. Chin J Nat Med 2017; 15(12): 881-8.
[http://dx.doi.org/10.1016/S1875-5364(18)30003-7] [PMID: 29329644]
[10]
Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P. Anticancer and antiviral properties of cardiac glycosides: A review to explore the mechanism of actions. Molecules 2020; 25(16): 3596.
[http://dx.doi.org/10.3390/molecules25163596] [PMID: 32784680]
[11]
Zhao YZ, Zhang YY, Han H, et al. Advances in the antitumor activities and mechanisms of action of steroidal saponins. Chin J Nat Med 2018; 16(10): 732-48.
[http://dx.doi.org/10.1016/S1875-5364(18)30113-4] [PMID: 30322607]
[12]
Dey P, Kundu A, Chakraborty HJ, et al. Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives. Int J Cancer 2019; 145(7): 1731-44.
[http://dx.doi.org/10.1002/ijc.31965] [PMID: 30387881]
[13]
Jain H, Dhingra N, Narsinghani T, Sharma R. Insights into the mechanism of natural terpenoids as NF-κB inhibitors: An overview on their anticancer potential. Exp Oncol 2016; 38(3): 158-68.
[http://dx.doi.org/10.31768/2312-8852.2016.38(3):158-168] [PMID: 27685522]
[14]
Sharma SH, Thulasingam S, Nagarajan S. Terpenoids as anti-colon cancer agents - A comprehensive review on its mechanistic perspectives. Eur J Pharmacol 2017; 795: 169-78.
[http://dx.doi.org/10.1016/j.ejphar.2016.12.008] [PMID: 27940056]
[15]
Scherbakov AM, Zhabinskii VN, Khripach VA, et al. Biological evaluation of a new brassinosteroid: Antiproliferative effects and targeting estrogen receptor α pathways. Chem Biodivers 2019; 16(9): e1900332.
[http://dx.doi.org/10.1002/cbdv.201900332] [PMID: 31381816]
[16]
Kisselev PA, Panibrat OV, Sysa AR, Anisovich MV, Zhabinskii VN, Khripach VA. Flow-cytometric analysis of reactive oxygen species in cancer cells under treatment with brassinosteroids. Steroids 2017; 117: 11-5.
[http://dx.doi.org/10.1016/j.steroids.2016.06.010] [PMID: 27343978]
[17]
Akhtar MS, Swamy MK. Anticancer plants: Clinical trials and nanotechnology.1st ed Singapore Springer. 2017.
[http://dx.doi.org/10.1007/978-981-10-8216-0]
[18]
Rahamooz Haghighi S, Asadi MH, Akrami H, Baghizadeh A. Anti-carcinogenic and anti-angiogenic properties of the extracts of Acorus calamus on gastric cancer cells. Avicenna J Phytomed 2017; 7(2): 145-56.
[PMID: 28348970]
[19]
Lampronti I, Martello D, Bianchi N, et al. In vitro antiproliferative effects on human tumor cell lines of extracts from the Bangladeshi medicinal plant Aegle marmelos Correa. Phytomedicine 2003; 10(4): 300-8.
[http://dx.doi.org/10.1078/094471103322004794] [PMID: 12809360]
[20]
Lambertini E, Piva R, Khan MT, et al. Effects of extracts from Bangladeshi medicinal plants on in vitro proliferation of human breast cancer cell lines and expression of estrogen receptor α gene. Int J Oncol 2004; 24(2): 419-23.
[http://dx.doi.org/10.3892/ijo.24.2.419] [PMID: 14719119]
[21]
Jagetia GC, Venkatesh P, Baliga MS. Aegle marmelos (L.) Correa inhibits the proliferation of transplanted Ehrlich ascites carcinoma in mice. Biol Pharm Bull 2005; 28(1): 58-64.
[http://dx.doi.org/10.1248/bpb.28.58] [PMID: 15635164]
[22]
Ghufran MA, Qureshi RA, Batool A, et al. Evaluation of selected indigenous medicinal plants from the western Himalayas for cytotoxicity and as potential cancer chemopreventive agents. Pharm Biol 2009; 47(6): 533-8.
[http://dx.doi.org/10.1080/13880200902873847]
[23]
Jangwan JS, Dobhal M, Kumar N. New cytotoxic saponin of Albizzialebbeck. Indian J Chem 2010; 49: 123-6.
[24]
Aditya VS, Kumar NL, Mokkapati A. Evaluation of in vitro cytotoxicity of Andrographis paniculata, Duranta serratifolia and Albizzia lebbeck whole plant extracts by MTT assay against MCF-7 and HT-29 cell lines. Curr Res Microbiol Biotechnol 2014; 2(2): 351-3.
[25]
Thomson M, Ali M. Garlic [Allium sativum]: A review of its potential use as an anti-cancer agent. Curr Cancer Drug Targets 2003; 3(1): 67-81.
[http://dx.doi.org/10.2174/1568009033333736] [PMID: 12570662]
[26]
Bagul M, Kakumanu S, Wilson TA. Crude garlic extract inhibits cell proliferation and induces cell cycle arrest and apoptosis of cancer cells in vitro. J Med Food 2015; 18(7): 731-7.
[http://dx.doi.org/10.1089/jmf.2014.0064] [PMID: 25608085]
[27]
Vijayakumar S, Malaikozhundan B, Saravanakumar K, Durán-Lara EF, Wang MH, Vaseeharan B. Garlic clove extract assisted silver nanoparticle - Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J Photochem Photobiol B 2019; 198: 111558.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111558] [PMID: 31357173]
[28]
Kim WT, Seo SP, Byun YJ, et al. The anticancer effects of garlic extracts on bladder cancer compared to cisplatin: A common mechanism of action via centromere protein M. Am J Chin Med 2018; 46(3): 689-705.
[http://dx.doi.org/10.1142/S0192415X18500362] [PMID: 29595070]
[29]
Joseph B, Raj SJ. Pharmacognostic and phytochemical properties of Aloe vera linn an overview. Int J Pharm Sci Rev Res 2010; 4(2): 106.
[30]
Akev N, Turkay G, Can A, et al. Tumour preventive effect of Aloe vera leaf pulp lectin (Aloctin I) on Ehrlich ascites tumours in mice. Phytother Res 2007; 21(11): 1070-5.
[http://dx.doi.org/10.1002/ptr.2215] [PMID: 17685385]
[31]
Rajagopal S, Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol 2003; 3(3): 147-58.
[http://dx.doi.org/10.1046/j.1359-4117.2003.01090.x] [PMID: 14641821]
[32]
Varma A, Padh H, Shrivastava N. Andrographolide: A new plant-derived antineoplastic entity on horizon. Evid Based Complement Alternat Med 2011; 2011: 815390.
[http://dx.doi.org/10.1093/ecam/nep135] [PMID: 19752167]
[33]
Kumar RA, Sridevi K, Kumar NV, Nanduri S, Rajagopal S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol 2004; 92(2-3): 291-5.
[http://dx.doi.org/10.1016/j.jep.2004.03.004] [PMID: 15138014]
[34]
Pardhasaradhi BV, Reddy M, Ali AM, Kumari AL, Khar A. Antitumour activity of Annona squamosa seed extracts is through the generation of free radicals and induction of apoptosis. Indian J Biochem Biophys 2004; 41(4): 167-72.
[PMID: 22900348]
[35]
Biba VS, Jeba MP, Remani P. Differential effects of Annona squamosa seed extracts: Antioxidant, antibacterial, cytotoxic and apoptotic study. Int J Pharm Biol Sci 2013; 4: 899-907.
[36]
Chen Y, Xu SS, Chen JW, et al. Anti-tumor activity of Annona squamosa seeds extract containing annonaceous acetogenin compounds. J Ethnopharmacol 2012; 142(2): 462-6.
[http://dx.doi.org/10.1016/j.jep.2012.05.019] [PMID: 22609808]
[37]
Joshi N, Bhatt S, Dhyani S, Nain J. Phytochemical screening of secondary metabolites of Argemone mexicana linn. flowers. Int J Curr Pharm Res 2013; 5(2): 144-7.
[38]
Priya CL, Rao KV. Ethanobotanical and current ethanopharmacological aspects of Argemone mexicana linn: An overview. Int J Pharm Sci Res 2012; 3(7): 2143.
[39]
Brahmachari G, Gorai D, Roy R. Argemone mexicana: Chemical and pharmacological aspects. Rev Bras Farmacogn 2013; 23(3): 559-67.
[http://dx.doi.org/10.1590/S0102-695X2013005000021]
[40]
Gali K, Ramakrishnan G, Kothai R, Jaykar B. In-vitro anti-cancer activity of methanolic extract of leaves of Argemone mexicana Linn. Int J Pharm Tech Res 2011; 3: 1329-33.
[41]
More NV, Kharat AS. Antifungal and anticancer potential of Argemone mexicana L. Medicines (Basel) 2016; 3(4): 28.
[http://dx.doi.org/10.3390/medicines3040028] [PMID: 28930138]
[42]
Agrawal A, Sharma M, Rai SK, Singh B, Tiwari M, Chandra R. The effect of the aqueous extract of the roots of Asparagus racemosus on hepatocarcinogenesis initiated by diethylnitrosamine. Phytother Res 2008; 22(9): 1175-82.
[http://dx.doi.org/10.1002/ptr.2391] [PMID: 18729252]
[43]
Qiu Z, Andrijauskaite K, Morris J, Wargovich MJ. Disruption of epigenetic silencing in human colon cancer cells lines utilizing a novel supercritical CO2 extract of neem leaf (Azadirachta indica). Anticancer Res 2019; 39(10): 5473-81.
[http://dx.doi.org/10.21873/anticanres.13740] [PMID: 31570441]
[44]
Arumugam A, Agullo P, Boopalan T, et al. Neem leaf extract inhibits mammary carcinogenesis by altering cell proliferation, apoptosis, and angiogenesis. Cancer Biol Ther 2014; 15(1): 26-34.
[http://dx.doi.org/10.4161/cbt.26604] [PMID: 24146019]
[45]
Elangovan V, Govindasamy S, Ramamoorthy N, Balasubramanian K. In vitro studies on the anticancer activity of Bacopa monnieri. Fitoterapia (Milano) 1995; 66(3): 211-5.
[46]
Mallick MN, Khan W, Parveen R, et al. Exploring the cytotoxic potential of triterpenoids-enriched fraction of Bacopa monnieri by implementing in vitro, in vivo , and in silico approaches. Pharmacogn Mag 2017; 13(Suppl. 3): S595-606.
[http://dx.doi.org/10.4103/pm.pm_397_16] [PMID: 29142420]
[47]
Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Res Int 2013; 6: 915436.
[48]
Wu LW, Chiang YM, Chuang HC, et al. Polyacetylenes function as anti-angiogenic agents. Pharm Res 2004; 21(11): 2112-9.
[http://dx.doi.org/10.1023/B:PHAM.0000048204.08865.41] [PMID: 15587935]
[49]
Kviecinski MR, Benelli P, Felipe KB, et al. SFE from Bidens pilosa Linné to obtain extracts rich in cytotoxic polyacetylenes with antitumor activity. J Supercrit Fluids 2011; 56(3): 243-8.
[http://dx.doi.org/10.1016/j.supflu.2010.12.011]
[50]
Mahata S, Maru S, Shukla S, et al. Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells. BMC Complement Altern Med 2012; 12(1): 15.
[http://dx.doi.org/10.1186/1472-6882-12-15] [PMID: 22405256]
[51]
Fadeyi SA, Fadeyi OO, Adejumo AA, Okoro C, Myles EL. In vitro anticancer screening of 24 locally used Nigerian medicinal plants. BMC Complement Altern Med 2013; 13(1): 79.
[http://dx.doi.org/10.1186/1472-6882-13-79] [PMID: 23565862]
[52]
Choedon T, Shukla SK, Kumar V. Chemopreventive and anti-cancer properties of the aqueous extract of flowers of Butea monosperma. J Ethnopharmacol 2010; 129(2): 208-13.
[http://dx.doi.org/10.1016/j.jep.2010.03.011] [PMID: 20307637]
[53]
Lee J, Jang HJ, Chun H, et al. Calotropis gigantea extract induces apoptosis through extrinsic/intrinsic pathways and reactive oxygen species generation in A549 and NCI-H1299 non-small cell lung cancer cells. BMC Complement Altern Med 2019; 19(1): 134.
[http://dx.doi.org/10.1186/s12906-019-2561-1] [PMID: 31215445]
[54]
Kuroda K. Pharmacological and anticarcinogenic effects of Capsella bursa-pastoris extract. Chiba Med J 1989; 65(3): 67-74.
[55]
Nisa S, Bibi Y, Zia M, Waheed A, Chaudhary MF. Anticancer investigations on Carissa opaca and Toona ciliata extracts against human breast carcinoma cell line. Pak J Pharm Sci 2013; 26(5): 1009-12.
[PMID: 24035960]
[56]
Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH. Suppressing growth, migration, and invasion of human hepatocellular carcinoma HepG2 cells by Catharanthus roseus‑silver nanoparticles. Toxicol In Vitro 2020; 67: 104910.
[http://dx.doi.org/10.1016/j.tiv.2020.104910] [PMID: 32526345]
[57]
Ke Y, Al Aboody MS, Alturaiki W, et al. Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol 2019; 47(1): 1938-46.
[http://dx.doi.org/10.1080/21691401.2019.1614017] [PMID: 31099261]
[58]
Sharma PR, Shanmugavel M, Saxena AK, Qazi GN. Induction of apoptosis by a synergistic lignan composition from Cedrus deodara in human cancer cells. Phytother Res 2008; 22(12): 1587-94.
[http://dx.doi.org/10.1002/ptr.2511] [PMID: 19067377]
[59]
Bhagat M, Kumar A, Suravajhala R. Cedrus deodara (Bark) essential oil induces apoptosis in human colon cancer cells by inhibiting nuclear factor kappa B. Curr Top Med Chem 2020; 20(22): 1981-92.
[http://dx.doi.org/10.2174/1568026620666200722120826] [PMID: 32703136]
[60]
Babykutty S, Padikkala J, Sathiadevan PP, et al. Apoptosis induction of Centella asiatica on human breast cancer cells. Afr J Tradit Complement Altern Med 2008; 6(1): 9-16.
[PMID: 20162036]
[61]
Jayashree G, Kurup Muraleedhara G, Sudarslal S, Jacob VB. Anti-oxidant activity of Centella asiatica on lymphoma-bearing mice. Fitoterapia 2003; 74(5): 431-4.
[http://dx.doi.org/10.1016/S0367-326X(03)00121-7] [PMID: 12837356]
[62]
Pagliara V, Nasso R, Di Donato P, et al. Lemon peel polyphenol extract reduces interleukin-6-induced cell migration, invasiveness, and matrix metalloproteinase-9/2 expression in human gastric adenocarcinoma MKN-28 and AGS cell lines. Biomolecules 2019; 9(12): 833.
[http://dx.doi.org/10.3390/biom9120833] [PMID: 31817563]
[63]
Rai PK, Lalramnghinglova H. Threatened and less known ethnomedicinal plants of an Indo-Burma hotspot region: Conservation implications. Environ Monit Assess 2011; 178(1-4): 53-62.
[http://dx.doi.org/10.1007/s10661-010-1670-6] [PMID: 20809385]
[64]
Bose U, Bala V, Ghosh TN, Gunasekaran K, Rahman AA. Antinociceptive, cytotoxic and antibacterial activities of Cleome viscosa leaves. Rev Bras Farmacogn 2011; 21(1): 165-9.
[http://dx.doi.org/10.1590/S0102-695X2011005000023]
[65]
Sudipta D, Haldar PK, Goutam P, Asis B, Biswakanth K. Anticancer activity of Clerodendron infortunatum Linn. extract in swiss albino mice. Asian J Chem 2010; 22(8): 6387-92.
[66]
Liu WC, Chuang WL, Tsai ML, Hong JH, McBride WH, Chiang CS. Cordyceps sinensis health supplement enhances recovery from taxol-induced leukopenia. Exp Biol Med (Maywood) 2008; 233(4): 447-55.
[http://dx.doi.org/10.3181/0708-RM-230] [PMID: 18367634]
[67]
Niu QL, Sun H, Liu C, et al. Croton tiglium essential oil compounds have anti-proliferative and pro-apoptotic effects in A549 lung cancer cell lines. PLoS One 2020; 15(5): e0231437.
[http://dx.doi.org/10.1371/journal.pone.0231437] [PMID: 32357169]
[68]
Sharma M, Monika , Thakur P, Saini RV, Kumar R, Torino E. Unveiling antimicrobial and anticancerous behavior of AuNPs and AgNPs moderated by rhizome extracts of Curcuma longa from diverse altitudes of Himalaya. Sci Rep 2020; 10(1): 10934.
[http://dx.doi.org/10.1038/s41598-020-67673-4] [PMID: 32616751]
[69]
Nisa S, Bibi Y, Waheed A, et al. Evaluation of anticancer activity of Debregeasia salicifolia extract against estrogen receptor positive cell line. Afr J Biotechnol 2011; 10(6): 990-5.
[70]
Yu JO, Liao ZX, Lei JC, Hu XM. Antioxidant and cytotoxic activities of various fractions of ethanol extract of Dianthus superbus. Food Chem 2007; 104(3): 1215-9.
[http://dx.doi.org/10.1016/j.foodchem.2007.01.039]
[71]
Khan MA, Khan MA, Hussain M, Ghulam GM. An ethnobotanical inventory of Himalayan region Poonch valley Azad Kashmir (Pakistan). Ethnobot Res Appl 2010; 8: 107-23.
[http://dx.doi.org/10.17348/era.8.0.107-123]
[72]
Yasukawa K, Kitanaka S, Kawata K, Goto K. Anti-tumor promoters phenolics and triterpenoid from Hippophae rhamnoides. Fitoterapia 2009; 80(3): 164-7.
[http://dx.doi.org/10.1016/j.fitote.2009.01.006] [PMID: 19535023]
[73]
Jose JK, Kuttan G, Kuttan R. Antitumour activity of Emblica officinalis. J Ethnopharmacol 2001; 75(2-3): 65-9.
[http://dx.doi.org/10.1016/S0378-8741(00)00378-0] [PMID: 11297836]
[74]
Sidambaram RR, Dinesh MG, Jayalakshmi ET. An in vitro study of cytotoxic activity of Euphorbia hirta on Hep2 cells of human epithelioma of larynx. Int J Pharm Pharm Sci 2011; 3(101): 3.
[75]
Babar RS, Kataware UP, Mali NN, Patil SB, Naikwade NS. In vitro cytotoxicity activity of Euphorbia hirta, Euphorbia tirucalli and Euphorbia neriifolia extract against B16F10 melanoma cell line. Inventi Impact: Ethnopharmacology 2012; 82(5): 912-7.
[76]
Patil SB, Magdum CS. Phytochemical investigation and anti-tumor activity of Euphorbia hirta Linn. Euro J Exper Biol 2011; 1: 51-6.
[77]
Kwan YP, Saito T, Ibrahim D, et al. Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. Pharm Biol 2016; 54(7): 1223-36.
[PMID: 26154521]
[78]
Qureshi RA, Ghufran MA, Gilani SA, Yousaf Z, Abbas G, Batool A. Indigenous medicinal plants used by local women in southern Himalayan regions of Pakistan. Pak J Bot 2009; 41(1): 19-25.
[79]
Gilani SA, Qureshi RA, Gilani SJ. Indigenous uses of some important ethnomedicinal herbs of Ayubia National Park, Abbottabad, Pakistan. Ethnobotanical Leaflets 2006; 2006(1): 32.
[80]
Shaheen H, Shinwari ZK, Qureshi RA, Ullah Z. Indigenous plant resources and their utilization practices in village populations of Kashmir Himalayas. Pak J Bot 2012; 44(2): 739-45.
[81]
Kanwal S, Ullah N, Haq IU, Afzal I, Mirza B. Antioxidant, antitumor activities and phytochemical investigation of Hederanepalensis K. Koch, an important medicinal plant from Pakistan. Pak J Bot 2011; 43(8): 85-9.
[82]
Patel CA, Divakar K, Santani D, Solanki HK, Thakkar JH. Remedial prospective of Hippophaë rhamnoides Linn. (sea buckthorn). ISRN Pharmacol 2012; 2012: MC3317027.
[83]
Sultan R, Wani MA, Nawchoo IA. Unabated loss of medicinal plant diversity in Himalaya: A serious socio-economic concern and urgency to salvage whatever is left. Glob Adv Res J Med Plants 2013; 2(1): 012-121.
[84]
Mao F, Xiao B, Jiang Z, Zhao J, Huang X, Guo J. Anticancer effect of Lycium barbarum polysaccharides on colon cancer cells involves G0/G1 phase arrest. Med Oncol 2011; 28(1): 121-6.
[http://dx.doi.org/10.1007/s12032-009-9415-5] [PMID: 20066520]
[85]
Wawruszak A, Czerwonka A, Okła K, Rzeski W. Anticancer effect of ethanol Lycium barbarum (Goji berry) extract on human breast cancer T47D cell line. Nat Prod Res 2016; 30(17): 1993-6.
[http://dx.doi.org/10.1080/14786419.2015.1101691] [PMID: 26525080]
[86]
Poonam K, Singh GS. Ethnobotanical study of medicinal plants used by the Taungya community in Terai Arc Landscape, India. J Ethnopharmacol 2009; 123(1): 167-76.
[http://dx.doi.org/10.1016/j.jep.2009.02.037] [PMID: 19429357]
[87]
Nanda Y, Singson N, Rao AN. Ethnomedicinal plants of Thadou tribe of Manipur (India)-1. Pleione 2013; 7(1): 138-45.
[88]
Khan F, Pandey P, Ahmad V, Upadhyay TK. Moringa oleifera methanolic leaves extract induces apoptosis and G0/G1 cell cycle arrest via downregulation of Hedgehog Signaling Pathway in human prostate PC-3 cancer cells. J Food Biochem 2020; 44(8): e13338.
[http://dx.doi.org/10.1111/jfbc.13338] [PMID: 32588472]
[89]
Barhoi D, Upadhaya P, Barbhuiya SN, Giri A, Giri S. Aqueous extract of Moringa oleifera exhibit potential anticancer activity and can be used as a possible cancer therapeutic agent: A study involving in vitro and in vivo approach. J Am Coll Nutr 2020; 40(1): 70-85.
[PMID: 32191153]
[90]
Liu CP, Tsai WJ, Lin YL, Liao JF, Chen CF, Kuo YC. The extracts from Nelumbo Nucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells. Life Sci 2004; 75(6): 699-716.
[http://dx.doi.org/10.1016/j.lfs.2004.01.019] [PMID: 15172179]
[91]
Hsu LS, Chang CH, Lee YJ, Wang CJ. Nelumbo nucifera leaves prevent NMU-induced mammary tumor through downregulation of fatty acid synthase, estrogen receptor-α and Her2 expression. 2019; 47(8): 1885-99.
[http://dx.doi.org/10.1142/S0192415X19500964] [PMID: 31838869]
[92]
Pattanayak P, Behera P, Das D, Panda SK. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn Rev 2010; 4(7): 95-105.
[http://dx.doi.org/10.4103/0973-7847.65323] [PMID: 22228948]
[93]
Savini I, Arnone R, Catani MV, Avigliano L. Origanum vulgare induces apoptosis in human colon cancer caco2 cells. Nutr Cancer 2009; 61(3): 381-9.
[http://dx.doi.org/10.1080/01635580802582769] [PMID: 19373612]
[94]
Rubin B, Manso J, Monticelli H, et al. Crude extract of Origanum vulgare L. induced cell death and suppressed MAPK and PI3/Akt signaling pathways in SW13 and H295R cell lines. Nat Prod Res 2019; 33(11): 1646-9.
[http://dx.doi.org/10.1080/14786419.2018.1425846] [PMID: 29334260]
[95]
Elshafie HS, Armentano MF, Carmosino M, Bufo SA, De Feo V, Camele I. Cytotoxic activity of Origanum vulgare L. on hepatocellular carcinoma cell line HepG2 and evaluation of its biological activity. Molecules 2017; 22(9): 1435.
[http://dx.doi.org/10.3390/molecules22091435] [PMID: 28867805]
[96]
Lokho A. The folk medicinal plants of the Mao Naga in Manipur, North East India. Int J Sci Res Publicat 2012; 2(6): 1-8.
[97]
Mathur A, Joshi H. Ethnobotanical studies of the Tarai region of Kumaun, Uttarakhand, India. Ethnobot Res Appl 2013; 11: 174-203.
[98]
Awan MR, Iqbal Z, Shah SM, et al. Studies on traditional knowledge of economically important plants of Kaghan Valley, Mansehra District, Pakistan. J Med Plants Res 2011; 5(16): 3958-67.
[99]
Mohamed SI, Jantan I, Nafiah MA, Seyed MA, Chan KM. Lignans and polyphenols of Phyllanthus amarus schumach and thonn induce apoptosis in HCT116 human colon cancer cells through caspases–dependent pathway. Curr Pharm Biotechnol 2021; 22(2): 262-73.
[100]
Kumnerdkhonkaen P, Saenglee S, Asgar MA, Senawong G, Khongsukwiwat K, Senawong T. Antiproliferative activities and phenolic acid content of water and ethanolic extracts of the powdered formula of Houttuynia cordata Thunb. fermented broth and Phyllanthus emblica Linn. fruit. BMC Complement Altern Med 2018; 18(1): 130.
[http://dx.doi.org/10.1186/s12906-018-2185-x] [PMID: 29642867]
[101]
Joy B, Sandhya CP, Remitha KR. Comparison and bio-evaluation of Piper longum fruit extracts. J Chem Pharm Res 2010; 2(4): 612-22.
[102]
Namsa ND, Mandal M, Tangjang S, Mandal SC. Ethnobotany of the Monpa ethnic group at Arunachal Pradesh, India. J Ethnobiol Ethnomed 2011; 7(1): 31.
[http://dx.doi.org/10.1186/1746-4269-7-31] [PMID: 21995750]
[103]
Juarranz M, Calle-Purón ME, González-Navarro A, et al. Physical exercise, use of Plantago ovata and aspirin, and reduced risk of colon cancer. Eur J Cancer Prev 2002; 11(5): 465-72.
[http://dx.doi.org/10.1097/00008469-200210000-00009] [PMID: 12394244]
[104]
Goel HC, Prasad J, Sharma A, Singh B. Antitumour and radioprotective action of Podophyllum hexandrum. Indian J Exp Biol 1998; 36(6): 583-7.
[PMID: 9731473]
[105]
Wujisguleng W, Liu Y, Long C. Ethnobotanical review of food uses of Polygonatum (Convallariaceae) in China. Acta Soc Bot Pol 2012; 81(4): 239-44.
[http://dx.doi.org/10.5586/asbp.2012.045]
[106]
Kumar Singh S, Patra A. Evaluation of phenolic composition, antioxidant, anti-inflammatory and anticancer activities of Polygonatum verticillatum (L.). J Integr Med 2018; 16(4): 273-82.
[http://dx.doi.org/10.1016/j.joim.2018.04.005] [PMID: 29706573]
[107]
Joshi M, Kumar M, Bussmann RW. Ethnomedicinal uses of plant resources of the Haigad watershed in Kumaun Himalaya, India. Med Aromat Plant Sci Biotechnol 2010; 4: 43-6.
[108]
Akhtar N, Rashid A, Murad W, Bergmeier E. Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan. J Ethnobiol Ethnomed 2013; 9(1): 25.
[http://dx.doi.org/10.1186/1746-4269-9-25] [PMID: 23587127]
[109]
Rajkumar V, Guha G, Ashok Kumar R. Antioxidant and anti-cancer potentials of Rheum emodi rhizome extracts. Evid Based Complement Alternat Med 2011; 2011: 697986.
[http://dx.doi.org/10.1093/ecam/neq048] [PMID: 21792364]
[110]
Nair PK, Melnick SJ, Wnuk SF, Rapp M, Escalon E, Ramachandran C. Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium. J Ethnopharmacol 2009; 122(3): 450-6.
[http://dx.doi.org/10.1016/j.jep.2009.02.001] [PMID: 19429311]
[111]
Patel S, Gheewala N, Suthar A, Shah A. In-vitro cytotoxicity activity of Solanum nigrum extract against Hela cell line and Vero cell line. Int J Pharm Pharm Sci 2009; 1(1): 38-46.
[112]
Son YO, Kim J, Lim JC, Chung Y, Chung GH, Lee JC. Ripe fruit of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food Chem Toxicol 2003; 41(10): 1421-8.
[http://dx.doi.org/10.1016/S0278-6915(03)00161-3] [PMID: 12909277]
[113]
Ling B, Xiao S, Yang J, Wei Y, Sakharkar MK, Yang J. Probing the antitumor mechanism of Solanum nigrum L. aqueous extract against human breast cancer MCF7 cells. Bioengineering (Basel) 2019; 6(4): 112.
[http://dx.doi.org/10.3390/bioengineering6040112] [PMID: 31835887]
[114]
Mehta PS, Negi KS, Ojha SN, Rayal A, Verma SK. Herbal based traditional practices used by the Bhotias and Gangwals of the central Himalayan region, Uttarakhand, India. J Nanotechnol 2013; 2(1): 83-96.
[115]
Saha P, Mandal S, Das A, Das PC, Das S. Evaluation of the anticarcinogenic activity of Swertia chirata Buch. Ham, an Indian medicinal plant, on DMBA-induced mouse skin carcinogenesis model. Phytother Res 2004; 18(5): 373-8.
[http://dx.doi.org/10.1002/ptr.1436] [PMID: 15173996]
[116]
Khodavirdipour A, Zarean R, Safaralizadeh R. Evaluation of the anti-cancer effect of Syzygium cumini ethanolic extract on HT-29 colorectal cell line. J Gastrointest Cancer 2021; 52(2): 575-81.
[117]
Siddika MA, Das PK, Asha SY, et al. Antiproliferative activity and apoptotic efficiency of syzygiumcumini bark methanolic extract against EAC cells in vivo. Anticancer Agents Med Chem 2021; 21(6): 782-92.
[118]
Chaudhary MI, He Q, Cheng YY, Xiao PG. Ethnobotany of Medicinal Plants from Tian Mu Shan Biosphere Reserve, Zhejiang-Province, China. Asian J Plant Sci 2006; 5: 646-53.
[119]
Sakarkar DM, Deshmukh VN. Ethnopharmacological review of traditional medicinal plants for anticancer activity. Int J Pharm Tech Res 2011; 3(1): 298-308.
[120]
Mittal J, Pal U, Sharma L, Verma AK, Ghosh M, Sharma MM. Unveiling the cytotoxicity of phytosynthesised silver nanoparticles using Tinospora cordifolia leaves against human lung adenocarcinoma A549 cell line. IET Nanobiotechnol 2020; 14(3): 230-8.
[http://dx.doi.org/10.1049/iet-nbt.2019.0335]
[121]
Ansari JA, Rastogi N, Ahmad MK, et al. ROS mediated pro-apoptotic effects of Tinospora cordifolia on breast cancer cells. Front Biosci (Elite Ed) 2017; 9: 89-100.
[PMID: 27814592]
[122]
Singh N, Singh SM, Shrivastava P. Effect of Tinospora cordifolia on the antitumor activity of tumor-associated macrophages-derived dendritic cells. Immunopharmacol Immunotoxicol 2005; 27(1): 1-14.
[http://dx.doi.org/10.1081/IPH-200051287] [PMID: 15803856]
[123]
Lone PA, Bhardwaj AK. Traditional herbal based disease treatment in some rural areas of Bandipora district of Jammu and Kashmir, India. Asian J Pharm Clin Res 2013; 6(4): 162-71.
[124]
Goyal S, Gupta N, Kumar A, Chatterjee S, Nimesh S. Antibacterial, anticancer and antioxidant potential of silver nanoparticles engineered using Trigonella foenum-graecum extract. IET nanobiotechnology 2018; 12(4): 526-33.
[125]
Iranmanesh M, Mohebbati R, Forouzanfar F, et al. In vivo and In vitro effects of ethanolic extract of Trigonella foenum-graecum L. seeds on proliferation, angiogenesis and tube formation of endothelial cells. Res Pharm Sci 2018; 13(4): 343-52.
[http://dx.doi.org/10.4103/1735-5362.235161] [PMID: 30065767]
[126]
Ashwini P, Krishnamoorthy M. Anticancer activity of Trigonella foenum-graecum on Ehrlich Ascites carcinoma in Mus musculus system. J Pharm Res 2010; 3(6): 1181-3.
[127]
Bhat JA, Kumar M, Bussmann RW. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. J Ethnobiol Ethnomed 2013; 9(1): 1.
[http://dx.doi.org/10.1186/1746-4269-9-1] [PMID: 23281594]
[128]
Dewade DR, Christina AJ, Chidambaranathan N, Bhajipale NS, Tekade NP. Antitumor activity of Vitex negundo Linn. against Dalton’s Ascitic lymphoma. Int J Pharm Tech Res 2010; 2(2): 1101-4.
[129]
Durak I, Biri H, Devrim E, Sözen S, Avci A. Aqueous extract of Urtica dioica makes significant inhibition on adenosine deaminase activity in prostate tissue from patients with prostate cancer. Cancer Biol Ther 2004; 3(9): 855-7.
[http://dx.doi.org/10.4161/cbt.3.9.1038] [PMID: 15254411]
[130]
Chitra V, Sharma S, Kayande N. Evaluation of anticancer activity of Vitex negundo in experimental animals: An in vitro and in vivo study. Int J Pharm Tech Res 2009; 1: 1485-9.
[131]
Dar PA, Mir SA, Bhat JA, et al. An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cells. Int J Biol Macromol 2019; 135: 77-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.120] [PMID: 31121227]
[132]
Nitha A, Prabha SP, Ansil PN, Latha MS. Curative effect of Woodfordia fruticose Kurz flowers on N-nitrosodiethylamine induced hapatocellular carcinoma in rats. Int J Pharm Pharm Sci 2014; 6(2): 150-5.
[133]
Rosangkima G, Rongpi T, Prasad SB. Ethno-medicinal value of some anticancer medicinal plants from north-east India: an in vivo screening in murine tumor model. Sci Vis 2010; 10(4): 123-32.
[134]
Milton JD, Jose MA, Beaulah SN, Ruskin RS, Kumaran J. In vitro and in vivo anti cancer evaluation of Xanthium strumarium root extracts. Int J Adv Pharmaceut Biol Sci 2013; 3: 10-6.
[135]
Jeong JW, Park S, Park C, et al. N-benzyl-N-methyldecan-1-amine, a phenylamine derivative isolated from garlic cloves, induces G2/M phase arrest and apoptosis in U937 human leukemia cells. Oncol Rep 2014; 32(1): 373-81.
[http://dx.doi.org/10.3892/or.2014.3215] [PMID: 24859825]
[136]
Ur Rehman N, Halim SA, Khan M, et al. Antiproliferative and carbonic anhydrase II inhibitory potential of chemical constituents from Lycium shawii and Aloe vera: Evidence from in silico target fishing and in vitro testing. Pharmaceuticals (Basel) 2020; 13(5): 94.
[http://dx.doi.org/10.3390/ph13050094] [PMID: 32414030]
[137]
Lee HG, Yu KA, Oh WK, et al. Inhibitory effect of jaceosidin isolated from Artemisia argyi on the function of E6 and E7 oncoproteins of HPV 16. J Ethnopharmacol 2005; 98(3): 339-43.
[http://dx.doi.org/10.1016/j.jep.2005.01.054] [PMID: 15814270]
[138]
Shilpa G, Renjitha J, Saranga R, et al. Epoxyazadiradione purified from the Azadirachta indica seed induced mitochondrial apoptosis and inhibition of NFκB nuclear translocation in human cervical cancer cells. Phytother Res 2017; 31(12): 1892-902.
[http://dx.doi.org/10.1002/ptr.5932] [PMID: 29044755]
[139]
Ali H, Dixit S, Ali D, Alqahtani SM, Alkahtani S, Alarifi S. Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma. Drug Des Devel Ther 2015; 9: 2793-800.
[http://dx.doi.org/10.2147/DDDT.S83514] [PMID: 26060396]
[140]
Roy MK, Kobori M, Takenaka M, et al. Antiproliferative effect on human cancer cell lines after treatment with nimbolide extracted from an edible part of the neem tree (Azadirachta indica). Phytother Res 2007; 21(3): 245-50.
[http://dx.doi.org/10.1002/ptr.2058] [PMID: 17163581]
[141]
Rajkapoor B, Murugesh N, Rama Krishna D. Cytotoxic activity of a flavanone from the stem of Bauhinia variegata Linn. Nat Prod Res 2009; 23(15): 1384-9.
[http://dx.doi.org/10.1080/14786410802553752] [PMID: 19809910]
[142]
Habib MR, Karim MR. Antitumour evaluation of di-(2-ethylhexyl) phthalate (DEHP) isolated from Calotropisgigantea L. flower/Evaluacijaantitumorskogdjelovanja di-(2-etilheksil)-ftalata (DEHP) izoliranogizcvjetova Calotropis gigantea L. ActaPharmaceutica 2012; 62(4): 607-15.
[143]
Hirata T, Fujii M, Akita K, et al. Identification and physiological evaluation of the components from citrus fruits as potential drugs for anti-corpulence and anticancer. Bioorg Med Chem 2009; 17(1): 25-8.
[http://dx.doi.org/10.1016/j.bmc.2008.11.039] [PMID: 19054677]
[144]
Kim JH, Lee SJ, Han YB, Moon JJ, Kim JB. Isolation of isoguanosine from Croton tiglium and its antitumor activity. Arch Pharm Res 1994; 17(2): 115-8.
[http://dx.doi.org/10.1007/BF02974234] [PMID: 10319142]
[145]
Teng BS, Lu YH, Wang ZT, Tao XY, Wei DZ. In vitro anti-tumor activity of isorhamnetin isolated from Hippophae rhamnoides L. against BEL-7402 cells. Pharmacol Res 2006; 54(3): 186-94.
[http://dx.doi.org/10.1016/j.phrs.2006.04.007] [PMID: 16765054]
[146]
Poornima P, Weng CF, Padma VV. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. Biofactors 2014; 40(1): 121-31.
[http://dx.doi.org/10.1002/biof.1115] [PMID: 23983146]
[147]
Yoon JS, Kim HM, Yadunandam AK, et al. Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: Molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine 2013; 20(11): 1013-22.
[http://dx.doi.org/10.1016/j.phymed.2013.03.024] [PMID: 23746959]
[148]
Flegkas A, Milosević Ifantis T, Barda C, Samara P, Tsitsilonis O, Skaltsa H. Antiproliferative Activity of (-)-Rabdosiin Isolated from Ocimum sanctum L. Medicines (Basel) 2019; 6(1): 37.
[http://dx.doi.org/10.3390/medicines6010037] [PMID: 30870993]
[149]
Zilla MK, Nayak D, Amin H, et al. 4′-Demethyl-deoxypodophyllotoxin glucoside isolated from Podophyllum hexandrum exhibits potential anticancer activities by altering Chk-2 signaling pathway in MCF-7 breast cancer cells. Chem Biol Interact 2014; 224: 100-7.
[http://dx.doi.org/10.1016/j.cbi.2014.09.022] [PMID: 25446499]
[150]
Bektur Aykanat NE, Kacar S, Karakaya S, Sahinturk V. Silymarin suppresses HepG2 hepatocarcinoma cell progression through downregulation of Slit-2/Robo-1 pathway. Pharmacol Rep 2020; 72(1): 199-207.
[http://dx.doi.org/10.1007/s43440-019-00040-x] [PMID: 32016841]
[151]
Reddy KP, Bid HK, Nayak VL, et al. In vitro and in vivo anticancer activity of 2-deacetoxytaxinine J and synthesis of novel taxoids and their in vitro anticancer activity. Eur J Med Chem 2009; 44(10): 3947-53.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.022] [PMID: 19446930]
[152]
Thakur RS, Ahirwar B. A steroidal derivative from Trigonella foenum-graecum L. that induces apoptosis in vitro and in vivo. J Food Drug Anal 2019; 27(1): 231-9.
[153]
Awale S, Linn TZ, Li F, et al. Identification of chrysoplenetin from Vitex negundo as a potential cytotoxic agent against PANC-1 and a panel of 39 human cancer cell lines (JFCR-39). Phytother Res 2011; 25(12): 1770-5.
[http://dx.doi.org/10.1002/ptr.3441] [PMID: 21469236]
[154]
Nibret E, Youns M, Krauth-Siegel RL, Wink M. Biological activities of xanthatin from Xanthium strumarium leaves. Phytother Res 2011; 25(12): 1883-90.
[http://dx.doi.org/10.1002/ptr.3651] [PMID: 21953905]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy