Review Article

内源性大麻素系统与神经变性的相互作用:关注多药理学

卷 29, 期 28, 2022

页: [4796 - 4830] 页: 35

弟呕挨: 10.2174/0929867328666211115124639

价格: $65

Open Access Journals Promotions 2
摘要

复杂病理的药物治疗,如神经退行性疾病,仍然是一个重大挑战,因为其发病和进展涉及网络途径,可能需要同样复杂的治疗方法。基于同时调节参与疾病的多个靶标的多药理学可能提供增加有效性和减少与使用药物组合相关的缺点的潜力。显然,这种方法既需要对负责疾病发展的系统的知识,也需要发现新的有吸引力的靶标来设计多靶点药物。在过去的几年中,越来越多的兴趣集中在内源性大麻素系统上,这与几种生理功能的调节有关,其中神经炎症是大多数神经退行性疾病的关键过程。在这方面,大麻素受体亚型2代表一个有希望的治疗靶点,在小胶质细胞中过表达,因此涉及神经炎症。通过抑制负责内源性大麻素代谢的主要酶,即脂肪酸酰胺水解酶和单酰基甘油脂肪酶,间接调节该系统也可能显着影响神经退行性疾病。本综述旨在概述内源性大麻素系统对神经退行性疾病管理的机会,主要关注多靶点策略的潜力。

关键词: 内源性大麻素系统,神经退行性疾病,多靶点药物,阿尔茨海默病,帕金森病,大麻素受体,FAAH,MAGL。

[1]
Páez, J.A.; Campillo, N.E. Innovative therapeutic potential of cannabinoid receptors as targets in Alzheimer’s disease and less well-known diseases. Curr. Med. Chem., 2019, 26(18), 3300-3340.
[http://dx.doi.org/10.2174/0929867325666180226095132] [PMID: 29484980]
[2]
Bisogno, T.; Di Marzo, V. Cannabinoid receptors and endocannabinoids: role in neuroinflammatory and neurodegenerative disorders. CNS Neurol. Disord. Drug Targets, 2010, 9(5), 564-573.
[http://dx.doi.org/10.2174/187152710793361568] [PMID: 20632970]
[3]
Cristino, L.; Bisogno, T.; Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol., 2020, 16(1), 9-29.
[http://dx.doi.org/10.1038/s41582-019-0284-z] [PMID: 31831863]
[4]
Kano, M.; Ohno-Shosaku, T.; Hashimotodani, Y.; Uchigashima, M.; Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev., 2009, 89(1), 309-380.
[http://dx.doi.org/10.1152/physrev.00019.2008] [PMID: 19126760]
[5]
Galiègue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carrière, D.; Carayon, P.; Bouaboula, M.; Shire, D.; Le Fur, G.; Casellas, P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem., 1995, 232(1), 54-61.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20780.x] [PMID: 7556170]
[6]
Bisogno, T.; Oddi, S.; Piccoli, A.; Fazio, D.; Maccarrone, M. Type-2 cannabinoid receptors in neurodegeneration. Pharm. Res., 2016, 111, 721-730.
[http://dx.doi.org/10.1016/j.phrs.2016.07.021] [PMID: 27450295]
[7]
Duffy, S.S.; Hayes, J.P.; Fiore, N.T.; Moalem-Taylor, G. The cannabinoid system and microglia in health and disease. Neuropharmacology, 2021, 190, 108555.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108555] [PMID: 33845074]
[8]
Di Marzo, V. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov., 2018, 17(9), 623-639.
[http://dx.doi.org/10.1038/nrd.2018.115] [PMID: 30116049]
[9]
Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R.A.; Ross, R.A. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol. Rev., 2010, 62(4), 588-631.
[http://dx.doi.org/10.1124/pr.110.003004] [PMID: 21079038]
[10]
Morales, P.; Lago-Fernandez, A.; Hurst, D.P.; Sotudeh, N.; Brailoiu, E.; Reggio, P.H.; Abood, M.E.; Jagerovic, N. Therapeutic exploitation of GPR18: beyond the cannabinoids? J. Med. Chem., 2020, 63(23), 14216-14227.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00926] [PMID: 32914978]
[11]
Rodríguez-Muñoz, M.; Sánchez-Blázquez, P.; Merlos, M.; Garzón-Niño, J. Endocannabinoid control of glutamate NMDA receptors: the therapeutic potential and consequences of dysfunction. Oncotarget, 2016, 7(34), 55840-55862.
[http://dx.doi.org/10.18632/oncotarget.10095] [PMID: 27323834]
[12]
Solinas, M.; Goldberg, S.R.; Piomelli, D. The endocannabinoid system in brain reward processes. Br. J. Pharmacol., 2008, 154(2), 369-383.
[http://dx.doi.org/10.1038/bjp.2008.130] [PMID: 18414385]
[13]
Nimczick, M.; Decker, M. New approaches in the design and development of cannabinoid receptor ligands: multifunctional and bivalent compounds. ChemMedChem, 2015, 10(5), 773-786.
[http://dx.doi.org/10.1002/cmdc.201500041] [PMID: 25820617]
[14]
Gülck, T.; Møller, B.L. Phytocannabinoids: origins and biosynthesis. Trends Plant Sci., 2020, 25(10), 985-1004.
[http://dx.doi.org/10.1016/j.tplants.2020.05.005] [PMID: 32646718]
[15]
Li, H.; Liu, Y.; Tian, D.; Tian, L.; Ju, X.; Qi, L.; Wang, Y.; Liang, C. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer’s disease. Eur. J. Med. Chem., 2020, 192, 112163.
[http://dx.doi.org/10.1016/j.ejmech.2020.112163] [PMID: 32109623]
[16]
Jucker, M.; Walker, L.C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat. Neurosci., 2018, 21(10), 1341-1349.
[http://dx.doi.org/10.1038/s41593-018-0238-6] [PMID: 30258241]
[17]
Chen, W.W.; Zhang, X.; Huang, W.J. Role of neuroinflammation in neurodegenerative diseases. (Review) Mol. Med. Rep., 2016, 13(4), 3391-3396.
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[18]
Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: challenges and opportunities in drug discovery. J. Med. Chem., 2014, 57(19), 7874-7887.
[http://dx.doi.org/10.1021/jm5006463] [PMID: 24946140]
[19]
Talarico, G.; Trebbastoni, A.; Bruno, G.; de Lena, C. Modulation of the cannabinoid system: a new perspective for the treatment of the Alzheimer’s disease. Curr. Neuropharmacol., 2019, 17(2), 176-183.
[http://dx.doi.org/10.2174/1570159X16666180702144644] [PMID: 29962346]
[20]
Contestabile, A. The history of the cholinergic hypothesis. Behav. Brain Res., 2011, 221(2), 334-340.
[http://dx.doi.org/10.1016/j.bbr.2009.12.044] [PMID: 20060018]
[21]
Masters, C.L.; Selkoe, D.J. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(6), a006262.
[http://dx.doi.org/10.1101/cshperspect.a006262] [PMID: 22675658]
[22]
Jin, M.; Shepardson, N.; Yang, T.; Chen, G.; Walsh, D.; Selkoe, D.J. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. USA, 2011, 108(14), 5819-5824.
[http://dx.doi.org/10.1073/pnas.1017033108] [PMID: 21421841]
[23]
Bedse, G.; Romano, A.; Lavecchia, A.M.; Cassano, T.; Gaetani, S. The role of endocannabinoid signaling in the molecular mechanisms of neurodegeneration in Alzheimer’s disease. J. Alzheimers Dis., 2015, 43(4), 1115-1136.
[http://dx.doi.org/10.3233/JAD-141635] [PMID: 25147120]
[24]
Bedse, G.; Romano, A.; Cianci, S.; Lavecchia, A.M.; Lorenzo, P.; Elphick, M.R.; Laferla, F.M.; Vendemiale, G.; Grillo, C.; Altieri, F.; Cassano, T.; Gaetani, S. Altered expression of the CB1 cannabinoid receptor in the triple transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2014, 40(3), 701-712.
[http://dx.doi.org/10.3233/JAD-131910] [PMID: 24496074]
[25]
Takkinen, J.S.; Lopez-Picon, F.R.; Kirjavainen, A.K.; Pihlaja, R.; Snellman, A.; Tamiko Ishizu, T.; Löyttyniemi, E.; Solindg, O.; Rinne, O.J.; Haaparanta-Solin, M. [18F]FMPEP-δ2 PET imaging shows age- and genotype-dependent impairments in the availability of cannabinoid receptor 1 in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2018, 69, 199-208.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.05.013] [PMID: 29909177]
[26]
Cassano, T.; Calcagnini, S.; Pace, L.; De Marco, F.; Romano, A.; Gaetani, S. Cannabinoid receptor 2 signaling in neurodegenerative disorders: from pathogenesis to a promising therapeutic target. Front. Neurosci., 2017, 11, 30.
[http://dx.doi.org/10.3389/fnins.2017.00030] [PMID: 28210207]
[27]
Solas, M.; Francis, P.T.; Franco, R.; Ramirez, M.J. CB2 receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients. Neurobiol. Aging, 2013, 34(3), 805-808.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.06.005] [PMID: 22763024]
[28]
Fernández-Ruiz, J.; de Lago, E.; Gómez-Ruiz, M.; García, C.; Sagredo, O.; García-Arencíbia, M. Neurodegenerative disorders other than multiple sclerosis. In: Handbook of Cannabis; Oxford University Press, 2014; pp. 505-525.
[http://dx.doi.org/10.1093/acprof:oso/9780199662685.003.0027]
[29]
Sheng, W.S.; Hu, S.; Min, X.; Cabral, G.A.; Lokensgard, J.R.; Peterson, P.K. Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia, 2005, 49(2), 211-219.
[http://dx.doi.org/10.1002/glia.20108] [PMID: 15390091]
[30]
Martín-Moreno, A.M.; Brera, B.; Spuch, C.; Carro, E.; García-García, L.; Delgado, M.; Pozo, M.A.; Innamorato, N.G.; Cuadrado, A.; de Ceballos, M.L. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J. Neuroinflammation, 2012, 9, 8.
[http://dx.doi.org/10.1186/1742-2094-9-8] [PMID: 22248049]
[31]
García-Arencibia, M.; García, C.; Fernández-Ruiz, J. Cannabinoids and Parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2009, 8(6), 432-439.
[http://dx.doi.org/10.2174/187152709789824642] [PMID: 19839934]
[32]
Fernández-Ruiz, J. The endocannabinoid system as a target for the treatment of motor dysfunction. Br. J. Pharmacol., 2009, 156(7), 1029-1040.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00088.x] [PMID: 19220290]
[33]
Lima, M.M.; Martins, E.F.; Delattre, A.M.; Proença, M.B.; Mori, M.A.; Carabelli, B.; Ferraz, A.C. Motor and non-motor features of Parkinson’s disease - a review of clinical and experimental studies. CNS Neurol. Disord. Drug Targets, 2012, 11(4), 439-449.
[http://dx.doi.org/10.2174/187152712800792893] [PMID: 22483309]
[34]
McGeer, P.L.; McGeer, E.G. Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis. Assoc. Disord., 1998, 12(Suppl. 2), S1-S6.
[http://dx.doi.org/10.1097/00002093-199803001-00001] [PMID: 9769023]
[35]
Fernández-Ruiz, J.; Moro, M.A.; Martínez-Orgado, J. Cannabinoids in neurodegenerative disorders and stroke/brain trauma: from preclinical models to clinical applications. Neurotherapeutics, 2015, 12(4), 793-806.
[http://dx.doi.org/10.1007/s13311-015-0381-7] [PMID: 26260390]
[36]
Ferrisi, R.; Ceni, C.; Bertini, S.; Macchia, M.; Manera, C.; Gado, F. Medicinal Chemistry approach, pharmacology and neuroprotective benefits of CB2R modulators in neurodegenerative diseases. Pharm. Res., 2021, 170, 105607.
[http://dx.doi.org/10.1016/j.phrs.2021.105607] [PMID: 34089867]
[37]
Aghazadeh Tabrizi, M.; Baraldi, P.G.; Borea, P.A.; Varani, K. Medicinal chemistry, pharmacology, and potential therapeutic benefits of cannabinoid CB2 receptor agonists. Chem. Rev., 2016, 116(2), 519-560.
[http://dx.doi.org/10.1021/acs.chemrev.5b00411] [PMID: 26741146]
[38]
Morales, P.; Goya, P.; Jagerovic, N. Emerging strategies targeting CB2 cannabinoid receptor: biased agonism and allosterism. Biochem. Pharmacol., 2018, 157, 8-17.
[http://dx.doi.org/10.1016/j.bcp.2018.07.031] [PMID: 30055149]
[39]
Mackie, K.; Ross, R.A. CB2 cannabinoid receptors: new vistas. Br. J. Pharm, 2008, 153, 177-178.
[http://dx.doi.org/10.1038/sj.bjp.0707617]
[40]
Morales, P.; Hernandez-Folgado, L.; Goya, P.; Jagerovic, N. Cannabinoid receptor 2 (CB2) agonists and antagonists: a patent update. Expert Opin. Ther. Pat., 2016, 26(7), 843-856.
[http://dx.doi.org/10.1080/13543776.2016.1193157] [PMID: 27215781]
[41]
Spinelli, F.; Capparelli, E.; Abate, C.; Colabufo, N.A.; Contino, M. Perspectives of cannabinoid type 2 receptor (CB2R) ligands in neurodegenerative disorders: structure-affinity relationship (SAfiR) and structure-activity relationship (SAR) studies. J. Med. Chem., 2017, 60(24), 9913-9931.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00155] [PMID: 28608697]
[42]
Lucchesi, V.; Parkkari, T.; Savinainen, J.R.; Malfitano, A.M.; Allarà, M.; Bertini, S.; Castelli, F.; Del Carlo, S.; Laezza, C.; Ligresti, A.; Saccomanni, G.; Bifulco, M.; Di Marzo, V.; Macchia, M.; Manera, C. 1,2-Dihydro-2-oxopyridine-3-carboxamides: the C-5 substituent is responsible for functionality switch at CB2 cannabinoid receptor. Eur. J. Med. Chem., 2014, 74, 524-532.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.070] [PMID: 24518874]
[43]
Bertini, S.; Parkkari, T.; Savinainen, J.R.; Arena, C.; Saccomanni, G.; Saguto, S.; Ligresti, A.; Allarà, M.; Bruno, A.; Marinelli, L.; Di Marzo, V.; Novellino, E.; Manera, C.; Macchia, M. Synthesis, biological activity and molecular modeling of new biphenylic carboxamides as potent and selective CB2 receptor ligands. Eur. J. Med. Chem., 2015, 90, 526-536.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.066] [PMID: 25486424]
[44]
Gado, F.; Di Cesare Mannelli, L.; Lucarini, E.; Bertini, S.; Cappelli, E.; Digiacomo, M.; Stevenson, L.A.; Macchia, M.; Tuccinardi, T.; Ghelardini, C.; Pertwee, R.G.; Manera, C. Identification of the first synthetic allosteric modulator of the CB2 receptors and evidence of its efficacy for neuropathic pain relief. J. Med. Chem., 2019, 62(1), 276-287.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00368] [PMID: 29990428]
[45]
Polini, B.; Cervetto, C.; Carpi, S.; Pelassa, S.; Gado, F.; Ferrisi, R.; Bertini, S.; Nieri, P.; Marcoli, M.; Manera, C. Positive allosteric modulation of CB1 and CB2 cannabinoid receptors enhances the neuroprotective activity of a dual CB1R/CB2R orthosteric agonist. Life (Basel), 2020, 10(12), 333.
[http://dx.doi.org/10.3390/life10120333] [PMID: 33302569]
[46]
Bisi, A.; Mokhtar, M.A.; Allará, M.; Naldi, M.; Belluti, F.; Gobbi, S.; Ligresti, A.; Rampa, A. Polycyclic maleimide-based scaffold as new privileged structure for navigating the cannabinoid system opportunities. ACS Med. Chem. Lett., 2019, 10(4), 596-600.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00594] [PMID: 30996802]
[47]
Alghamdi, S.S.; Mustafa, S.M. Moore, Ii, B.M. Synthesis and biological evaluation of a ring analogs of the selective CB2 inverse agonist SMM-189. Bioorg. Med. Chem., 2021, 33, 116035.
[http://dx.doi.org/10.1016/j.bmc.2021.116035] [PMID: 33550084]
[48]
Schrage, R.; Kostenis, E. Functional selectivity and dualsteric/bitopic GPCR targeting. Curr. Opin. Pharmacol., 2017, 32, 85-90.
[http://dx.doi.org/10.1016/j.coph.2016.12.001] [PMID: 28027487]
[49]
Nimczick, M.; Pemp, D.; Darras, F.H.; Chen, X.; Heilmann, J.; Decker, M. Synthesis and biological evaluation of bivalent cannabinoid receptor ligands based on hCB2R selective benzimidazoles reveal unexpected intrinsic properties. Bioorg. Med. Chem., 2014, 22(15), 3938-3946.
[http://dx.doi.org/10.1016/j.bmc.2014.06.008] [PMID: 24984935]
[50]
Xing, C.; Zhuang, Y.; Xu, T.H.; Feng, Z.; Zhou, X.E.; Chen, M.; Wang, L.; Meng, X.; Xue, Y.; Wang, J.; Liu, H.; McGuire, T.F.; Zhao, G.; Melcher, K.; Zhang, C.; Xu, H.E.; Xie, X.Q. Cryo-EM Structure of the Human Cannabinoid Receptor CB2-Gi Signaling Complex. Cell, 2020, 180(4), 645-654.
[http://dx.doi.org/10.1016/j.cell.2020.01.007] [PMID: 32004460]
[51]
Morales, P.; Navarro, G.; Gómez-Autet, M.; Redondo, L.; Fernández-Ruiz, J.; Pérez-Benito, L.; Cordomí, A.; Pardo, L.; Franco, R.; Jagerovic, N. Discovery of homobivalent bitopic ligands of the cannabinoid CB2 receptor. Chemistry, 2020, 26(68), 15839-15842.
[http://dx.doi.org/10.1002/chem.202003389] [PMID: 32794211]
[52]
Mangiatordi, G.F.; Intranuovo, F.; Delre, P.; Abatematteo, F.S.; Abate, C.; Niso, M.; Creanza, T.M.; Ancona, N.; Stefanachi, A.; Contino, M. Cannabinoid receptor subtype 2 (CB2R) in a multitarget approach: perspective of an innovative strategy in cancer and neurodegeneration. J. Med. Chem., 2020, 63(23), 14448-14469.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01357] [PMID: 33094613]
[53]
Matos, M.J. Multitarget therapeutic approaches for Alzheimer’s and Parkinson’s diseases: an opportunity or an illusion? Future Med. Chem., 2021, 13(15), 1301-1309.
[http://dx.doi.org/10.4155/fmc-2021-0119] [PMID: 34137271]
[54]
Davies, P.; Maloney, A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 1976, 2(8000), 1403.
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[55]
Nordberg, A.; Ballard, C.; Bullock, R.; Darreh-Shori, T.; Somogyi, M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim. Care Companion CNS Disord., 2013, 15(2), 2.
[http://dx.doi.org/10.4088/PCC.12r01412] [PMID: 23930233]
[56]
Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci., 2003, 4(2), 131-138.
[http://dx.doi.org/10.1038/nrn1035] [PMID: 12563284]
[57]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d] [PMID: 16220969]
[58]
González-Naranjo, P.; Campillo, N.E.; Pérez, C.; Páez, J.A.; Paez, J.A. Multitarget cannabinoids as novel strategy for Alzheimer disease. Curr. Alzh. Res, 2013, 10(3), 229-239.
[http://dx.doi.org/10.2174/1567205011310030002] [PMID: 23369066]
[59]
González-Naranjo, P.; Pérez-Macias, N.; Campillo, N.E.; Pérez, C.; Arán, V.J.; Girón, R.; Sánchez-Robles, E.; Martín, M.I.; Gómez-Cañas, M.; García-Arencibia, M.; Fernández-Ruiz, J.; Páez, J.A. Cannabinoid agonists showing BuChE inhibition as potential therapeutic agents for Alzheimer’s disease. Eur. J. Med. Chem., 2014, 73, 56-72.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.026] [PMID: 24378710]
[60]
González-Naranjo, P.; Pérez-Macias, N.; Pérez, C.; Roca, C.; Vaca, G.; Girón, R.; Sánchez-Robles, E.; Martín-Fontelles, M.I.; de Ceballos, M.L.; Martin-Requero, A.; Campillo, N.E.; Páez, J.A. Indazolylketones as new multitarget cannabinoid drugs. Eur. J. Med. Chem., 2019, 166, 90-107.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.030] [PMID: 30685536]
[61]
Dolles, D.; Nimczick, M.; Scheiner, M.; Ramler, J.; Stadtmüller, P.; Sawatzky, E.; Drakopoulos, A.; Sotriffer, C.; Wittmann, H.J.; Strasser, A.; Decker, M. Aminobenzimidazoles and structural isomers as templates for dual-acting butyrylcholinesterase inhibitors and hCB2 R ligands to combat neurodegenerative disorders. ChemMedChem, 2016, 11(12), 1270-1283.
[http://dx.doi.org/10.1002/cmdc.201500418] [PMID: 26548365]
[62]
Dolles, D.; Hoffmann, M.; Gunesch, S.; Marinelli, O.; Möller, J.; Santoni, G.; Chatonnet, A.; Lohse, M.J.; Wittmann, H.J.; Strasser, A.; Nabissi, M.; Maurice, T.; Decker, M. Structure-activity relationships and computational investigations into the development of potent and balanced dual-acting butyrylcholinesterase inhibitors and human cannabinoid receptor 2 ligands with pro-cognitive in vivo profiles. J. Med. Chem., 2018, 61(4), 1646-1663.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01760] [PMID: 29400965]
[63]
Hua, T.; Vemuri, K.; Nikas, S.P.; Laprairie, R.B.; Wu, Y.; Qu, L.; Pu, M.; Korde, A.; Jiang, S.; Ho, J.H.; Han, G.W.; Ding, K.; Li, X.; Liu, H.; Hanson, M.A.; Zhao, S.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature, 2017, 547(7664), 468-471.
[http://dx.doi.org/10.1038/nature23272] [PMID: 28678776]
[64]
Scheiner, M.; Dolles, D.; Gunesch, S.; Hoffmann, M.; Nabissi, M.; Marinelli, O.; Naldi, M.; Bartolini, M.; Petralla, S.; Poeta, E.; Monti, B.; Falkeis, C.; Vieth, M.; Hübner, H.; Gmeiner, P.; Maitra, R.; Maurice, T.; Decker, M. Dual-acting cholinesterase-human cannabinoid receptor 2 ligands show pronounced neuroprotection in vitro and overadditive and disease-modifying neuroprotective effects in vivo. J. Med. Chem., 2019, 62(20), 9078-9102.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00623] [PMID: 31609608]
[65]
Minarini, A.; Milelli, A.; Tumiatti, V.; Rosini, M.; Simoni, E.; Bolognesi, M.L.; Andrisano, V.; Bartolini, M.; Motori, E.; Angeloni, C.; Hrelia, S. Cystamine-tacrine dimer: a new multi-target-directed ligand as potential therapeutic agent for Alzheimer’s disease treatment. Neuropharmacology, 2012, 62(2), 997-1003.
[http://dx.doi.org/10.1016/j.neuropharm.2011.10.007] [PMID: 22032870]
[66]
Castro, A.; Martinez, A. Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr. Pharm. Des., 2006, 12(33), 4377-4387.
[http://dx.doi.org/10.2174/138161206778792985] [PMID: 17105433]
[67]
Girek, M.; Szymański, P. Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: influence of chemical structures on biological activities. Chem, 2019, 73, 269-289.
[68]
Przybyłowska, M.; Kowalski, S.; Dzierzbicka, K.; Inkielewicz-Stepniak, I. Therapeutic potential of multifunctional tacrine analogues. Curr. Neuropharmacol., 2019, 17(5), 472-490.
[http://dx.doi.org/10.2174/1570159X16666180412091908] [PMID: 29651948]
[69]
Lange, J.H.M.; Coolen, H.K.A.C.; van der Neut, M.A.W.; Borst, A.J.M.; Stork, B.; Verveer, P.C.; Kruse, C.G. Design, synthesis, biological properties, and molecular modeling investigations of novel tacrine derivatives with a combination of acetylcholinesterase inhibition and cannabinoid CB1 receptor antagonism. J. Med. Chem., 2010, 53(3), 1338-1346.
[http://dx.doi.org/10.1021/jm901614b] [PMID: 20047331]
[70]
Rizzo, S.; Rivière, C.; Piazzi, L.; Bisi, A.; Gobbi, S.; Bartolini, M.; Andrisano, V.; Morroni, F.; Tarozzi, A.; Monti, J.P.; Rampa, A. Benzofuran-based hybrid compounds for the inhibition of cholinesterase activity, β amyloid aggregation, and abeta neurotoxicity. J. Med. Chem., 2008, 51(10), 2883-2886.
[http://dx.doi.org/10.1021/jm8002747] [PMID: 18419109]
[71]
Felder, C.C.; Joyce, K.E.; Briley, E.M.; Glass, M.; Mackie, K.P.; Fahey, K.J.; Cullinan, J.G.; Hunden, D.C.; Johnson, D.W.; Chaney, M.O.; Koppel, G.A.; Brownstein, M. LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J. Pharmacol. Exp. Ther., 1998, 284, 291-297.
[72]
Rizzo, S.; Tarozzi, A.; Bartolini, M.; Da Costa, G.; Bisi, A.; Gobbi, S.; Belluti, F.; Ligresti, A.; Allarà, M.; Monti, J.P.; Andrisano, V.; Di Marzo, V.; Hrelia, P.; Rampa, A. 2-Arylbenzofuran-based molecules as multipotent Alzheimer’s disease modifying agents. Eur. J. Med. Chem., 2012, 58, 519-532.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.045] [PMID: 23164658]
[73]
Montanari, S.; Mahmoud, A.M.; Pruccoli, L.; Rabbito, A.; Naldi, M.; Petralla, S.; Moraleda, I.; Bartolini, M.; Monti, B.; Iriepa, I.; Belluti, F.; Gobbi, S.; Di Marzo, V.; Bisi, A.; Tarozzi, A.; Ligresti, A.; Rampa, A.; Rampa, A. Discovery of novel benzofuran-based compounds with neuroprotective and immunomodulatory properties for Alzheimer’s disease treatment. Eur. J. Med. Chem., 2019, 178, 243-258.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.080] [PMID: 31185414]
[74]
Siffrin, V.; Brandt, A.U.; Herz, J.; Zipp, F. New insights into adaptive immunity in chronic neuroinflammation. Adv. Immunol., 2007, 96, 1-40.
[http://dx.doi.org/10.1016/S0065-2776(07)96001-0] [PMID: 17981203]
[75]
Flachenecker, P.; Henze, T.; Zettl, U.K. Spasticity in patients with multiple sclerosis--clinical characteristics, treatment and quality of life. Acta Neurol. Scand., 2014, 129(3), 154-162.
[http://dx.doi.org/10.1111/ane.12202] [PMID: 24256407]
[76]
Beard, S.; Hunn, A.; Wight, J. Treatments for spasticity and pain in multiple sclerosis: a systematic review. Health Technol. Assess., 2003, 7(40), iii-, ix-x, 1-111
[http://dx.doi.org/10.3310/hta7400] [PMID: 14636486]
[77]
Notcutt, W.G. Clinical use of cannabinoids for symptom control in multiple sclerosis. Neurotherapeutics, 2015, 12(4), 769-777.
[http://dx.doi.org/10.1007/s13311-015-0383-5] [PMID: 26289248]
[78]
Giacoppo, S.; Bramanti, P.; Mazzon, E. Sativex in the management of multiple sclerosis-related spasticity: an overview of the last decade of clinical evaluation. Mult. Scler. Relat. Disord., 2017, 17, 22-31.
[http://dx.doi.org/10.1016/j.msard.2017.06.015] [PMID: 29055461]
[79]
Annunziata, P.; Cioni, C.; Mugnaini, C.; Corelli, F. Potent immunomodulatory activity of a highly selective cannabinoid CB2 agonist on immune cells from healthy subjects and patients with multiple sclerosis. J. Neuroimmunol., 2017, 303, 66-74.
[http://dx.doi.org/10.1016/j.jneuroim.2016.12.009] [PMID: 28041663]
[80]
Pasquini, S.; Botta, L.; Semeraro, T.; Mugnaini, C.; Ligresti, A.; Palazzo, E.; Maione, S.; Di Marzo, V.; Corelli, F. Investigations on the 4-quinolone-3-carboxylic acid motif. 2. Synthesis and structure-activity relationship of potent and selective cannabinoid-2 receptor agonists endowed with analgesic activity in vivo. J. Med. Chem., 2008, 51(16), 5075-5084.
[http://dx.doi.org/10.1021/jm800552f] [PMID: 18680276]
[81]
del Río, C.; Navarrete, C.; Collado, J.A.; Bellido, M.L.; Gómez-Cañas, M.; Pazos, M.R.; Fernández-Ruiz, J.; Pollastro, F.; Appendino, G.; Calzado, M.A.; Cantarero, I.; Muñoz, E. The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Sci. Rep., 2016, 6, 21703.
[http://dx.doi.org/10.1038/srep21703] [PMID: 26887982]
[82]
Navarrete, C.; Carrillo-Salinas, F.; Palomares, B.; Mecha, M.; Jiménez-Jiménez, C.; Mestre, L.; Feliú, A.; Bellido, M.L.; Fiebich, B.L.; Appendino, G.; Calzado, M.A.; Guaza, C.; Muñoz, E. Hypoxia mimetic activity of VCE-004.8, a cannabidiol quinone derivative: implications for multiple sclerosis therapy. J. Neuroinflammation, 2018, 15(1), 64.
[http://dx.doi.org/10.1186/s12974-018-1103-y] [PMID: 29495967]
[83]
Morales, P.; Gómez-Cañas, M.; Navarro, G.; Hurst, D.P.; Carrillo-Salinas, F.J.; Lagartera, L.; Pazos, R.; Goya, P.; Reggio, P.H.; Guaza, C.; Franco, R.; Fernández-Ruiz, J.; Jagerovic, N. Chromenopyrazole, a versatile cannabinoid scaffold with in vivo activity in a model of multiple sclerosis. J. Med. Chem., 2016, 59(14), 6753-6771.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00397] [PMID: 27309150]
[84]
Baul, H.S.; Manikandan, C.; Sen, D. Cannabinoid receptor as a potential therapeutic target for Parkinson’s Disease. Brain Res. Bull., 2019, 146, 244-252.
[http://dx.doi.org/10.1016/j.brainresbull.2019.01.016] [PMID: 30664919]
[85]
Saliba, S.W.; Bonifacino, T.; Serchov, T.; Bonanno, G.; de Oliveira, A.C.P.; Fiebich, B.L. Neuroprotective effect of AM404 against NMDA-induced hippocampal excitotoxicity. Front. Cell. Neurosci., 2019, 13, 566.
[http://dx.doi.org/10.3389/fncel.2019.00566] [PMID: 31920563]
[86]
Díaz-Alonso, J.; Paraíso-Luna, J.; Navarrete, C.; Del Río, C.; Cantarero, I.; Palomares, B.; Aguareles, J.; Fernández-Ruiz, J.; Bellido, M.L.; Pollastro, F.; Appendino, G.; Calzado, M.A.; Galve-Roperh, I.; Muñoz, E. VCE-003.2, a novel cannabigerol derivative, enhances neuronal progenitor cell survival and alleviates symptomatology in murine models of Huntington’s disease. Sci. Rep., 2016, 6, 29789.
[http://dx.doi.org/10.1038/srep29789] [PMID: 27430371]
[87]
Burgaz, S.; García, C.; Gómez-Cañas, M.; Navarrete, C.; García-Martín, A.; Rolland, A.; Del Río, C.; Casarejos, M.J.; Muñoz, E.; Gonzalo-Consuegra, C.; Muñoz, E.; Fernández-Ruiz, J. Neuroprotection with the cannabigerol quinone derivative VCE-003.2 and its analogs CBGA-Q and CBGA-Q-Salt in Parkinson’s disease using 6-hydroxydopamine-lesioned mice. Mol. Cell. Neurosci., 2021, 110, 103583.
[http://dx.doi.org/10.1016/j.mcn.2020.103583] [PMID: 33338634]
[88]
Aguareles, J.; Paraíso-Luna, J.; Palomares, B.; Bajo-Grañeras, R.; Navarrete, C.; Ruiz-Calvo, A.; García-Rincón, D.; García-Taboada, E.; Guzmán, M.; Muñoz, E.; Galve-Roperh, I. Oral administration of the cannabigerol derivative VCE-003.2 promotes subventricular zone neurogenesis and protects against mutant huntingtin-induced neurodegeneration. Transl. Neurodegener., 2019, 8, 9.
[http://dx.doi.org/10.1186/s40035-019-0148-x] [PMID: 30899454]
[89]
Cravatt, B.F.; Giang, D.K.; Mayfield, S.P.; Boger, D.L.; Lerner, R.A.; Gilula, N.B. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature, 1996, 384(6604), 83-87.
[http://dx.doi.org/10.1038/384083a0] [PMID: 8900284]
[90]
Cravatt, B.F.; Demarest, K.; Patricelli, M.P.; Bracey, M.H.; Giang, D.K.; Martin, B.R.; Lichtman, A.H. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA, 2001, 98(16), 9371-9376.
[http://dx.doi.org/10.1073/pnas.161191698] [PMID: 11470906]
[91]
McKinney, M.K.; Cravatt, B.F. Structure and function of fatty acid amide hydrolase. Annu. Rev. Biochem., 2005, 74, 411-432.
[http://dx.doi.org/10.1146/annurev.biochem.74.082803.133450] [PMID: 15952893]
[92]
Bambico, F.R.; Duranti, A.; Tontini, A.; Tarzia, G.; Gobbi, G. Endocannabinoids in the treatment of mood disorders: evidence from animal models. Curr. Pharm. Des., 2009, 15(14), 1623-1646.
[http://dx.doi.org/10.2174/138161209788168029] [PMID: 19442178]
[93]
Piomelli, D. The endocannabinoid system: a drug discovery perspective. Curr. Opin. Investig. Drugs, 2005, 6(7), 672-679.
[PMID: 16044662]
[94]
Bracey, M.H.; Hanson, M.A.; Masuda, K.R.; Stevens, R.C.; Cravatt, B.F. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science, 2002, 298(5599), 1793-1796.
[http://dx.doi.org/10.1126/science.1076535] [PMID: 12459591]
[95]
Mor, M.; Rivara, S.; Lodola, A.; Plazzi, P.V.; Tarzia, G.; Duranti, A.; Tontini, A.; Piersanti, G.; Kathuria, S.; Piomelli, D. Cyclohexylcarbamic acid 3′- or 4′-substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: synthesis, quantitative structure-activity relationships, and molecular modeling studies. J. Med. Chem., 2004, 47(21), 4998-5008.
[http://dx.doi.org/10.1021/jm031140x] [PMID: 15456244]
[96]
Rivera, P.; Fernández-Arjona, M.D.M.; Silva-Peña, D.; Blanco, E.; Vargas, A.; López-Ávalos, M.D.; Grondona, J.M.; Serrano, A.; Pavón, F.J.; Rodríguez de Fonseca, F.; Suárez, J. Pharmacological blockade of fatty acid amide hydrolase (FAAH) by URB597 improves memory and changes the phenotype of hippocampal microglia despite ethanol exposure. Biochem. Pharmacol., 2018, 157, 244-257.
[http://dx.doi.org/10.1016/j.bcp.2018.08.005] [PMID: 30098312]
[97]
Celorrio, M.; Fernández-Suárez, D.; Rojo-Bustamante, E.; Echeverry-Alzate, V.; Ramírez, M.J.; Hillard, C.J.; López-Moreno, J.A.; Maldonado, R.; Oyarzábal, J.; Franco, R.; Aymerich, M.S. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson’s disease. Brain Behav. Immun., 2016, 57, 94-105.
[http://dx.doi.org/10.1016/j.bbi.2016.06.010] [PMID: 27318096]
[98]
Lamani, M.; Malamas, M.S.; Farah, S.I.; Shukla, V.G.; Almeida, M.F.; Weerts, C.M.; Anderson, J.; Wood, J.T.; Farizatto, K.L.G.; Bahr, B.A.; Makriyannis, A. Piperidine and piperazine inhibitors of fatty acid amide hydrolase targeting excitotoxic pathology. Bioorg. Med. Chem., 2019, 27(23), 115096.
[http://dx.doi.org/10.1016/j.bmc.2019.115096] [PMID: 31629610]
[99]
Lodola, A.; Castelli, R.; Mor, M.; Rivara, S. Fatty acid amide hydrolase inhibitors: a patent review (2009-2014). Expert Opin. Ther. Pat., 2015, 25(11), 1247-1266.
[http://dx.doi.org/10.1517/13543776.2015.1067683] [PMID: 26413912]
[100]
Tripathi, R.K.P. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur. J. Med. Chem., 2020, 188, 111953.
[http://dx.doi.org/10.1016/j.ejmech.2019.111953] [PMID: 31945644]
[101]
Benito, C.; Núñez, E.; Tolón, R.M.; Carrier, E.J.; Rábano, A.; Hillard, C.J.; Romero, J. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci., 2003, 23(35), 11136-11141.
[http://dx.doi.org/10.1523/JNEUROSCI.23-35-11136.2003] [PMID: 14657172]
[102]
van der Stelt, M.; Mazzola, C.; Esposito, G.; Matias, I.; Petrosino, S.; De Filippis, D.; Micale, V.; Steardo, L.; Drago, F.; Iuvone, T.; Di Marzo, V. Endocannabinoids and β-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell. Mol. Life Sci., 2006, 63(12), 1410-1424.
[http://dx.doi.org/10.1007/s00018-006-6037-3] [PMID: 16732431]
[103]
Rampa, A.; Bartolini, M.; Bisi, A.; Belluti, F.; Gobbi, S.; Andrisano, V.; Ligresti, A.; Di Marzo, V. The first dual ChE/FAAH inhibitors: new perspective for Alzheimer’s disease? ACS Med. Chem. Lett., 2012, 3(3), 182-186.
[http://dx.doi.org/10.1021/ml200313p] [PMID: 24900454]
[104]
Montanari, S.; Scalvini, L.; Bartolini, M.; Belluti, F.; Gobbi, S.; Andrisano, V.; Ligresti, A.; Di Marzo, V.; Rivara, S.; Mor, M.; Bisi, A.; Rampa, A. Fatty acid amide hydrolase (FAAH), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE): networked targets for the development of carbamates as potential anti-Alzheimer’s disease agents. J. Med. Chem., 2016, 59(13), 6387-6406.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00609] [PMID: 27309570]
[105]
Montanari, S.; Allarà, M.; Scalvini, L.; Kostrzewa, M.; Belluti, F.; Gobbi, S.; Naldi, M.; Rivara, S.; Bartolini, M.; Ligresti, A.; Bisi, A.; Rampa, A. New coumarin derivatives as cholinergic and cannabinoid system modulators. Molecules, 2021, 26(11), 3254.
[http://dx.doi.org/10.3390/molecules26113254] [PMID: 34071439]
[106]
Tripathi, R.K.P.; Ayyannan, S.R. Exploration of dual fatty acid amide hydrolase and cholinesterase inhibitory potential of some 3-hydroxy-3-phenacyloxindole analogs. Arch. Pharm. (Weinheim), 2020, 353(9), e2000036.
[http://dx.doi.org/10.1002/ardp.202000036] [PMID: 32573008]
[107]
Maleki, M.F.; Nadri, H.; Kianfar, M.; Edraki, N.; Eisvand, F.; Ghodsi, R.; Mohajeri, S.A.; Hadizadeh, F. Design and synthesis of new carbamates as inhibitors for fatty acid amide hydrolase and cholinesterases: molecular dynamic, in vitro and in vivo studies. Bioorg. Chem., 2021, 109, 104684.
[http://dx.doi.org/10.1016/j.bioorg.2021.104684] [PMID: 33607363]
[108]
Dahlhaus, H.; Hanekamp, W.; Lehr, M. (Indolylalkyl)piperidine carbamates as inhibitors of fatty acid amide hydrolase (FAAH). MedChemComm, 2017, 8(3), 616-620.
[http://dx.doi.org/10.1039/C6MD00683C] [PMID: 30108777]
[109]
Rudolph, S.; Dahlhaus, H.; Hanekamp, W.; Albers, C.; Barth, M.; Michels, G.; Friedrich, D.; Lehr, M. Aryl N-[ω-(6-Fluoroindol-1-yl)alkyl]carbamates as inhibitors of fatty acid amide hydrolase, monoacylglycerol lipase, and butyrylcholinesterase: structure-activity relationships and hydrolytic stability. ACS Omega, 2021, 6(20), 13466-13483.
[http://dx.doi.org/10.1021/acsomega.1c01699] [PMID: 34056494]
[110]
Chicca, A.; Arena, C.; Bertini, S.; Gado, F.; Ciaglia, E.; Abate, M.; Digiacomo, M.; Lapillo, M.; Poli, G.; Bifulco, M.; Macchia, M.; Tuccinardi, T.; Gertsch, J.; Manera, C. Polypharmacological profile of 1,2-dihydro-2-oxo-pyridine-3-carboxamides in the endocannabinoid system. Eur. J. Med. Chem., 2018, 154, 155-171.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.019] [PMID: 29793210]
[111]
Gado, F.; Arena, C.; Fauci, C.; Reynoso-Moreno, I.; Bertini, S.; Digiacomo, M.; Meini, S.; Poli, G.; Macchia, M.; Tuccinardi, T.; Gertsch, J.; Chicca, A.; Manera, C. Modification on the 1,2-dihydro-2-oxo-pyridine-3-carboxamide core to obtain multi-target modulators of endocannabinoid system. Bioorg. Chem., 2020, 94, 103353.
[http://dx.doi.org/10.1016/j.bioorg.2019.103353] [PMID: 31668465]
[112]
Pertwee, R.G. Cannabinoid pharmacology: the first 66 years. Br. J. Pharmacol., 2006, 147(S1)(Suppl. 1), S163-S171.
[http://dx.doi.org/10.1038/sj.bjp.0706406] [PMID: 16402100]
[113]
Gulyas, A.I.; Cravatt, B.F.; Bracey, M.H.; Dinh, T.P.; Piomelli, D.; Boscia, F.; Freund, T.F. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci., 2004, 20(2), 441-458.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03428.x] [PMID: 15233753]
[114]
Karlsson, M.; Contreras, J.A.; Hellman, U.; Tornqvist, H.; Holm, C. cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J. Biol. Chem., 1997, 272(43), 27218-27223.
[http://dx.doi.org/10.1074/jbc.272.43.27218] [PMID: 9341166]
[115]
Labar, G.; Bauvois, C.; Borel, F.; Ferrer, J-L.; Wouters, J.; Lambert, D.M. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. ChemBioChem, 2010, 11(2), 218-227.
[http://dx.doi.org/10.1002/cbic.200900621] [PMID: 19957260]
[116]
Bertrand, T.; Augé, F.; Houtmann, J.; Rak, A.; Vallée, F.; Mikol, V.; Berne, P.F.; Michot, N.; Cheuret, D.; Hoornaert, C.; Mathieu, M. Structural basis for human monoglyceride lipase inhibition. J. Mol. Biol., 2010, 396(3), 663-673.
[http://dx.doi.org/10.1016/j.jmb.2009.11.060] [PMID: 19962385]
[117]
King, A.R.; Dotsey, E.Y.; Lodola, A.; Jung, K.M.; Ghomian, A.; Qiu, Y.; Fu, J.; Mor, M.; Piomelli, D. Discovery of potent and reversible monoacylglycerol lipase inhibitors. Chem. Biol., 2009, 16(10), 1045-1052.
[http://dx.doi.org/10.1016/j.chembiol.2009.09.012] [PMID: 19875078]
[118]
Labar, G.; Wouters, J.; Lambert, D.M. A review on the monoacylglycerol lipase: at the interface between fat and endocannabinoid signalling. Curr. Med. Chem., 2010, 17(24), 2588-2607.
[http://dx.doi.org/10.2174/092986710791859414] [PMID: 20491633]
[119]
Chanda, P.K.; Gao, Y.; Mark, L.; Btesh, J.; Strassle, B.W.; Lu, P.; Piesla, M.J.; Zhang, M-Y.; Bingham, B.; Uveges, A.; Kowal, D.; Garbe, D.; Kouranova, E.V.; Ring, R.H.; Bates, B.; Pangalos, M.N.; Kennedy, J.D.; Whiteside, G.T.; Samad, T.A. Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol. Pharmacol., 2010, 78, 996-1003.
[http://dx.doi.org/10.1124/mol.110.068304]
[120]
Schlosburg, J.E.; Blankman, J.L.; Long, J.Z.; Nomura, D.K.; Pan, B.; Kinsey, S.G.; Nguyen, P.T.; Ramesh, D.; Booker, L.; Burston, J.J.; Thomas, E.A.; Selley, D.E.; Sim-Selley, L.J.; Liu, Q-S.; Lichtman, A.H.; Cravatt, B.F. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat. Neurosci., 2010, 13, 1113-1119.
[http://dx.doi.org/10.1038/nn.2616]
[121]
Pan, B.; Wang, W.; Zhong, P.; Blankman, J.L.; Cravatt, B.F.; Liu, Q.S. Alterations of endocannabinoid signaling, synaptic plasticity, learning, and memory in monoacylglycerol lipase knock-out mice. J. Neurosci., 2011, 31(38), 13420-13430.
[http://dx.doi.org/10.1523/JNEUROSCI.2075-11.2011] [PMID: 21940435]
[122]
Chen, R.; Zhang, J.; Wu, Y.; Wang, D.; Feng, G.; Tang, Y-P.; Teng, Z.; Chen, C. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep., 2012, 2(5), 1329-1339.
[http://dx.doi.org/10.1016/j.celrep.2012.09.030] [PMID: 23122958]
[123]
Nomura, D.K.; Morrison, B.E.; Blankman, J.L.; Long, J.Z.; Kinsey, S.G.; Marcondes, M.C.; Ward, A.M.; Hahn, Y.K.; Lichtman, A.H.; Conti, B.; Cravatt, B.F. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science, 2011, 334(6057), 809-813.
[http://dx.doi.org/10.1126/science.1209200] [PMID: 22021672]
[124]
Pasquarelli, N.; Porazik, C.; Bayer, H.; Buck, E.; Schildknecht, S.; Weydt, P.; Witting, A.; Ferger, B. Contrasting effects of selective MAGL and FAAH inhibition on dopamine depletion and GDNF expression in a chronic MPTP mouse model of Parkinson’s disease. Neurochem. Int., 2017, 110, 14-24.
[http://dx.doi.org/10.1016/j.neuint.2017.08.003] [PMID: 28826718]
[125]
Deng, H.; Li, W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm. Sin. B, 2020, 10(4), 582-602.
[http://dx.doi.org/10.1016/j.apsb.2019.10.006] [PMID: 32322464]
[126]
Saario, S.M.; Salo, O.M.H.; Nevalainen, T.; Poso, A.; Laitinen, J.T.; Järvinen, T.; Niemi, R. Characterization of the sulfhydryl-sensitive site in the enzyme responsible for hydrolysis of 2-arachidonoyl-glycerol in rat cerebellar membranes. Chem. Biol., 2005, 12(6), 649-656.
[http://dx.doi.org/10.1016/j.chembiol.2005.04.013] [PMID: 15975510]
[127]
Matuszak, N.; Muccioli, G.G.; Labar, G.; Lambert, D.M. Synthesis and in vitro evaluation of N-substituted maleimide derivatives as selective monoglyceride lipase inhibitors. J. Med. Chem., 2009, 52(23), 7410-7420.
[http://dx.doi.org/10.1021/jm900461w] [PMID: 19583260]
[128]
Labar, G.; Bauvois, C.; Muccioli, G.G.; Wouters, J.; Lambert, D.M. Disulfiram is an inhibitor of human purified monoacylglycerol lipase, the enzyme regulating 2-arachidonoylglycerol signaling. ChemBioChem, 2007, 8(11), 1293-1297.
[http://dx.doi.org/10.1002/cbic.200700139] [PMID: 17579916]
[129]
Kapanda, C.N.; Muccioli, G.G.; Labar, G.; Poupaert, J.H.; Lambert, D.M. Bis(dialkylaminethiocarbonyl)disulfides as potent and selective monoglyceride lipase inhibitors. J. Med. Chem., 2009, 52(22), 7310-7314.
[http://dx.doi.org/10.1021/jm901323s] [PMID: 19883085]
[130]
King, A.R.; Lodola, A.; Carmi, C.; Fu, J.; Mor, M.; Piomelli, D. A critical cysteine residue in monoacylglycerol lipase is targeted by a new class of isothiazolinone-based enzyme inhibitors. Br. J. Pharmacol., 2009, 157(6), 974-983.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00276.x] [PMID: 19486005]
[131]
Kapanda, C.N.; Masquelier, J.; Labar, G.; Muccioli, G.G.; Poupaert, J.H.; Lambert, D.M. Synthesis and pharmacological evaluation of 2,4-dinitroaryldithiocarbamate derivatives as novel monoacylglycerol lipase inhibitors. J. Med. Chem., 2012, 55(12), 5774-5783.
[http://dx.doi.org/10.1021/jm3006004] [PMID: 22651858]
[132]
Hohmann, A.G.; Suplita, R.L.; Bolton, N.M.; Neely, M.H.; Fegley, D.; Mangieri, R.; Krey, J.F.; Walker, J.M.; Holmes, P.V.; Crystal, J.D.; Duranti, A.; Tontini, A.; Mor, M.; Tarzia, G.; Piomelli, D. An endocannabinoid mechanism for stress-induced analgesia. Nature, 2005, 435(7045), 1108-1112.
[http://dx.doi.org/10.1038/nature03658] [PMID: 15973410]
[133]
Long, J.Z.; Li, W.; Booker, L.; Burston, J.J.; Kinsey, S.G.; Schlosburg, J.E.; Pavón, F.J.; Serrano, A.M.; Selley, D.E.; Parsons, L.H.; Lichtman, A.H.; Cravatt, B.F. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol., 2009, 5(1), 37-44.
[http://dx.doi.org/10.1038/nchembio.129] [PMID: 19029917]
[134]
Chen, X.; Zhang, J.; Chen, C. Endocannabinoid 2-arachidonoylglycerol protects neurons against β-amyloid insults. Neuroscience, 2011, 178, 159-168.
[http://dx.doi.org/10.1016/j.neuroscience.2011.01.024] [PMID: 21256197]
[135]
Hashem, J.; Hu, M.; Zhang, J.; Gao, F.; Chen, C. Inhibition of 2-arachidonoylglycerol metabolism alleviates neuropathology and improves cognitive function in a tau mouse model of Alzheimer’s disease. Mol. Neurobiol., 2021, 58(8), 4122-4133.
[http://dx.doi.org/10.1007/s12035-021-02400-2] [PMID: 33939165]
[136]
Pasquarelli, N.; Porazik, C.; Hanselmann, J.; Weydt, P.; Ferger, B.; Witting, A. Comparative biochemical characterization of the monoacylglycerol lipase inhibitor KML29 in brain, spinal cord, liver, spleen, fat and muscle tissue. Neuropharmacology, 2015, 91, 148-156.
[http://dx.doi.org/10.1016/j.neuropharm.2014.12.001] [PMID: 25497453]
[137]
Cisar, J.S.; Weber, O.D.; Clapper, J.R.; Blankman, J.L.; Henry, C.L.; Simon, G.M.; Alexander, J.P.; Jones, T.K.; Ezekowitz, R.A.B.; O’Neill, G.P.; Grice, C.A. Identification of ABX-1431, a selective inhibitor of monoacylglycerol lipase and clinical candidate for treatment of neurological disorders. J. Med. Chem., 2018, 61(20), 9062-9084.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00951] [PMID: 30067909]
[138]
McAllister, L.A.; Butler, C.R.; Mente, S.; O’Neil, S.V.; Fonseca, K.R.; Piro, J.R.; Cianfrogna, J.A.; Foley, T.L.; Gilbert, A.M.; Harris, A.R.; Helal, C.J.; Johnson, D.S.; Montgomery, J.I.; Nason, D.M.; Noell, S.; Pandit, J.; Rogers, B.N.; Samad, T.A.; Shaffer, C.L.; da Silva, R.G.; Uccello, D.P.; Webb, D.; Brodney, M.A. Discovery of trifluoromethyl glycol carbamates as potent and selective covalent monoacylglycerol lipase (MAGL) inhibitors for treatment of neuroinflammation. J. Med. Chem., 2018, 61(7), 3008-3026.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00070] [PMID: 29498843]
[139]
Granchi, C.; Lapillo, M.; Glasmacher, S.; Bononi, G.; Licari, C.; Poli, G.; El Boustani, M.; Caligiuri, I.; Rizzolio, F.; Gertsch, J.; Macchia, M.; Minutolo, F.; Tuccinardi, T.; Chicca, A. Optimization of a benzoylpiperidine class identifies a highly potent and selective reversible monoacylglycerol lipase (MAGL). Inhibitor. J. Med. Chem., 2019, 62(4), 1932-1958.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01483] [PMID: 30715876]
[140]
Poli, G.; Lapillo, M.; Jha, V.; Mouawad, N.; Caligiuri, I.; Macchia, M.; Minutolo, F.; Rizzolio, F.; Tuccinardi, T.; Granchi, C. Computationally driven discovery of phenyl(piperazin-1-yl)methanone derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 589-596.
[http://dx.doi.org/10.1080/14756366.2019.1571271] [PMID: 30696302]
[141]
Cisneros, J.A.; Björklund, E.; González-Gil, I.; Hu, Y.; Canales, A.; Medrano, F.J.; Romero, A.; Ortega-Gutiérrez, S.; Fowler, C.J.; López-Rodríguez, M.L. Structure-activity relationship of a new series of reversible dual monoacylglycerol lipase/fatty acid amide hydrolase inhibitors. J. Med. Chem., 2012, 55(2), 824-836.
[http://dx.doi.org/10.1021/jm201327p] [PMID: 22185522]
[142]
Hernández-Torres, G.; Cipriano, M.; Hedén, E.; Björklund, E.; Canales, Á.; Zian, D.; Feliú, A.; Mecha, M.; Guaza, C.; Fowler, C.J.; Ortega-Gutiérrez, S.; López-Rodríguez, M.L. A reversible and selective inhibitor of monoacylglycerol lipase ameliorates multiple sclerosis. Angew. Chem. Int. Ed. Engl., 2014, 53(50), 13765-13770.
[http://dx.doi.org/10.1002/anie.201407807] [PMID: 25298214]
[143]
Aida, J.; Fushimi, M.; Kusumoto, T.; Sugiyama, H.; Arimura, N.; Ikeda, S.; Sasaki, M.; Sogabe, S.; Aoyama, K.; Koike, T. Design, synthesis, and evaluation of piperazinyl pyrrolidin-2-ones as a novel series of reversible monoacylglycerol lipase inhibitors. J. Med. Chem., 2018, 61(20), 9205-9217.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00824] [PMID: 30251836]
[144]
Schalk-Hihi, C.; Schubert, C.; Alexander, R.; Bayoumy, S.; Clemente, J.C.; Deckman, I.; DesJarlais, R.L.; Dzordzorme, K.C.; Flores, C.M.; Grasberger, B.; Kranz, J.K.; Lewandowski, F.; Liu, L.; Ma, H.; Maguire, D.; Macielag, M.J.; McDonnell, M.E.; Mezzasalma, H.T.; Miller, R.; Milligan, C.; Reynolds, C.; Kuo, L.C.; Kuo, L.C. Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 Å resolution. Protein Sci., 2011, 20(4), 670-683.
[http://dx.doi.org/10.1002/pro.596] [PMID: 21308848]
[145]
Zhu, B.; Connolly, P.J.; Zhang, S.P.; Chevalier, K.M.; Milligan, C.M.; Flores, C.M.; Macielag, M.J. The discovery of diazetidinyl diamides as potent and reversible inhibitors of monoacylglycerol lipase (MAGL). Bioorg. Med. Chem. Lett., 2020, 30(12), 127198.
[http://dx.doi.org/10.1016/j.bmcl.2020.127198] [PMID: 32334914]
[146]
Amelio, I.; Lisitsa, A.; Knight, R.A.; Melino, G.; Antonov, A.V. Polypharmacology of approved anticancer drugs. Curr. Drug Targets, 2017, 18(5), 534-543.
[http://dx.doi.org/10.2174/1389450117666160301095233] [PMID: 26926468]
[147]
Gado, F.; Meini, S.; Bertini, S.; Digiacomo, M.; Macchia, M.; Manera, C. Allosteric modulators targeting cannabinoid cb1 and cb2 receptors: implications for drug discovery. Future Med. Chem., 2019, 11(15), 2019-2037.
[http://dx.doi.org/10.4155/fmc-2019-0005] [PMID: 31517528]
[148]
Celorrio, M.; Rojo-Bustamante, E.; Fernández-Suárez, D.; Sáez, E.; Estella-Hermoso de Mendoza, A.; Müller, C.E.; Ramírez, M.J.; Oyarzábal, J.; Franco, R.; Aymerich, M.S. GPR55: a therapeutic target for Parkinson’s disease? Neuropharmacology, 2017, 125, 319-332.
[http://dx.doi.org/10.1016/j.neuropharm.2017.08.017] [PMID: 28807673]
[149]
Oddi, S.; Scipioni, L.; Maccarrone, M. Endocannabinoid system and adult neurogenesis: a focused review. Curr. Opin. Pharmacol., 2020, 50, 25-32.
[http://dx.doi.org/10.1016/j.coph.2019.11.002] [PMID: 31864101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy