Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Advances in PPARs Molecular Dynamics and Glitazones as a Repurposing Therapeutic Strategy through Mitochondrial Redox Dynamics against Neurodegeneration

Author(s): Priya Durai, Narasimha M. Beeraka, Hemanth Vikram Poola Ramachandrappa, Prakash Krishnan, Pranesh Gudur, Nulgumnalli Manjunathaiah Raghavendra and Prashantha Kumar Bommenahally Ravanappa*

Volume 20, Issue 5, 2022

Published on: 10 March, 2022

Page: [893 - 915] Pages: 23

DOI: 10.2174/1570159X19666211109141330

Price: $65

Open Access Journals Promotions 2
Abstract

Peroxisome proliferator-activated receptors (PPARs) activity has significant implications for the development of novel therapeutic modalities against neurodegenerative diseases. Although PPAR-α, PPAR-β/δ, and PPAR-γ nuclear receptor expressions are significantly reported in the brain, their implications in brain physiology and other neurodegenerative diseases still require extensive studies. PPAR signaling can modulate various cell signaling mechanisms involved in the cells contributing to on- and off-target actions selectively to promote therapeutic effects as well as the adverse effects of PPAR ligands. Both natural and synthetic ligands for the PPARα, PPARγ, and PPARβ/δ have been reported. PPARα (WY 14.643) and PPARγ agonists can confer neuroprotection by modulating mitochondrial dynamics through the redox system. The pharmacological effect of these agonists may deliver effective clinical responses by protecting vulnerable neurons from Aβ toxicity in Alzheimer’s disease (AD) patients. Therefore, the current review delineated the ligands’ interaction with 3D-PPARs to modulate neuroprotection, and also deciphered the efficacy of numerous drugs, viz. Aβ aggregation inhibitors, vaccines, and γ-secretase inhibitors against AD; this review elucidated the role of PPAR and their receptor isoforms in neural systems, and neurodegeneration in human beings. Further, we have substantially discussed the efficacy of PPREs as potent transcription factors in the brain, and the role of PPAR agonists in neurotransmission, PPAR gamma coactivator-1α (PGC-1α) and mitochondrial dynamics in neuroprotection during AD conditions. This review concludes with the statement that the development of novel PPARs agonists may benefit patients with neurodegeneration, mainly AD patients, which may help mitigate the pathophysiology of dementia, subsequently improving overall the patient’s quality of life.

Keywords: PPARs, glitazones, neurodegeneration, mitochondrial dynamics, neuroinflammation, Alzheimer’s disease.

Graphical Abstract
[1]
Agarwal, S.; Yadav, A.; Chaturvedi, R.K. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem. Biophys. Res. Commun., 2017, 483(4), 1166-1177.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.043] [PMID: 27514452]
[2]
Rabbani, G.; Ahn, S.N. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int. J. Biol. Macromol., 2019, 123, 979-990.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.053] [PMID: 30439428]
[3]
Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[4]
Itzhaki, R.F. Corroboration of a major role for herpes simplex virus type 1 in Alzheimer’s disease. Front. Aging Neurosci., 2018, 10, 324.
[http://dx.doi.org/10.3389/fnagi.2018.00324] [PMID: 30405395]
[5]
Dickson, D.W.; Crystal, H.A.; Bevona, C.; Honer, W.; Vincent, I.; Davies, P. Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol. Aging, 1995, 16(3), 285-298.
[http://dx.doi.org/10.1016/0197-4580(95)00013-5] [PMID: 7566338]
[6]
Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1078-1089.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.018] [PMID: 27567931]
[7]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[8]
Kumar, A.; Nisha, C.M.; Silakari, C.; Sharma, I.; Anusha, K.; Gupta, N.; Nair, P.; Tripathi, T.; Kumar, A. Current and novel therapeutic molecules and targets in Alzheimer’s disease. J. Formos. Med. Assoc., 2016, 115(1), 3-10.
[http://dx.doi.org/10.1016/j.jfma.2015.04.001] [PMID: 26220908]
[9]
Baig, M.H.; Rashid, I.; Srivastava, P.; Ahmad, K.; Jan, A.T.; Rabbani, G.; Choi, D.; Barreto, G.E.; Ashraf, G.M.; Lee, E.J.; Choi, I. NeuroMuscleDB: a database of genes associated with muscle development, neuromuscular diseases, ageing, and neurodegeneration. Mol. Neurobiol., 2019, 56(8), 5835-5843.
[http://dx.doi.org/10.1007/s12035-019-1478-5] [PMID: 30684219]
[10]
Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci., 2015, 18(6), 794-799.
[http://dx.doi.org/10.1038/nn.4017] [PMID: 26007212]
[11]
Iqbal, K.; Liu, F.; Gong, C-X. Alonso, Adel.C.; Grundke-Iqbal, I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol., 2009, 118(1), 53-69.
[http://dx.doi.org/10.1007/s00401-009-0486-3] [PMID: 19184068]
[12]
Alonso, A.C.; Zaidi, T.; Grundke-Iqbal, I.; Iqbal, K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1994, 91(12), 5562-5566.
[http://dx.doi.org/10.1073/pnas.91.12.5562] [PMID: 8202528]
[13]
Pinheiro, L.; Faustino, C. Therapeutic strategies targeting amyloid-β in Alzheimer’s disease. Curr. Alzheimer Res., 2019, 16(5), 418-452.
[http://dx.doi.org/10.2174/1567205016666190321163438] [PMID: 30907320]
[14]
Gong, C-X.; Iqbal, K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr. Med. Chem., 2008, 15(23), 2321-2328.
[http://dx.doi.org/10.2174/092986708785909111] [PMID: 18855662]
[15]
Patrick, G.N.; Zukerberg, L.; Nikolic, M.; de la Monte, S.; Dikkes, P.; Tsai, L-H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 1999, 402(6762), 615-622.
[http://dx.doi.org/10.1038/45159] [PMID: 10604467]
[16]
Nguyen, K.C.; Rosales, J.L.; Barboza, M.; Lee, K-Y. Controversies over p25 in Alzheimer’s disease. J. Alzheimers Dis., 2002, 4(2), 123-126.
[http://dx.doi.org/10.3233/JAD-2002-4207] [PMID: 12214136]
[17]
Taniguchi, S.; Fujita, Y.; Hayashi, S.; Kakita, A.; Takahashi, H.; Murayama, S.; Saido, T.C.; Hisanaga, S.; Iwatsubo, T.; Hasegawa, M. Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains. FEBS Lett., 2001, 489(1), 46-50.
[http://dx.doi.org/10.1016/S0014-5793(00)02431-5] [PMID: 11231011]
[18]
Tsujio, I.; Zaidi, T.; Xu, J.; Kotula, L.; Grundke-Iqbal, I.; Iqbal, K. Inhibitors of protein phosphatase-2A from human brain structures, immunocytological localization and activities towards dephosphorylation of the Alzheimer type hyperphosphorylated tau. FEBS Lett., 2005, 579(2), 363-372.
[http://dx.doi.org/10.1016/j.febslet.2004.11.097] [PMID: 15642345]
[19]
Wang, J.; Tung, Y.C.; Wang, Y.; Li, X.T.; Iqbal, K.; Grundke-Iqbal, I. Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett., 2001, 507(1), 81-87.
[http://dx.doi.org/10.1016/S0014-5793(01)02944-1] [PMID: 11682063]
[20]
Derouesné, C. [Alzheimer and Alzheimer’s disease: the present enlighted by the past. An historical approach]. Psychol. Neuropsychiatr. Vieil., 2008, 6(2), 115-128.
[PMID: 18556270]
[21]
Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2018, 4, 575-590.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[22]
Block, M.L.; Hong, J-S. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol., 2005, 76(2), 77-98.
[http://dx.doi.org/10.1016/j.pneurobio.2005.06.004] [PMID: 16081203]
[23]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[24]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[25]
Patel, N.S.; Paris, D.; Mathura, V.; Quadros, A.N.; Crawford, F.C.; Mullan, M.J. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J. Neuroinflammation, 2005, 2(1), 9.
[http://dx.doi.org/10.1186/1742-2094-2-9] [PMID: 15762998]
[26]
Xia, M.Q.; Qin, S.X.; Wu, L.J.; Mackay, C.R.; Hyman, B.T. Immunohistochemical study of the β-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains. Am. J. Pathol., 1998, 153(1), 31-37.
[http://dx.doi.org/10.1016/S0002-9440(10)65542-3] [PMID: 9665462]
[27]
Ishizuka, K.; Kimura, T.; Igata-yi, R.; Katsuragi, S.; Takamatsu, J.; Miyakawa, T. Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin. Neurosci., 1997, 51(3), 135-138.
[http://dx.doi.org/10.1111/j.1440-1819.1997.tb02375.x] [PMID: 9225377]
[28]
Garwood, C.J.; Pooler, A.M.; Atherton, J.; Hanger, D.P.; Noble, W. Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis., 2011, 2, e167-e167.
[http://dx.doi.org/10.1038/cddis.2011.50] [PMID: 21633390]
[29]
Kitazawa, M.; Oddo, S.; Yamasaki, T.R.; Green, K.N.; LaFerla, F.M. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J. Neurosci., 2005, 25(39), 8843-8853.
[http://dx.doi.org/10.1523/JNEUROSCI.2868-05.2005] [PMID: 16192374]
[30]
Baig, M.H.; Ahmad, K.; Rabbani, G.; Danishuddin, M.; Choi, I. Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Curr. Neuropharmacol., 2018, 16(6), 740-748.
[http://dx.doi.org/10.2174/1570159X15666171016163510] [PMID: 29046156]
[31]
Neu, S.C.; Pa, J.; Kukull, W.; Beekly, D.; Kuzma, A.; Gangadharan, P.; Wang, L-S.; Romero, K.; Arneric, S.P.; Redolfi, A.; Orlandi, D.; Frisoni, G.B.; Au, R.; Devine, S.; Auerbach, S.; Espinosa, A.; Boada, M.; Ruiz, A.; Johnson, S.C.; Koscik, R.; Wang, J.J.; Hsu, W.C.; Chen, Y.L.; Toga, A.W. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: a meta-analysis. JAMA Neurol., 2017, 74(10), 1178-1189.
[http://dx.doi.org/10.1001/jamaneurol.2017.2188] [PMID: 28846757]
[32]
Jonsson, T.; Stefansson, H.; Steinberg, S.; Jonsdottir, I.; Jonsson, P.V.; Snaedal, J.; Bjornsson, S.; Huttenlocher, J.; Levey, A.I.; Lah, J.J.; Rujescu, D.; Hampel, H.; Giegling, I.; Andreassen, O.A.; Engedal, K.; Ulstein, I.; Djurovic, S.; Ibrahim-Verbaas, C.; Hofman, A.; Ikram, M.A.; van Duijn, C.M.; Thorsteinsdottir, U.; Kong, A.; Stefansson, K. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med., 2013, 368(2), 107-116.
[http://dx.doi.org/10.1056/NEJMoa1211103] [PMID: 23150908]
[33]
Guerreiro, R.; Wojtas, A.; Bras, J.; Carrasquillo, M.; Rogaeva, E.; Majounie, E.; Cruchaga, C.; Sassi, C.; Kauwe, J.; Younkin, S. TREM2 deficiency alters acute macrophage distribution and improves recovery after TBI. J. Neurotrauma, 2013, 34(2), 1-46.
[http://dx.doi.org/10.1089/neu.2016.4401]
[34]
Abduljaleel, Z.; Al-Allaf, F.A.; Khan, W.; Athar, M.; Shahzad, N.; Taher, M.M.; Elrobh, M.; Alanazi, M.S.; El-Huneidi, W. Evidence of trem2 variant associated with triple risk of Alzheimer’s disease. PLoS One, 2014, 9(3), e92648.
[http://dx.doi.org/10.1371/journal.pone.0092648] [PMID: 24663666]
[35]
Jin, S.C.; Benitez, B.A.; Karch, C.M.; Cooper, B.; Skorupa, T.; Carrell, D.; Norton, J.B.; Hsu, S.; Harari, O.; Cai, Y.; Bertelsen, S.; Goate, A.M.; Cruchaga, C. Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum. Mol. Genet., 2014, 23(21), 5838-5846.
[http://dx.doi.org/10.1093/hmg/ddu277] [PMID: 24899047]
[36]
Lu, Y.; Liu, W.; Wang, X. TREM2 variants and risk of Alzheimer’s disease: a meta-analysis. Neurol. Sci., 2015, 36(10), 1881-1888.
[http://dx.doi.org/10.1007/s10072-015-2274-2] [PMID: 26037549]
[37]
Borel, V.; Gallot, D.; Marceau, G.; Sapin, V.; Blanchon, L. Placental implications of peroxisome proliferator-activated receptors in gestation and parturition. PPAR Res., 2008, 2008, 758562.
[http://dx.doi.org/10.1155/2008/758562] [PMID: 18288292]
[38]
Fournier, T.; Tsatsaris, V.; Handschuh, K.; Evain-Brion, D. PPARs and the placenta. Placenta, 2007, 28(2-3), 65-76.
[http://dx.doi.org/10.1016/j.placenta.2006.04.009] [PMID: 16834993]
[39]
Berger, J.; Moller, D.E. The mechanisms of action of PPARs. Annu. Rev. Med., 2002, 53, 409-435.
[http://dx.doi.org/10.1146/annurev.med.53.082901.104018] [PMID: 11818483]
[40]
Nierenberg, A.A.; Ghaznavi, S.A.; Sande Mathias, I.; Ellard, K.K.; Janos, J.A.; Sylvia, L.G. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha as a novel target for bipolar disorder and other neuropsychiatric disorders. Biol. Psychiatry, 2018, 83(9), 761-769.
[http://dx.doi.org/10.1016/j.biopsych.2017.12.014] [PMID: 29502862]
[41]
Scarpulla, R.C.; Vega, R.B.; Kelly, D.P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab., 2012, 23(9), 459-466.
[http://dx.doi.org/10.1016/j.tem.2012.06.006] [PMID: 22817841]
[42]
D’Angelo, M.; Antonosante, A.; Castelli, V.; Catanesi, M.; Moorthy, N.; Iannotta, D.; Cimini, A.; Benedetti, E. PPARs and energy metabolism adaptation during neurogenesis and neuronal maturation. Int. J. Mol. Sci., 2018, 19(7), 1869.
[http://dx.doi.org/10.3390/ijms19071869] [PMID: 29949869]
[43]
Scarpulla, R.C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta, 2011, 1813(7), 1269-1278.
[http://dx.doi.org/10.1016/j.bbamcr.2010.09.019] [PMID: 20933024]
[44]
Austin, S.; St-Pierre, J. PGC1α and mitochondrial metabolism--emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci., 2012, 125(Pt 21), 4963-4971.
[http://dx.doi.org/10.1242/jcs.113662] [PMID: 23277535]
[45]
Benedetti, E.; Cristiano, L.; Antonosante, A.; d’Angelo, M.; D’Angelo, B.; Selli, S.; Castelli, V.; Ippoliti, R.; Giordano, A.; Cimini, A. PPARs in neurodegenerative and neuroinflammatory pathways. Curr. Alzheimer Res., 2018, 15(4), 336-344.
[http://dx.doi.org/10.2174/1567205014666170517150037] [PMID: 28521669]
[46]
Pirat, C.; Farce, A.; Lebègue, N.; Renault, N.; Furman, C.; Millet, R.; Yous, S.; Speca, S.; Berthelot, P.; Desreumaux, P.; Chavatte, P. Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators. J. Med. Chem., 2012, 55(9), 4027-4061.
[http://dx.doi.org/10.1021/jm101360s] [PMID: 22260081]
[47]
Shao, D.; Rangwala, S.M.; Bailey, S.T.; Krakow, S.L.; Reginato, M.J.; Lazar, M.A. Interdomain communication regulating ligand binding by PPAR-γ. Nature, 1998, 396(6709), 377-380.
[http://dx.doi.org/10.1038/24634] [PMID: 9845075]
[48]
Gampe, R.T., Jr; Montana, V.G.; Lambert, M.H.; Miller, A.B.; Bledsoe, R.K.; Milburn, M.V.; Kliewer, S.A.; Willson, T.M.; Xu, H.E. Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol. Cell, 2000, 5(3), 545-555.
[http://dx.doi.org/10.1016/S1097-2765(00)80448-7] [PMID: 10882139]
[49]
Gale, E.A. Lessons from the glitazones: a story of drug development. Lancet, 2001, 357(9271), 1870-1875.
[http://dx.doi.org/10.1016/S0140-6736(00)04960-6] [PMID: 11410214]
[50]
Lalloyer, F.; Staels, B. Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler. Thromb. Vasc. Biol., 2010, 30(5), 894-899.
[http://dx.doi.org/10.1161/ATVBAHA.108.179689] [PMID: 20393155]
[51]
Tyagi, S.; Gupta, P.; Saini, A.S.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res., 2011, 2(4), 236-240.
[http://dx.doi.org/10.4103/2231-4040.90879] [PMID: 22247890]
[52]
Kang, Z.; Fan, R. PPARα and NCOR/SMRT corepressor network in liver metabolic regulation. FASEB J., 2020, 34(7), 8796-8809.
[http://dx.doi.org/10.1096/fj.202000055RR] [PMID: 32396271]
[53]
Bedse, G.; Romano, A.; Lavecchia, A.M.; Cassano, T.; Gaetani, S. The role of endocannabinoid signaling in the molecular mechanisms of neurodegeneration in Alzheimer’s disease. J. Alzheimers Dis., 2015, 43(4), 1115-1136.
[http://dx.doi.org/10.3233/JAD-141635] [PMID: 25147120]
[54]
Fernández-Ruiz, J.; Romero, J.; Ramos, J.A. Endocannabinoids and neurodegenerative disorders: Parkinson’s disease, Huntington’s chorea, Alzheimer’s disease, and others; Endocannabinoids, 2015, pp. 233-259.
[55]
Piemontese, L. New approaches for prevention and treatment of Alzheimer’s disease: a fascinating challenge. Neural Regen. Res., 2017, 12(3), 405-406.
[http://dx.doi.org/10.4103/1673-5374.202942] [PMID: 28469653]
[56]
Grygiel-Górniak, B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications-a review. Nutr. J., 2014, 13, 17.
[http://dx.doi.org/10.1186/1475-2891-13-17] [PMID: 24524207]
[57]
Laganà, A.S.; Vitale, S.G.; Nigro, A.; Sofo, V.; Salmeri, F.M.; Rossetti, P.; Rapisarda, A.M.C.; La Vignera, S.; Condorelli, R.A.; Rizzo, G.; Buscema, M. Pleiotropic actions of peroxisome proliferator-activated receptors (PPARs) in dysregulated metabolic homeostasis, inflammation and cancer: Current evidence and future perspectives. Int. J. Mol. Sci., 2016, 17(7), 999.
[http://dx.doi.org/10.3390/ijms17070999] [PMID: 27347932]
[58]
Desvergne, B.; Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev., 1999, 20(5), 649-688.
[PMID: 10529898]
[59]
Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab., 2005, 1(6), 361-370.
[http://dx.doi.org/10.1016/j.cmet.2005.05.004] [PMID: 16054085]
[60]
Mattson, M.P. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab., 2012, 16(6), 706-722.
[http://dx.doi.org/10.1016/j.cmet.2012.08.012] [PMID: 23168220]
[61]
Roy, A.; Jana, M.; Corbett, G.T.; Ramaswamy, S.; Kordower, J.H.; Gonzalez, F.J.; Pahan, K. Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor α. Cell Rep., 2013, 4(4), 724-737.
[http://dx.doi.org/10.1016/j.celrep.2013.07.028] [PMID: 23972989]
[62]
Zhang, H.; Gao, Y.; Qiao, P.F.; Zhao, F.L.; Yan, Y. PPAR-α agonist regulates amyloid-β generation via inhibiting BACE-1 activity in human neuroblastoma SH-SY5Y cells transfected with APPswe gene. Mol. Cell. Biochem., 2015, 408(1-2), 37-46.
[http://dx.doi.org/10.1007/s11010-015-2480-5] [PMID: 26092426]
[63]
Zhang, H.; Gao, Y.; Qiao, P.F.; Zhao, F.L.; Yan, Y. Fenofibrate reduces amyloidogenic processing of APP in APP/PS1 transgenic mice via PPAR-α/PI3-K pathway. Int. J. Dev. Neurosci., 2014, 38, 223-231.
[http://dx.doi.org/10.1016/j.ijdevneu.2014.10.004] [PMID: 25447788]
[64]
Straus, D.S.; Glass, C.K. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol., 2007, 28(12), 551-558.
[http://dx.doi.org/10.1016/j.it.2007.09.003] [PMID: 17981503]
[65]
Feige, J.N.; Gelman, L.; Michalik, L.; Desvergne, B.; Wahli, W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog. Lipid Res., 2006, 45(2), 120-159.
[http://dx.doi.org/10.1016/j.plipres.2005.12.002] [PMID: 16476485]
[66]
Kalinin, S.; Richardson, J.C.; Feinstein, D.L. A PPARdelta agonist reduces amyloid burden and brain inflammation in a transgenic mouse model of Alzheimer’s disease. Curr. Alzheimer Res., 2009, 6(5), 431-437.
[http://dx.doi.org/10.2174/156720509789207949] [PMID: 19874267]
[67]
Madrigal, J.L.; Kalinin, S.; Richardson, J.C.; Feinstein, D.L. Neuroprotective actions of noradrenaline: effects on glutathione synthesis and activation of peroxisome proliferator activated receptor delta. J. Neurochem., 2007, 103(5), 2092-2101.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04888.x] [PMID: 17854349]
[68]
Sodhi, R.K.; Singh, N.; Jaggi, A.S. Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer’s disease. Naunyn Schmiedebergs Arch. Pharmacol., 2011, 384(2), 115-124.
[http://dx.doi.org/10.1007/s00210-011-0654-6] [PMID: 21607645]
[69]
Malm, T.; Mariani, M.; Donovan, L.J.; Neilson, L.; Landreth, G.E. Activation of the nuclear receptor PPARδ is neuroprotective in a transgenic mouse model of Alzheimer’s disease through inhibition of inflammation. J. Neuroinflammation, 2015, 12, 7.
[http://dx.doi.org/10.1186/s12974-014-0229-9] [PMID: 25592770]
[70]
Woods, J.W.; Tanen, M.; Figueroa, D.J.; Biswas, C.; Zycband, E.; Moller, D.E.; Austin, C.P.; Berger, J.P. Localization of PPARdelta in murine central nervous system: expression in oligodendrocytes and neurons. Brain Res., 2003, 975(1-2), 10-21.
[http://dx.doi.org/10.1016/S0006-8993(03)02515-0] [PMID: 12763589]
[71]
Iwashita, A.; Muramatsu, Y.; Yamazaki, T.; Muramoto, M.; Kita, Y.; Yamazaki, S.; Mihara, K.; Moriguchi, A.; Matsuoka, N. Neuroprotective efficacy of the peroxisome proliferator-activated receptor δ-selective agonists in vitro and in vivo. J. Pharmacol. Exp. Ther., 2007, 320(3), 1087-1096.
[http://dx.doi.org/10.1124/jpet.106.115758] [PMID: 17167170]
[72]
Tong, M.; Deochand, C.; Didsbury, J.; de la Monte, S.M. T3D-959: A multi-faceted disease remedial drug candidate for the treatment of Alzheimer’s disease. J. Alzheimers Dis., 2016, 51(1), 123-138.
[http://dx.doi.org/10.3233/JAD-151013] [PMID: 26836193]
[73]
de la Monte, S.M.; Tong, M.; Schiano, I.; Didsbury, J. Improved brain insulin/IGF signaling and reduced neuroinflammation with T3D-959 in an experimental model of sporadic Alzheimer’s disease. J. Alzheimers Dis., 2017, 55(2), 849-864.
[http://dx.doi.org/10.3233/JAD-160656] [PMID: 27802237]
[74]
Staels, B.; Fruchart, J-C. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes, 2005, 54(8), 2460-2470.
[http://dx.doi.org/10.2337/diabetes.54.8.2460] [PMID: 16046315]
[75]
Katsouri, L.; Blondrath, K.; Sastre, M. Peroxisome proliferator-activated receptor-γ cofactors in neurodegeneration. IUBMB Life, 2012, 64(12), 958-964.
[http://dx.doi.org/10.1002/iub.1097] [PMID: 23129362]
[76]
Qin, W.; Haroutunian, V.; Katsel, P.; Cardozo, C.P.; Ho, L.; Buxbaum, J.D.; Pasinetti, G.M. PGC-1α expression decreases in the Alzheimer disease brain as a function of dementia. Arch. Neurol., 2009, 66(3), 352-361.
[http://dx.doi.org/10.1001/archneurol.2008.588] [PMID: 19273754]
[77]
Chang, K.L.; Wong, L.R.; Pee, H.N.; Yang, S.; Ho, P.C-L. Reverting metabolic dysfunction in cortex and cerebellum of APP/PS1 mice, a model for Alzheimer’s disease by pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist. Mol. Neurobiol., 2019, 56(11), 7267-7283.
[http://dx.doi.org/10.1007/s12035-019-1586-2] [PMID: 31016475]
[78]
Talwar, P.; Sinha, J.; Grover, S.; Agarwal, R.; Kushwaha, S.; Srivastava, M.V.; Kukreti, R. Meta-analysis of apolipoprotein E levels in the cerebrospinal fluid of patients with Alzheimer’s disease. J. Neurol. Sci., 2016, 360, 179-187.
[http://dx.doi.org/10.1016/j.jns.2015.12.004] [PMID: 26723997]
[79]
Datusalia, A.K.; Sharma, S.S. Amelioration of diabetes-induced cognitive deficits by GSK-3β inhibition is attributed to modulation of neurotransmitters and neuroinflammation. Mol. Neurobiol., 2014, 50(2), 390-405.
[http://dx.doi.org/10.1007/s12035-014-8632-x] [PMID: 24420785]
[80]
Yeh, C-S.; Chung, F-Y.; Chen, C-J.; Tsai, W-J.; Liu, H-W.; Wang, G-J.; Lin, S-R. PPARgamma-2 and BMPR2 genes were differentially expressed in peripheral blood of SLE patients with osteonecrosis. DNA Cell Biol., 2008, 27(11), 623-628.
[http://dx.doi.org/10.1089/dna.2008.0772] [PMID: 18991492]
[81]
Chung, S.S.; Kim, M.; Youn, B-S.; Lee, N.S.; Park, J.W.; Lee, I.K.; Lee, Y.S.; Kim, J.B.; Cho, Y.M.; Lee, H.K.; Park, K.S. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor γ in human skeletal muscle cells. Mol. Cell. Biol., 2009, 29(1), 20-30.
[http://dx.doi.org/10.1128/MCB.00544-08] [PMID: 18936159]
[82]
Marmolino, D.; Manto, M.; Acquaviva, F.; Vergara, P.; Ravella, A.; Monticelli, A.; Pandolfo, M. PGC-1alpha down-regulation affects the antioxidant response in Friedreich’s ataxia. PLoS One, 2010, 5(4), e10025.
[http://dx.doi.org/10.1371/journal.pone.0010025] [PMID: 20383327]
[83]
Autiero, I.; Costantini, S.; Colonna, G. Human sirt-1: molecular modeling and structure-function relationships of an unordered protein. PLoS One, 2008, 4(10), e7350.
[http://dx.doi.org/10.1371/journal.pone.0007350] [PMID: 19806227]
[84]
Vu-Dac, N.; Schoonjans, K.; Kosykh, V.; Dallongeville, J.; Heyman, R.A.; Staels, B.; Auwerx, J. Retinoids increase human apolipoprotein A-11 expression through activation of the retinoid X receptor but not the retinoic acid receptor. Mol. Cell. Biol., 1996, 16(7), 3350-3360.
[http://dx.doi.org/10.1128/MCB.16.7.3350] [PMID: 8668150]
[85]
Buler, M.; Aatsinki, S-M.; Skoumal, R.; Hakkola, J. Energy sensing factors PGC-1α and SIRT1 modulate PXR expression and function. Biochem. Pharmacol., 2011, 82(12), 2008-2015.
[http://dx.doi.org/10.1016/j.bcp.2011.09.006] [PMID: 21933665]
[86]
Arçari, D.P.; Bartchewsky, W.; dos Santos, T.W.; Oliveira, K.A.; Funck, A.; Pedrazzoli, J.; de Souza, M.F.; Saad, M.J.; Bastos, D.H.; Gambero, A. Carvalho, Pde.O.; Ribeiro, M.L. Antiobesity effects of yerba maté extract (Ilex paraguariensis) in high-fat diet-induced obese mice. Obesity (Silver Spring), 2009, 17(12), 2127-2133.
[http://dx.doi.org/10.1038/oby.2009.158] [PMID: 19444227]
[87]
Deng, T.; Shan, S.; Li, P-P.; Shen, Z-F.; Lu, X-P.; Cheng, J.; Ning, Z-Q. Peroxisome proliferator-activated receptor-γ transcriptionally up-regulates hormone-sensitive lipase via the involvement of specificity protein-1. Endocrinology, 2006, 147(2), 875-884.
[http://dx.doi.org/10.1210/en.2005-0623] [PMID: 16269451]
[88]
Jiang, Q.; Heneka, M.; Landreth, G.E. The role of peroxisome proliferator-activated receptor-γ PPARγ) in Alzheimer’s disease. CNS Drugs, 2008, 22, 1-14.
[http://dx.doi.org/10.2165/00023210-200822010-00001] [PMID: 18072811]
[89]
Escribano, L.; Simón, A-M.; Pérez-Mediavilla, A.; Salazar-Colocho, P.; Del Río, J.; Frechilla, D. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer’s disease mouse model. Biochem. Biophys. Res. Commun., 2009, 379(2), 406-410.
[http://dx.doi.org/10.1016/j.bbrc.2008.12.071] [PMID: 19109927]
[90]
Bordet, R.; Ouk, T.; Petrault, O.; Gelé, P.; Gautier, S.; Laprais, M.; Deplanque, D.; Duriez, P.; Staels, B.; Fruchart, J.C.; Bastide, M. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem. Soc. Trans., 2006, 34(Pt 6), 1341-1346.
[http://dx.doi.org/10.1042/BST0341341] [PMID: 17073815]
[91]
Andersen, J.K. Oxidative stress in neurodegeneration: cause or consequence? Nat. Med., 2004, 10(Suppl.), S18-S25.
[http://dx.doi.org/10.1038/nrn1434] [PMID: 15298006]
[92]
Deplanque, D.; Gelé, P.; Pétrault, O.; Six, I.; Furman, C.; Bouly, M.; Nion, S.; Dupuis, B.; Leys, D.; Fruchart, J-C.; Cecchelli, R.; Staels, B.; Duriez, P.; Bordet, R. Peroxisome proliferator-activated receptor-α activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J. Neurosci., 2003, 23(15), 6264-6271.
[http://dx.doi.org/10.1523/JNEUROSCI.23-15-06264.2003] [PMID: 12867511]
[93]
Inoue, H.; Jiang, X-F.; Katayama, T.; Osada, S.; Umesono, K.; Namura, S. Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor α in mice. Neurosci. Lett., 2003, 352(3), 203-206.
[http://dx.doi.org/10.1016/j.neulet.2003.09.001] [PMID: 14625020]
[94]
Tanaka, T.; Fukunaga, Y.; Itoh, H.; Doi, K.; Yamashita, J.; Chun, T-H.; Inoue, M.; Masatsugu, K.; Saito, T.; Sawada, N.; Sakaguchi, S.; Arai, H.; Nakao, K. Therapeutic potential of thiazolidinediones in activation of peroxisome proliferator-activated receptor γ for monocyte recruitment and endothelial regeneration. Eur. J. Pharmacol., 2005, 508(1-3), 255-265.
[http://dx.doi.org/10.1016/j.ejphar.2004.10.056] [PMID: 15680279]
[95]
Genovese, T.; Mazzon, E.; Di Paola, R.; Cannavò, G.; Muià, C.; Bramanti, P.; Cuzzocrea, S. Role of endogenous ligands for the peroxisome proliferators activated receptors alpha in the secondary damage in experimental spinal cord trauma. Exp. Neurol., 2005, 194(1), 267-278.
[http://dx.doi.org/10.1016/j.expneurol.2005.03.003] [PMID: 15899263]
[96]
Kukar, T.; Murphy, M.P.; Eriksen, J.L.; Sagi, S.A.; Weggen, S.; Smith, T.E.; Ladd, T.; Khan, M.A.; Kache, R.; Beard, J.; Dodson, M.; Merit, S.; Ozols, V.V.; Anastasiadis, P.Z.; Das, P.; Fauq, A.; Koo, E.H.; Golde, T.E. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Abeta42 production. Nat. Med., 2005, 11(5), 545-550.
[http://dx.doi.org/10.1038/nm1235] [PMID: 15834426]
[97]
Combs, C.K.; Johnson, D.E.; Karlo, J.C.; Cannady, S.B.; Landreth, G.E. Inflammatory mechanisms in Alzheimer’s disease: inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J. Neurosci., 2000, 20(2), 558-567.
[http://dx.doi.org/10.1523/JNEUROSCI.20-02-00558.2000] [PMID: 10632585]
[98]
Wada, K.; Nakajima, A.; Katayama, K.; Kudo, C.; Shibuya, A.; Kubota, N.; Terauchi, Y.; Tachibana, M.; Miyoshi, H.; Kamisaki, Y.; Mayumi, T.; Kadowaki, T.; Blumberg, R.S. Peroxisome proliferator-activated receptor γ-mediated regulation of neural stem cell proliferation and differentiation. J. Biol. Chem., 2006, 281(18), 12673-12681.
[http://dx.doi.org/10.1074/jbc.M513786200] [PMID: 16524877]
[99]
Heneka, M.T.; Sastre, M.; Dumitrescu-Ozimek, L.; Hanke, A.; Dewachter, I.; Kuiperi, C.; O’Banion, K.; Klockgether, T.; Van Leuven, F.; Landreth, G.E. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain, 2005, 128(Pt 6), 1442-1453.
[http://dx.doi.org/10.1093/brain/awh452] [PMID: 15817521]
[100]
Lin, T-N.; Cheung, W-M.; Wu, J-S.; Chen, J-J.; Lin, H.; Chen, J-J.; Liou, J-Y.; Shyue, S-K.; Wu, K.K. 15d-prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler. Thromb. Vasc. Biol., 2006, 26(3), 481-487.
[http://dx.doi.org/10.1161/01.ATV.0000201933.53964.5b] [PMID: 16385084]
[101]
Breidert, T.; Callebert, J.; Heneka, M.T.; Landreth, G.; Launay, J.M.; Hirsch, E.C. Protective action of the peroxisome proliferator-activated receptor-γ agonist pioglitazone in a mouse model of Parkinson’s disease. J. Neurochem., 2002, 82(3), 615-624.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00990.x] [PMID: 12153485]
[102]
Matthews, L.; Berry, A.; Tersigni, M.; D’Acquisto, F.; Ianaro, A.; Ray, D. Thiazolidinediones are partial agonists for the glucocorticoid receptor. Endocrinology, 2009, 150(1), 75-86.
[http://dx.doi.org/10.1210/en.2008-0196] [PMID: 18801908]
[103]
Morrison, A.; Yan, X.; Tong, C.; Li, J. Acute rosiglitazone treatment is cardioprotective against ischemia-reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(3), H895-H902.
[http://dx.doi.org/10.1152/ajpheart.00137.2011] [PMID: 21666107]
[104]
Pancani, T.; Phelps, J.T.; Searcy, J.L.; Kilgore, M.W.; Chen, K.C.; Porter, N.M.; Thibault, O. Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-γ agonists in cultured hippocampal neurons. J. Neurochem., 2009, 109(6), 1800-1811.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06107.x] [PMID: 19453298]
[105]
Jeong, I.; Choi, B.H.; Hahn, S.J. Rosiglitazone inhibits Kv4.3 potassium channels by open-channel block and acceleration of closed-state inactivation. Br. J. Pharmacol., 2011, 163(3), 510-520.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01210.x] [PMID: 21232039]
[106]
Paddock, M.L.; Wiley, S.E.; Axelrod, H.L.; Cohen, A.E.; Roy, M.; Abresch, E.C.; Capraro, D.; Murphy, A.N.; Nechushtai, R.; Dixon, J.E.; Jennings, P.A. MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. Proc. Natl. Acad. Sci. USA, 2007, 104(36), 14342-14347.
[http://dx.doi.org/10.1073/pnas.0707189104] [PMID: 17766440]
[107]
Colca, J.R.; McDonald, W.G.; Cavey, G.S.; Cole, S.L.; Holewa, D.D.; Brightwell-Conrad, A.S.; Wolfe, C.L.; Wheeler, J.S.; Coulter, K.R.; Kilkuskie, P.M.; Gracheva, E.; Korshunova, Y.; Trusgnich, M.; Karr, R.; Wiley, S.E.; Divakaruni, A.S.; Murphy, A.N.; Vigueira, P.A.; Finck, B.N.; Kletzien, R.F. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)--relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS One, 2013, 8(5), e61551.
[http://dx.doi.org/10.1371/journal.pone.0061551] [PMID: 23690925]
[108]
Colca, J.R.; McDonald, W.G.; Waldon, D.J.; Leone, J.W.; Lull, J.M.; Bannow, C.A.; Lund, E.T.; Mathews, W.R. Identification of a novel mitochondrial protein (“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe. Am. J. Physiol. Endocrinol. Metab., 2004, 286(2), E252-E260.
[http://dx.doi.org/10.1152/ajpendo.00424.2003] [PMID: 14570702]
[109]
Colca, J.R.; VanderLugt, J.T.; Adams, W.J.; Shashlo, A.; McDonald, W.G.; Liang, J.; Zhou, R.; Orloff, D.G. Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin. Pharmacol. Ther., 2013, 93(4), 352-359.
[http://dx.doi.org/10.1038/clpt.2013.10] [PMID: 23462886]
[110]
Lauderback, C.M.; Hackett, J.M.; Huang, F.F.; Keller, J.N.; Szweda, L.I.; Markesbery, W.R.; Butterfield, D.A. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Abeta1-42. J. Neurochem., 2001, 78(2), 413-416.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00451.x] [PMID: 11461977]
[111]
Warden, A.; Truitt, J.; Merriman, M.; Ponomareva, O.; Jameson, K.; Ferguson, L.B.; Mayfield, R.D.; Harris, R.A. Localization of PPAR isotypes in the adult mouse and human brain. Sci. Rep., 2016, 6, 27618.
[http://dx.doi.org/10.1038/srep27618] [PMID: 27283430]
[112]
Sakimura, K.; Kutsuwada, T.; Ito, I.; Manabe, T.; Takayama, C.; Kushiya, E.; Yagi, T.; Aizawa, S.; Inoue, Y.; Sugiyama, H. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ε 1 subunit. Nature, 1995, 373(6510), 151-155.
[http://dx.doi.org/10.1038/373151a0] [PMID: 7816096]
[113]
Lee, H-K.; Takamiya, K.; Han, J-S.; Man, H.; Kim, C-H.; Rumbaugh, G.; Yu, S.; Ding, L.; He, C.; Petralia, R.S.; Wenthold, R.J.; Gallagher, M.; Huganir, R.L. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell, 2003, 112(5), 631-643.
[http://dx.doi.org/10.1016/S0092-8674(03)00122-3] [PMID: 12628184]
[114]
Tzingounis, A.V.; Nicoll, R.A. Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron, 2006, 52(3), 403-407.
[http://dx.doi.org/10.1016/j.neuron.2006.10.016] [PMID: 17088207]
[115]
Huang, H-T.; Liao, C-K.; Chiu, W-T.; Tzeng, S-F. Ligands of peroxisome proliferator-activated receptor-alpha promote glutamate transporter-1 endocytosis in astrocytes. Int. J. Biochem. Cell Biol., 2017, 86, 42-53.
[http://dx.doi.org/10.1016/j.biocel.2017.03.008] [PMID: 28323206]
[116]
Anderson, C.M.; Swanson, R.A. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia, 2000, 32(1), 1-14.
[http://dx.doi.org/10.1002/1098-1136(200010)32:1<1:AID-GLIA10>3.0.CO;2-W] [PMID: 10975906]
[117]
Scott, H.A.; Gebhardt, F.M.; Mitrovic, A.D.; Vandenberg, R.J.; Dodd, P.R. Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiol. Aging, 2011, 32(3), 553.e1-553.e11.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.008] [PMID: 20416976]
[118]
Arias, C.; Arrieta, I.; Tapia, R. β-Amyloid peptide fragment 25-35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. J. Neurosci. Res., 1995, 41(4), 561-566.
[http://dx.doi.org/10.1002/jnr.490410416] [PMID: 7473888]
[119]
Liu, Y.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K.; Gong, C.X. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J. Pathol., 2011, 225(1), 54-62.
[http://dx.doi.org/10.1002/path.2912] [PMID: 21598254]
[120]
Singh, N.A.; Mandal, A.K.A.; Khan, Z.A. Inhibition of Al (III)-induced Aβ 42 fibrillation and reduction of neurotoxicity by epigallocatechin-3-gallate nanoparticles. J. Biomed. Nanotechnol., 2018, 14(6), 1147-1158.
[http://dx.doi.org/10.1166/jbn.2018.2552] [PMID: 29843879]
[121]
Wen, Y.; Yang, S.; Liu, R.; Simpkins, J.W. Transient cerebral ischemia induces site-specific hyperphosphorylation of tau protein. Brain Res., 2004, 1022(1-2), 30-38.
[http://dx.doi.org/10.1016/j.brainres.2004.05.106] [PMID: 15353210]
[122]
Horita, S.; Nakamura, M.; Suzuki, M.; Satoh, N.; Suzuki, A.; Seki, G. Selective insulin resistance in the kidney. BioMed Res. Int., 2016, 2016, 5825170.
[http://dx.doi.org/10.1155/2016/5825170] [PMID: 27247938]
[123]
Morris, D.L.; Cho, K.W.; Zhou, Y.; Rui, L. SH2B1 enhances insulin sensitivity by both stimulating the insulin receptor and inhibiting tyrosine dephosphorylation of insulin receptor substrate proteins. Diabetes, 2009, 58(9), 2039-2047.
[http://dx.doi.org/10.2337/db08-1388] [PMID: 19542202]
[124]
Nguyen-Ngo, C.; Willcox, J.C.; Lappas, M. Anti‐diabetic, anti‐inflammatory, and anti‐oxidant effects of naringenin in an in vitro human model and an in vivo murine model of gestational diabetes mellitus. Mol. Nutr. Food Res., 2019, 63(19), e1900224.
[http://dx.doi.org/10.1002/mnfr.201900224] [PMID: 31343820]
[125]
de la Monte, S.M. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr. Alzheimer Res., 2012, 9(1), 35-66.
[http://dx.doi.org/10.2174/156720512799015037] [PMID: 22329651]
[126]
Yamanaka, M.; Ishikawa, T.; Griep, A.; Axt, D.; Kummer, M.P.; Heneka, M.T. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci., 2012, 32(48), 17321-17331.
[http://dx.doi.org/10.1523/JNEUROSCI.1569-12.2012] [PMID: 23197723]
[127]
Denner, L.A.; Rodriguez-Rivera, J.; Haidacher, S.J.; Jahrling, J.B.; Carmical, J.R.; Hernandez, C.M.; Zhao, Y.; Sadygov, R.G.; Starkey, J.M.; Spratt, H.; Luxon, B.A.; Wood, T.G.; Dineley, K.T. Cognitive enhancement with rosiglitazone links the hippocampal PPARγ and ERK MAPK signaling pathways. J. Neurosci., 2012, 32(47), 16725-35a.
[http://dx.doi.org/10.1523/JNEUROSCI.2153-12.2012] [PMID: 23175826]
[128]
Martin, H.L.; Mounsey, R.B.; Sathe, K.; Mustafa, S.; Nelson, M.C.; Evans, R.M.; Teismann, P. A peroxisome proliferator-activated receptor-δ agonist provides neuroprotection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neuroscience, 2013, 240, 191-203.
[http://dx.doi.org/10.1016/j.neuroscience.2013.02.058] [PMID: 23500098]
[129]
Das, N.R.; Gangwal, R.P.; Damre, M.V.; Sangamwar, A.T.; Sharma, S.S. A PPAR-β/δ agonist is neuroprotective and decreases cognitive impairment in a rodent model of Parkinson’s disease. Curr. Neurovasc. Res., 2014, 11(2), 114-124.
[http://dx.doi.org/10.2174/1567202611666140318114037] [PMID: 24635117]
[130]
Esposito, E.; Impellizzeri, D.; Mazzon, E.; Paterniti, I.; Cuzzocrea, S. Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson’s disease. PLoS One, 2012, 7(8), e41880.
[http://dx.doi.org/10.1371/journal.pone.0041880] [PMID: 22912680]
[131]
Kurkowska-Jastrzębska, I.; Babiuch, M.; Joniec, I.; Przybyłkowski, A.; Członkowski, A.; Członkowska, A. Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice. Int. Immunopharmacol., 2002, 2(8), 1213-1218.
[http://dx.doi.org/10.1016/S1567-5769(02)00078-4] [PMID: 12349958]
[132]
Casper, D.; Yaparpalvi, U.; Rempel, N.; Werner, P. Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. Neurosci. Lett., 2000, 289(3), 201-204.
[http://dx.doi.org/10.1016/S0304-3940(00)01294-5] [PMID: 10961664]
[133]
St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; Simon, D.K.; Bachoo, R.; Spiegelman, B.M. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006, 127(2), 397-408.
[http://dx.doi.org/10.1016/j.cell.2006.09.024] [PMID: 17055439]
[134]
Kreisler, A.; Duhamel, A.; Vanbesien-Mailliot, C.; Destée, A.; Bordet, R. Differing short-term neuroprotective effects of the fibrates fenofibrate and bezafibrate in MPTP and 6-OHDA experimental models of Parkinson’s disease. Behav. Pharmacol., 2010, 21(3), 194-205.
[http://dx.doi.org/10.1097/FBP.0b013e32833a5c81] [PMID: 20440202]
[135]
Jin, J.; Albertz, J.; Guo, Z.; Peng, Q.; Rudow, G.; Troncoso, J.C.; Ross, C.A.; Duan, W. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease. J. Neurochem., 2013, 125(3), 410-419.
[http://dx.doi.org/10.1111/jnc.12190] [PMID: 23373812]
[136]
Chiang, M-C.; Chern, Y.; Huang, R-N. PPARgamma rescue of the mitochondrial dysfunction in Huntington’s disease. Neurobiol. Dis., 2012, 45(1), 322-328.
[http://dx.doi.org/10.1016/j.nbd.2011.08.016] [PMID: 21907283]
[137]
Chiang, M-C.; Chen, C-M.; Lee, M-R.; Chen, H-W.; Chen, H-M.; Wu, Y-S.; Hung, C-H.; Kang, J-J.; Chang, C-P.; Chang, C.; Wu, Y.R.; Tsai, Y.S.; Chern, Y. Modulation of energy deficiency in Huntington’s disease via activation of the peroxisome proliferator-activated receptor gamma. Hum. Mol. Genet., 2010, 19(20), 4043-4058.
[http://dx.doi.org/10.1093/hmg/ddq322] [PMID: 20668093]
[138]
Johri, A.; Calingasan, N.Y.; Hennessey, T.M.; Sharma, A.; Yang, L.; Wille, E.; Chandra, A.; Beal, M.F. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum. Mol. Genet., 2012, 21(5), 1124-1137.
[http://dx.doi.org/10.1093/hmg/ddr541] [PMID: 22095692]
[139]
Lecarpentier, Y.; Vallée, A. Opposite interplay between PPAR gamma and canonical Wnt/beta-catenin pathway in amyotrophic lateral sclerosis. Front. Neurol., 2016, 7, 100.
[http://dx.doi.org/10.3389/fneur.2016.00100] [PMID: 27445967]
[140]
Benedusi, V.; Martorana, F.; Brambilla, L.; Maggi, A.; Rossi, D. The peroxisome proliferator-activated receptor γ (PPARγ) controls natural protective mechanisms against lipid peroxidation in amyotrophic lateral sclerosis. J. Biol. Chem., 2012, 287(43), 35899-35911.
[http://dx.doi.org/10.1074/jbc.M112.366419] [PMID: 22910911]
[141]
Johri, A.; Beal, M.F. Muscling in on PGC-1α for improved quality of life in ALS. Cell Metab., 2012, 15(5), 567-569.
[http://dx.doi.org/10.1016/j.cmet.2012.04.015] [PMID: 22560208]
[142]
Da Cruz, S.; Parone, P.A.; Lopes, V.S.; Lillo, C.; McAlonis-Downes, M.; Lee, S.K.; Vetto, A.P.; Petrosyan, S.; Marsala, M.; Murphy, A.N.; Williams, D.S.; Spiegelman, B.M.; Cleveland, D.W. Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab., 2012, 15(5), 778-786.
[http://dx.doi.org/10.1016/j.cmet.2012.03.019] [PMID: 22560226]
[143]
Thau, N.; Knippenberg, S.; Körner, S.; Rath, K.J.; Dengler, R.; Petri, S. Decreased mRNA expression of PGC-1α and PGC-1α-regulated factors in the SOD1G93A ALS mouse model and in human sporadic ALS. J. Neuropathol. Exp. Neurol., 2012, 71(12), 1064-1074.
[http://dx.doi.org/10.1097/NEN.0b013e318275df4b] [PMID: 23147503]
[144]
Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 2015, 85(16), 1383-1391.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[145]
Butchart, J.; Brook, L.; Hopkins, V.; Teeling, J.; Püntener, U.; Culliford, D.; Sharples, R.; Sharif, S.; McFarlane, B.; Raybould, R.; Thomas, R.; Passmore, P.; Perry, V.H.; Holmes, C. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology, 2015, 84(21), 2161-2168.
[http://dx.doi.org/10.1212/WNL.0000000000001617] [PMID: 25934853]
[146]
Sano, M.; Bell, K.L.; Galasko, D.; Galvin, J.E.; Thomas, R.G.; van Dyck, C.H.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease. Neurology, 2011, 77(6), 556-563.
[http://dx.doi.org/10.1212/WNL.0b013e318228bf11] [PMID: 21795660]
[147]
Duffy, J.P.; Harrington, E.M.; Salituro, F.G.; Cochran, J.E.; Green, J.; Gao, H.; Bemis, G.W.; Evindar, G.; Galullo, V.P.; Ford, P.J.; Germann, U.A.; Wilson, K.P.; Bellon, S.F.; Chen, G.; Taslimi, P.; Jones, P.; Huang, C.; Pazhanisamy, S.; Wang, Y.M.; Murcko, M.A.; Su, M.S. The discovery of VX-745: A novel and selective p38α kinase inhibitor. ACS Med. Chem. Lett., 2011, 2(10), 758-763.
[http://dx.doi.org/10.1021/ml2001455] [PMID: 24900264]
[148]
Alam, J.; Blackburn, K.; Patrick, D. Neflamapimod: clinical phase 2b-ready oral small molecule inhibitor of p38alpha to reverse synaptic dysfunction in early Alzheimer’s disease. J. Prev. Alzheimers Dis., 2017, 4(4), 273-278.
[PMID: 29181493]
[149]
Burstein, A.H.; Sabbagh, M.; Andrews, R.; Valcarce, C.; Dunn, I.; Altstiel, L. Development of Azeliragon, an oral small molecule antagonist of the receptor for advanced glycation endproducts, for the potential slowing of loss of cognition in mild Alzheimer’s disease. J. Prev. Alzheimers Dis., 2018, 5(2), 149-154.
[PMID: 29616709]
[150]
Galimberti, D.; Scarpini, E. Pioglitazone for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs, 2017, 26(1), 97-101.
[http://dx.doi.org/10.1080/13543784.2017.1265504] [PMID: 27885860]
[151]
Geldmacher, D.S.; Fritsch, T.; McClendon, M.J.; Landreth, G. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch. Neurol., 2011, 68(1), 45-50.
[http://dx.doi.org/10.1001/archneurol.2010.229] [PMID: 20837824]
[152]
Sato, T.; Hanyu, H.; Hirao, K.; Kanetaka, H.; Sakurai, H.; Iwamoto, T. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol. Aging, 2011, 32(9), 1626-1633.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.10.009] [PMID: 19923038]
[153]
Folch, J.; Petrov, D.; Ettcheto, M.; Abad, S.; Sánchez-López, E.; García, M.L.; Olloquequi, J.; Beas-Zarate, C.; Auladell, C.; Camins, A. Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast., 2016, 2016, 8501693.
[http://dx.doi.org/10.1155/2016/8501693] [PMID: 26881137]
[154]
Dockens, R.; Wang, J-S.; Castaneda, L.; Sverdlov, O.; Huang, S-P.; Slemmon, R.; Gu, H.; Wong, O.; Li, H.; Berman, R.M.; Smith, C.; Albright, C.F.; Tong, G. A placebo-controlled, multiple ascending dose study to evaluate the safety, pharmacokinetics and pharmacodynamics of avagacestat (BMS-708163) in healthy young and elderly subjects. Clin. Pharmacokinet., 2012, 51(10), 681-693.
[http://dx.doi.org/10.1007/s40262-012-0005-x] [PMID: 23018531]
[155]
Tong, G.; Castaneda, L.; Wang, J-S.; Sverdlov, O.; Huang, S-P.; Slemmon, R.; Gu, H.; Wong, O.; Li, H.; Berman, R.M.; Smith, C.; Albright, C.; Dockens, R.C. Effects of single doses of avagacestat (BMS-708163) on cerebrospinal fluid Aβ levels in healthy young men. Clin. Drug Investig., 2012, 32(11), 761-769.
[http://dx.doi.org/10.1007/s40261-012-0006-4] [PMID: 23018285]
[156]
Coric, V.; van Dyck, C.H.; Salloway, S.; Andreasen, N.; Brody, M.; Richter, R.W.; Soininen, H.; Thein, S.; Shiovitz, T.; Pilcher, G.; Colby, S.; Rollin, L.; Dockens, R.; Pachai, C.; Portelius, E.; Andreasson, U.; Blennow, K.; Soares, H.; Albright, C.; Feldman, H.H.; Berman, R.M. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol., 2012, 69(11), 1430-1440.
[http://dx.doi.org/10.1001/archneurol.2012.2194] [PMID: 22892585]
[157]
Matlack, K.E.; Tardiff, D.F.; Narayan, P.; Hamamichi, S.; Caldwell, K.A.; Caldwell, G.A.; Lindquist, S. Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc. Natl. Acad. Sci. USA, 2014, 111(11), 4013-4018.
[http://dx.doi.org/10.1073/pnas.1402228111] [PMID: 24591589]
[158]
Liang, E.; Garzone, P.; Cedarbaum, J.M.; Koller, M.; Tran, T.; Xu, V.; Ross, B.; Jhee, S.S.; Ereshefsky, L.; Pastrak, A.; Abushakra, S. Pharmacokinetic profile of orally administered scyllo-inositol (Elnd005) in plasma, cerebrospinal fluid and brain, and corresponding effect on amyloid-beta in healthy subjects. Clin. Pharmacol. Drug Dev., 2013, 2(2), 186-194.
[http://dx.doi.org/10.1002/cpdd.14] [PMID: 27121673]
[159]
Salloway, S.; Sperling, R.; Keren, R.; Porsteinsson, A.P.; van Dyck, C.H.; Tariot, P.N.; Gilman, S.; Arnold, D.; Abushakra, S.; Hernandez, C.; Crans, G.; Liang, E.; Quinn, G.; Bairu, M.; Pastrak, A.; Cedarbaum, J.M. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology, 2011, 77(13), 1253-1262.
[http://dx.doi.org/10.1212/WNL.0b013e3182309fa5] [PMID: 21917766]
[160]
Caltagirone, C.; Ferrannini, L.; Marchionni, N.; Nappi, G.; Scapagnini, G.; Trabucchi, M. The potential protective effect of tramiprosate (homotaurine) against Alzheimer’s disease: a review. Aging Clin. Exp. Res., 2012, 24(6), 580-587.
[PMID: 22961121]
[161]
Aisen, P.S.; Gauthier, S.; Ferris, S.H.; Saumier, D.; Haine, D.; Garceau, D.; Duong, A.; Suhy, J.; Oh, J.; Lau, W.C. Tramiprosate in mild-to-moderate Alzheimer’s disease–a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Archives of medical science. AMS, 2011, 7, 102.
[PMID: 22291741]
[162]
Gervais, F.; Paquette, J.; Morissette, C.; Krzywkowski, P.; Yu, M.; Azzi, M.; Lacombe, D.; Kong, X.; Aman, A.; Laurin, J.; Szarek, W.A.; Tremblay, P. Targeting soluble Abeta peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol. Aging, 2007, 28(4), 537-547.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.015] [PMID: 16675063]
[163]
Gauthier, S.; Aisen, P.S.; Ferris, S.H.; Saumier, D.; Duong, A.; Haine, D.; Garceau, D.; Suhy, J.; Oh, J.; Lau, W.; Sampalis, J. Effect of tramiprosate in patients with mild-to-moderate Alzheimer’s disease: exploratory analyses of the MRI sub-group of the Alphase study. Health Aging, 2009, 13(6), 550-557.
[http://dx.doi.org/10.1007/s12603-009-0106-x] [PMID: 19536424]
[164]
Sabbagh, M.N. Clinical effects of oral Tramiprosate in APOE4/4 homozygous patients with mild Alzheimer’s disease suggest disease modification. J. Prev. Alzheimers Dis., 2017, 4(3), 136-137.
[PMID: 29182703]
[165]
Kocis, P.; Tolar, M.; Yu, J.; Sinko, W.; Ray, S.; Blennow, K.; Fillit, H.; Hey, J.A. Elucidating the Aβ42 anti-aggregation mechanism of action of tramiprosate in Alzheimer’s disease: integrating molecular analytical methods, pharmacokinetic and clinical data. CNS Drugs, 2017, 31(6), 495-509.
[http://dx.doi.org/10.1007/s40263-017-0434-z] [PMID: 28435985]
[166]
Abushakra, S.; Porsteinsson, A.; Scheltens, P.; Sadowsky, C.; Vellas, B.; Cummings, J.; Gauthier, S.; Hey, J.A.; Power, A.; Wang, P.; Shen, L.; Tolar, M. Clinical effects of tramiprosate in APOE4/4 homozygous patients with mild Alzheimer’s disease suggest disease modification potential. J. Prev. Alzheimers Dis., 2017, 4(3), 149-156.
[PMID: 29182706]
[167]
Abushakra, S.; Porsteinsson, A.; Vellas, B.; Cummings, J.; Gauthier, S.; Hey, J.A.; Power, A.; Hendrix, S.; Wang, P.; Shen, L.; Sampalis, J.; Tolar, M. Clinical benefits of tramiprosate in alzheimer’s disease are associated with higher number of APOE4 alleles: the “APOE4 gene-dose effect”. J. Prev. Alzheimers Dis., 2016, 3(4), 219-228.
[PMID: 29199323]
[168]
Liu, Y.; Xu, L-P.; Wang, Q.; Yang, B.; Zhang, X. Synergistic inhibitory effect of GQDs–tramiprosate covalent binding on amyloid aggregation. ACS Chem. Neurosci., 2018, 9(4), 817-823.
[http://dx.doi.org/10.1021/acschemneuro.7b00439] [PMID: 29244487]
[169]
Hey, J.A.; Yu, J.Y.; Versavel, M.; Abushakra, S.; Kocis, P.; Power, A.; Kaplan, P.L.; Amedio, J.; Tolar, M. Clinical pharmacokinetics and safety of ALZ-801, a novel prodrug of tramiprosate in development for the treatment of Alzheimer’s disease. Clin. Pharmacokinet., 2018, 57(3), 315-333.
[http://dx.doi.org/10.1007/s40262-017-0608-3] [PMID: 29063518]
[170]
Hey, J.A.; Kocis, P.; Hort, J.; Abushakra, S.; Power, A.; Vyhnálek, M.; Yu, J.Y.; Tolar, M. Discovery and identification of an endogenous metabolite of tramiprosate and its prodrug ALZ-801 that inhibits beta amyloid oligomer formation in the human brain. CNS Drugs, 2018, 32(9), 849-861.
[http://dx.doi.org/10.1007/s40263-018-0554-0] [PMID: 30076539]
[171]
Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. (N. Y.), 2018, 4, 195-214.
[http://dx.doi.org/10.1016/j.trci.2018.03.009] [PMID: 29955663]
[172]
Gilman, S.; Koller, M.; Black, R.S.; Jenkins, L.; Griffith, S.G.; Fox, N.C.; Eisner, L.; Kirby, L.; Rovira, M.B.; Forette, F.; Orgogozo, J.M. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology, 2005, 64(9), 1553-1562.
[http://dx.doi.org/10.1212/01.WNL.0000159740.16984.3C] [PMID: 15883316]
[173]
Holmes, C.; Boche, D.; Wilkinson, D.; Yadegarfar, G.; Hopkins, V.; Bayer, A.; Jones, R.W.; Bullock, R.; Love, S.; Neal, J.W.; Zotova, E.; Nicoll, J.A. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet, 2008, 372(9634), 216-223.
[http://dx.doi.org/10.1016/S0140-6736(08)61075-2] [PMID: 18640458]
[174]
Tayeb, H.O.; Murray, E.D.; Price, B.H.; Tarazi, F.I. Bapineuzumab and solanezumab for Alzheimer’s disease: is the ‘amyloid cascade hypothesis’ still alive? Expert Opin. Biol. Ther., 2013, 13(7), 1075-1084.
[http://dx.doi.org/10.1517/14712598.2013.789856] [PMID: 23574434]
[175]
Doody, R.S.; Farlow, M.; Aisen, P.S. Phase 3 trials of solanezumab and bapineuzumab for Alzheimer’s disease. N. Engl. J. Med., 2014, 370(15), 1460-1460.
[PMID: 24716687]
[176]
La Porte, S.L.; Bollini, S.S.; Lanz, T.A.; Abdiche, Y.N.; Rusnak, A.S.; Ho, W-H.; Kobayashi, D.; Harrabi, O.; Pappas, D.; Mina, E.W.; Milici, A.J.; Kawabe, T.T.; Bales, K.; Lin, J.C.; Pons, J. Structural basis of C-terminal β-amyloid peptide binding by the antibody ponezumab for the treatment of Alzheimer’s disease. J. Mol. Biol., 2012, 421(4-5), 525-536.
[http://dx.doi.org/10.1016/j.jmb.2011.11.047] [PMID: 22197375]
[177]
Landen, J.W.; Zhao, Q.; Cohen, S.; Borrie, M.; Woodward, M.; Billing, C.B., Jr; Bales, K.; Alvey, C.; McCush, F.; Yang, J.; Kupiec, J.W.; Bednar, M.M. Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: a phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clin. Neuropharmacol., 2013, 36(1), 14-23.
[http://dx.doi.org/10.1097/WNF.0b013e31827db49b] [PMID: 23334070]
[178]
Landen, J.W.; Cohen, S.; Billing, C.B., Jr; Cronenberger, C.; Styren, S.; Burstein, A.H.; Sattler, C.; Lee, J.H.; Jack, C.R., Jr; Kantarci, K.; Schwartz, P.F.; Duggan, W.T.; Zhao, Q.; Sprenger, K.; Bednar, M.M.; Binneman, B. Multiple-dose ponezumab for mild-to-moderate Alzheimer’s disease: Safety and efficacy. Alzheimers Dement. (N. Y.), 2017, 3(3), 339-347.
[http://dx.doi.org/10.1016/j.trci.2017.04.003] [PMID: 29067341]
[179]
Landen, J.W.; Andreasen, N.; Cronenberger, C.L.; Schwartz, P.F.; Börjesson-Hanson, A.; Östlund, H.; Sattler, C.A.; Binneman, B.; Bednar, M.M. Ponezumab in mild-to-moderate Alzheimer’s disease: Randomized phase II PET-PIB study. Alzheimers Dement. (N. Y.), 2017, 3(3), 393-401.
[http://dx.doi.org/10.1016/j.trci.2017.05.003] [PMID: 29067345]
[180]
Corbett, G.T.; Gonzalez, F.J.; Pahan, K. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proc. Natl. Acad. Sci. USA, 2015, 112(27), 8445-8450.
[http://dx.doi.org/10.1073/pnas.1504890112] [PMID: 26080426]
[181]
Uppalapati, D.; Das, N.R.; Gangwal, R.P.; Damre, M.V.; Sangamwar, A.T.; Sharma, S.S. Neuroprotective potential of peroxisome proliferator activated receptor-α agonist in cognitive impairment in Parkinson’s disease: Behavioral, biochemical, and PBPK profile. PPAR Res., 2014, 2014, 753587.
[http://dx.doi.org/10.1155/2014/753587] [PMID: 24693279]
[182]
Barbiero, J.K.; Santiago, R.; Tonin, F.S.; Boschen, S.; da Silva, L.M.; Werner, M.F.; da Cunha, C.; Lima, M.M.; Vital, M.A.; Vital, M. PPAR-α agonist fenofibrate protects against the damaging effects of MPTP in a rat model of Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 53, 35-44.
[http://dx.doi.org/10.1016/j.pnpbp.2014.02.009] [PMID: 24593945]
[183]
Puligheddu, M.; Melis, M.; Pillolla, G.; Milioli, G.; Parrino, L.; Terzano, G.M.; Aroni, S.; Sagheddu, C.; Marrosu, F.; Pistis, M.; Muntoni, A.L. Rationale for an adjunctive therapy with fenofibrate in pharmacoresistant nocturnal frontal lobe epilepsy. Epilepsia, 2017, 58(10), 1762-1770.
[http://dx.doi.org/10.1111/epi.13863] [PMID: 28766701]
[184]
Moutinho, M.; Landreth, G.E. Therapeutic potential of nuclear receptor agonists in Alzheimer’s disease. J. Lipid Res., 2017, 58(10), 1937-1949.
[http://dx.doi.org/10.1194/jlr.R075556] [PMID: 28264880]
[185]
Cheng, H.S.; Tan, W.R.; Low, Z.S.; Marvalim, C.; Lee, J.Y.H.; Tan, N.S. Exploration and development of PPAR modulators in health and disease: an update of clinical evidence. Int. J. Mol. Sci., 2019, 20(20), 5055.
[http://dx.doi.org/10.3390/ijms20205055] [PMID: 31614690]
[186]
Olanow, C.W.; Kieburtz, K.; Schapira, A.H. Why have we failed to achieve neuroprotection in Parkinson’s disease? Ann. Neurol., 2008, 64(Suppl. 2), S101-S110.
[http://dx.doi.org/10.1002/ana.21461] [PMID: 19127580]
[187]
Neurol, L. Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol., 2015, 14(8), 795-803.
[http://dx.doi.org/10.1016/S1474-4422(15)00144-1] [PMID: 26116315]
[188]
Ilijic, E.; Guzman, J.N.; Surmeier, D.J. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol. Dis., 2011, 43(2), 364-371.
[http://dx.doi.org/10.1016/j.nbd.2011.04.007] [PMID: 21515375]
[189]
Sun, Y.; Pham, A.N.; Waite, T.D. Mechanism underlying the effectiveness of deferiprone in alleviating Parkinson’s disease symptoms. ACS Chem. Neurosci., 2018, 9(5), 1118-1127.
[http://dx.doi.org/10.1021/acschemneuro.7b00478] [PMID: 29381045]
[190]
Marras, C.; Rochon, P.; Lang, A.E. Predicting motor decline and disability in Parkinson disease: a systematic review. Arch. Neurol., 2002, 59(11), 1724-1728.
[http://dx.doi.org/10.1001/archneur.59.11.1724] [PMID: 12433259]
[191]
Rabbani, G.; Ahmad, E.; Zaidi, N.; Fatima, S.; Khan, R.H. pH-Induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochem. Biophys., 2012, 62(3), 487-499.
[http://dx.doi.org/10.1007/s12013-011-9335-9] [PMID: 22215307]
[192]
Rabbani, G.; Ahmad, E.; Khan, M.V.; Ashraf, M.T.; Bhat, R.; Khan, R.H. Impact of structural stability of cold adapted Candida antarctica lipase B (CaLB): in relation to pH, chemical and thermal denaturation. RSC Advances, 2015, 5, 20115-20131.
[http://dx.doi.org/10.1039/C4RA17093H]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy