Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Celastrol Inhibits the Proliferation and Induces Apoptosis of Colorectal Cancer Cells via Downregulating NF-κB/COX-2 Signaling Pathways

Author(s): Hua Zhang, Xiaojin Zhao, Fajun Shang, Huan Sun, Xu Zheng and Jiabin Zhu*

Volume 22, Issue 10, 2022

Published on: 12 January, 2022

Page: [1921 - 1932] Pages: 12

DOI: 10.2174/1871520621666211103103530

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Colorectal cancer (CRC) is the third-ranked malignant tumor in the world that contributes to the death of a major population of the world. Celastrol, a bioactive natural product isolated from the medicinal plant Tripterygium wilfordii Hook F, has been proved to be an effective anti-tumor inhibitor for multiple tumors.

Objective: To reveal the therapeutic effect and underlying mechanisms of celastrol on CRC cells.

Methods: CCK-8 and clonogenic assay were used to analyze the cell proliferation in CRC cells. Flow cytometry analysis was conducted to assess the cell cycle and cell apoptosis. Wound-healing and cell invasion assay were used to evaluate the migrating and invasion capability of CRC cells. The potential antitumor mechanism of celastrol was investigated by qPCR, western blot, and confocal immunofluorescence analyses.

Results: Celastrol effectively inhibited CRC cell proliferation by activating caspase-dependent cell apoptosis and facilitating G1 cell cycle arrest in a dose-dependent manner, as well as cell migration and invasion by downregulating the MMP2 and MMP9. Mechanistic protein expression revealed that celastrol suppressed the expression of COX-2 by inhibiting the phosphorylation of NF-κB p65 and subsequently leading to cytoplasmic retention of p65 protein, thereby inhibiting its nuclear translocation and transcription activities.

Conclusion: These findings indicate that celastrol is an effective inhibitor for CRC, regulating the NF-κB/COX-2 pathway, leading to the inhibition of cell proliferation characterized by cell cycle arrest and caspase-dependent apoptosis, providing a potential alternative therapeutic agent for CRC patients.

Keywords: Colorectal cancer, celastrol, cell proliferation, apoptosis, nuclear factor-κB, cyclooxygenase-2.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Ganesh, K.; Stadler, Z.K.; Cercek, A.; Mendelsohn, R.B.; Shia, J.; Segal, N.H.; Diaz, L.A., Jr Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(6), 361-375.
[http://dx.doi.org/10.1038/s41575-019-0126-x] [PMID: 30886395]
[3]
Van der Jeught, K.; Xu, H.C.; Li, Y.J.; Lu, X.B.; Ji, G. Drug resistance and new therapies in colorectal cancer. World J. Gastroenterol., 2018, 24(34), 3834-3848.
[http://dx.doi.org/10.3748/wjg.v24.i34.3834] [PMID: 30228778]
[4]
Mohd Yunos, R.I.; Abu Mutalib, N.S.; Tieng, F.Y.F.; Abu, N.; Jamal, R. Actionable potentials of less frequently mutated genes in colorectal cancer and their roles in precision medicine. Biomolecules, 2020, 10(3), 476.
[http://dx.doi.org/10.3390/biom10030476] [PMID: 32245111]
[5]
Parvez, M.K. Natural or plant products for the treatment of neurological disorders: Current knowledge. Curr. Drug Metab., 2018, 19(5), 424-428.
[http://dx.doi.org/10.2174/1389200218666170710190249] [PMID: 28699506]
[6]
Ziemska, J.; Szynal, T.; Mazańska, M.; Solecka, J. Natural medicinal resources and their therapeutic applications. Rocz. Panstw. Zakl. Hig., 2019, 70(4), 407-413.
[http://dx.doi.org/10.32394/rpzh/2019.0093] [PMID: 31961104]
[7]
Hou, W.; Liu, B.; Xu, H. Celastrol: progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur. J. Med. Chem., 2020, 189, 112081.
[http://dx.doi.org/10.1016/j.ejmech.2020.112081] [PMID: 31991334]
[8]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Mukherjee, T.; Bishayee, A. Molecular targets of celastrol in cancer: Recent trends and advancements. Crit. Rev. Oncol. Hematol., 2018, 128, 70-81.
[http://dx.doi.org/10.1016/j.critrevonc.2018.05.019] [PMID: 29958633]
[9]
Li, X.; Ding, J.; Li, N.; Liu, W.; Ding, F.; Zheng, H.; Ning, Y.; Wang, H.; Liu, R.; Ren, S. Synthesis and biological evaluation of celastrol derivatives as anti-ovarian cancer stem cell agents. Eur. J. Med. Chem., 2019, 179, 667-679.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.086] [PMID: 31279299]
[10]
Yao, S.S.; Han, L.; Tian, Z.B.; Yu, Y.N.; Zhang, Q.; Li, X.Y.; Mao, T.; Yang, L. Celastrol inhibits growth and metastasis of human gastric cancer cell MKN45 by down-regulating microRNA-21. Phytother. Res., 2019, 33(6), 1706-1716.
[http://dx.doi.org/10.1002/ptr.6359] [PMID: 30989726]
[11]
Liu, X.; Zhao, P.; Wang, X.; Wang, L.; Zhu, Y.; Song, Y.; Gao, W. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 184.
[http://dx.doi.org/10.1186/s13046-019-1173-4] [PMID: 31053160]
[12]
Ni, H.; Han, Y.; Jin, X. Celastrol inhibits colon cancer cell proliferation by downregulating miR-21 and PI3K/AKT/GSK-3β pathway. Int. J. Clin. Exp. Pathol., 2019, 12(3), 808-816.
[PMID: 31933888]
[13]
Jiang, Z.; Cao, Q.; Dai, G.; Wang, J.; Liu, C.; Lv, L.; Pan, J. Celastrol inhibits colorectal cancer through TGF-β1/Smad signaling. OncoTargets Ther., 2019, 12, 509-518.
[http://dx.doi.org/10.2147/OTT.S187817] [PMID: 30666129]
[14]
Qi, Y.; Wang, R.; Zhao, L.; Lv, L.; Zhou, F.; Zhang, T.; Lu, F.; Yan, H.; Duan, G. Celastrol suppresses tryptophan catabolism in human colon cancer cells as revealed by metabolic profiling and targeted metabolite analysis. Biol. Pharm. Bull., 2018, 41(8), 1243-1250.
[http://dx.doi.org/10.1248/bpb.b18-00171] [PMID: 30068874]
[15]
Yadav, V.R.; Sung, B.; Prasad, S.; Kannappan, R.; Cho, S.G.; Liu, M.; Chaturvedi, M.M.; Aggarwal, B.B. Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor. J. Mol. Med. (Berl.), 2010, 88(12), 1243-1253.
[http://dx.doi.org/10.1007/s00109-010-0669-3] [PMID: 20798912]
[16]
Lin, L.; Sun, Y.; Wang, D.; Zheng, S.; Zhang, J.; Zheng, C. Celastrol ameliorates ulcerative colitis-related colorectal cancer in mice via suppressing inflammatory responses and epithelial-mesenchymal transition. Front. Pharmacol., 2016, 6, 320.
[http://dx.doi.org/10.3389/fphar.2015.00320] [PMID: 26793111]
[17]
Moreira, H.; Szyjka, A.; Paliszkiewicz, K.; Barg, E. Prooxidative activity of celastrol induces apoptosis, DNA damage, and cell cycle arrest in drug-resistant human colon cancer cells. Oxid Med Cell Longev, 2019, 2019.
[http://dx.doi.org/10.1155/2019/6793957] [PMID: 31485297]
[18]
Moreira, H.; Szyjka, A.; Gąsiorowski, K. Chemopreventive activity of celastrol in drug-resistant human colon carcinoma cell cultures. Oncotarget, 2018, 9(30), 21211-21223.
[http://dx.doi.org/10.18632/oncotarget.25014] [PMID: 29765532]
[19]
Liu, L.; Michowski, W.; Kolodziejczyk, A.; Sicinski, P. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat. Cell Biol., 2019, 21(9), 1060-1067.
[http://dx.doi.org/10.1038/s41556-019-0384-4] [PMID: 31481793]
[20]
Lemmens, B.; Lindqvist, A. DNA replication and mitotic entry: A brake model for cell cycle progression. J. Cell Biol., 2019, 218(12), 3892-3902.
[http://dx.doi.org/10.1083/jcb.201909032] [PMID: 31712253]
[21]
Roy, A.; Banerjee, S. p27 and leukemia: Cell cycle and beyond. J. Cell. Physiol., 2015, 230(3), 504-509.
[http://dx.doi.org/10.1002/jcp.24819] [PMID: 25205053]
[22]
Coqueret, O. New roles for p21 and p27 cell-cycle inhibitors: A function for each cell compartment? Trends Cell Biol., 2003, 13(2), 65-70.
[http://dx.doi.org/10.1016/S0962-8924(02)00043-0] [PMID: 12559756]
[23]
Evan, G.I.; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature, 2001, 411(6835), 342-348.
[http://dx.doi.org/10.1038/35077213] [PMID: 11357141]
[24]
Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ., 2015, 22(4), 526-539.
[http://dx.doi.org/10.1038/cdd.2014.216] [PMID: 25526085]
[25]
Li, J.; Yuan, J. Caspases in apoptosis and beyond. Oncogene, 2008, 27(48), 6194-6206.
[http://dx.doi.org/10.1038/onc.2008.297] [PMID: 18931687]
[26]
Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 1999, 6(2), 99-104.
[http://dx.doi.org/10.1038/sj.cdd.4400476] [PMID: 10200555]
[27]
Estaquier, J.; Vallette, F.; Vayssiere, J.L.; Mignotte, B. The mitochondrial pathways of apoptosis. Adv. Exp. Med. Biol., 2012, 942, 157-183.
[http://dx.doi.org/10.1007/978-94-007-2869-1_7] [PMID: 22399422]
[28]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[29]
Guan, X. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B, 2015, 5(5), 402-418.
[http://dx.doi.org/10.1016/j.apsb.2015.07.005] [PMID: 26579471]
[30]
Bhatt, A.B.; Patel, S.; Matossian, M.D.; Ucar, D.A.; Miele, L.; Burow, M.E.; Flaherty, P.T.; Cavanaugh, J.E. Molecular mechanisms of epithelial to mesenchymal transition regulated by ERK5 signaling. Biomolecules, 2021, 11(2), 183.
[http://dx.doi.org/10.3390/biom11020183] [PMID: 33572742]
[31]
Paolillo, M.; Schinelli, S. Extracellular matrix alterations in metastatic processes. Int. J. Mol. Sci., 2019, 20(19), 4947.
[http://dx.doi.org/10.3390/ijms20194947] [PMID: 31591367]
[32]
Jabłońska-Trypuć, A.; Matejczyk, M.; Rosochacki, S. Matrix Metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2016, 31(Suppl. 1), 177-183.
[http://dx.doi.org/10.3109/14756366.2016.1161620] [PMID: 27028474]
[33]
Wang, X.; Yang, B.; She, Y.; Ye, Y. The lncRNA TP73-AS1 promotes ovarian cancer cell proliferation and metastasis via modulation of MMP2 and MMP9. J. Cell. Biochem., 2018, 119(9), 7790-7799.
[http://dx.doi.org/10.1002/jcb.27158] [PMID: 29904939]
[34]
Mahboubi Rabbani, S.M.I.; Zarghi, A. Selective COX-2 inhibitors as anticancer agents: A patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(6), 407-427.
[http://dx.doi.org/10.1080/13543776.2019.1623880] [PMID: 31132889]
[35]
Rayar, A.M.; Lagarde, N.; Ferroud, C.; Zagury, J.F.; Montes, M.; Sylla-Iyarreta Veitia, M. Update on COX-2 selective inhibitors: Chemical classification, side effects and their use in cancers and neuronal diseases. Curr. Top. Med. Chem., 2017, 17(26), 2935-2956.
[http://dx.doi.org/10.2174/1568026617666170821124947] [PMID: 28828990]
[36]
Beales, I.L.P. Selective COX-2 inhibitors are safe and effective. BMJ, 2020, 368, m311.
[http://dx.doi.org/10.1136/bmj.m311] [PMID: 31992540]
[37]
Tołoczko-Iwaniuk, N.; Dziemiańczyk-Pakieła, D.; Nowaszewska, B.K.; Celińska-Janowicz, K.; Miltyk, W. Celecoxib in cancer therapy and prevention - review. Curr. Drug Targets, 2019, 20(3), 302-315.
[http://dx.doi.org/10.2174/1389450119666180803121737] [PMID: 30073924]
[38]
Hao, Q.; Zhang, C.; Gao, Y.; Wang, S.; Li, J.; Li, M.; Xue, X.; Li, W.; Zhang, W.; Zhang, Y. FOXP3 inhibits NF-κB activity and hence COX2 expression in gastric cancer cells. Cell. Signal., 2014, 26(3), 564-569.
[http://dx.doi.org/10.1016/j.cellsig.2013.11.030] [PMID: 24308961]
[39]
Nakano, R.; Kitanaka, T.; Namba, S.; Kitanaka, N.; Suwabe, Y.; Konno, T.; Yamazaki, J.; Nakayama, T.; Sugiya, H. Non-transcriptional and translational function of canonical NF-κB signaling in activating ERK1/2 in IL-1β-induced COX-2 expression in synovial fibroblasts. Front. Immunol., 2020, 11, 579266.
[http://dx.doi.org/10.3389/fimmu.2020.579266] [PMID: 33117381]
[40]
Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer, 2013, 12, 86.
[http://dx.doi.org/10.1186/1476-4598-12-86] [PMID: 23915189]
[41]
Perkins, N.D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer, 2012, 12(2), 121-132.
[http://dx.doi.org/10.1038/nrc3204] [PMID: 22257950]
[42]
Chen, D.; Peng, F.; Cui, Q.C.; Daniel, K.G.; Orlu, S.; Liu, J.; Dou, Q.P. Inhibition of prostate cancer cellular proteasome activity by a pyrrolidine dithiocarbamate-copper complex is associated with suppression of proliferation and induction of apoptosis. Front. Biosci., 2005, 10, 2932-2939.
[http://dx.doi.org/10.2741/1749] [PMID: 15970547]
[43]
Hayden, M.S.; Ghosh, S. Regulation of NF-κB by TNF family cytokines. Semin. Immunol., 2014, 26(3), 253-266.
[http://dx.doi.org/10.1016/j.smim.2014.05.004] [PMID: 24958609]
[44]
Zhang, M.; Chen, X.; Radacsi, N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J. Control. Release, 2021, 329, 96-120.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.047] [PMID: 33259852]
[45]
Ateba, S.B.; Mvondo, M.A.; Ngeu, S.T.; Tchoumtchoua, J.; Awounfack, C.F.; Njamen, D.; Krenn, L. Natural terpenoids against female breast cancer: A 5-year recent research. Curr. Med. Chem., 2018, 25(27), 3162-3213.
[http://dx.doi.org/10.2174/0929867325666180214110932] [PMID: 29446727]
[46]
Liu, J.; Lee, J.; Salazar Hernandez, M.A.; Mazitschek, R.; Ozcan, U. Treatment of obesity with celastrol. Cell, 2015, 161(5), 999-1011.
[http://dx.doi.org/10.1016/j.cell.2015.05.011] [PMID: 26000480]
[47]
Ye, S.; Luo, W.; Khan, Z.A.; Wu, G.; Xuan, L.; Shan, P.; Lin, K.; Chen, T.; Wang, J.; Hu, X.; Wang, S.; Huang, W.; Liang, G. Celastrol attenuates angiotensin II-induced cardiac remodeling by targeting STAT3. Circ. Res., 2020, 126(8), 1007-1023.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315861] [PMID: 32098592]
[48]
An, L.; Li, Z.; Shi, L.; Wang, L.; Wang, Y.; Jin, L.; Shuai, X.; Li, J. Inflammation-targeted celastrol nanodrug attenuates collagen-induced arthritis through NF-κB and notch1 pathways. Nano Lett., 2020, 20(10), 7728-7736.
[http://dx.doi.org/10.1021/acs.nanolett.0c03279] [PMID: 32965124]
[49]
Zhu, J.; Thompson, C.B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol., 2019, 20(7), 436-450.
[http://dx.doi.org/10.1038/s41580-019-0123-5] [PMID: 30976106]
[50]
Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(12), 786-801.
[http://dx.doi.org/10.1038/nrm3904] [PMID: 25415508]
[51]
Tannenbaum, C.S.; Hamilton, T.A. Immune-inflammatory mechanisms in IFNgamma-mediated anti-tumor activity. Semin. Cancer Biol., 2000, 10(2), 113-123.
[http://dx.doi.org/10.1006/scbi.2000.0314] [PMID: 10936062]
[52]
van Ryn, J.; Trummlitz, G.; Pairet, M. COX-2 selectivity and inflammatory processes. Curr. Med. Chem., 2000, 7(11), 1145-1161.
[http://dx.doi.org/10.2174/0929867003374255] [PMID: 11032964]
[53]
Shukla, V.; Kaushal, J.B.; Sankhwar, P.; Manohar, M.; Dwivedi, A. Inhibition of TPPP3 attenuates β-catenin/NF-κB/COX-2 signaling in endometrial stromal cells and impairs decidualization. J. Endocrinol., 2019, 240(3), 417-429.
[http://dx.doi.org/10.1530/JOE-18-0459] [PMID: 30667362]
[54]
Heiss, E.; Herhaus, C.; Klimo, K.; Bartsch, H.; Gerhäuser, C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J. Biol. Chem., 2001, 276(34), 32008-32015.
[http://dx.doi.org/10.1074/jbc.M104794200] [PMID: 11410599]
[55]
Ng, S.W.; Chan, Y.; Chellappan, D.K.; Madheswaran, T.; Zeeshan, F.; Chan, Y.L.; Collet, T.; Gupta, G.; Oliver, B.G.; Wark, P.; Hansbro, N.; Hsu, A.; Hansbro, P.M.; Dua, K.; Panneerselvam, J. Molecular modulators of celastrol as the keystones for its diverse pharmacological activities. Biomed. Pharmacother., 2019, 109, 1785-1792.
[http://dx.doi.org/10.1016/j.biopha.2018.11.051] [PMID: 30551432]
[56]
Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature, 2006, 441(7092), 431-436.
[http://dx.doi.org/10.1038/nature04870] [PMID: 16724054]
[57]
Sethi, G.; Tergaonkar, V. Potential pharmacological control of the NF-κB pathway. Trends Pharmacol. Sci., 2009, 30(6), 313-321.
[http://dx.doi.org/10.1016/j.tips.2009.03.004] [PMID: 19446347]
[58]
Cascão, R.; Fonseca, J.E.; Moita, L.F. Celastrol: A spectrum of treatment opportunities in chronic diseases. Front. Med. (Lausanne), 2017, 4, 69.
[http://dx.doi.org/10.3389/fmed.2017.00069] [PMID: 28664158]
[59]
Sethi, G.; Ahn, K.S.; Pandey, M.K.; Aggarwal, B.B. Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood, 2007, 109(7), 2727-2735.
[http://dx.doi.org/10.1182/blood-2006-10-050807] [PMID: 17110449]
[60]
Lassoued, W.; Murphy, D.; Tsai, J.; Oueslati, R.; Thurston, G.; Lee, W.M. Effect of VEGF and VEGF Trap on vascular endothelial cell signaling in tumors. Cancer Biol. Ther., 2010, 10(12), 1326-1333.
[http://dx.doi.org/10.4161/cbt.10.12.14009] [PMID: 21079419]
[61]
Yang, Y.; Cheng, S.; Liang, G.; Honggang, L.; Wu, H. Celastrol inhibits cancer metastasis by suppressing M2-like polarization of macrophages. Biochem. Biophys. Res. Commun., 2018, 503(2), 414-419.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.224] [PMID: 29614269]
[62]
Gong, M.; Zhuo, X.; Ma, A. STAT6 upregulation promotes M2 macrophage polarization to suppress atherosclerosis. Med. Sci. Monit. Basic Res., 2017, 23, 240-249.
[http://dx.doi.org/10.12659/MSMBR.904014] [PMID: 28615615]
[63]
Kim, Y.; Kang, H.; Jang, S.W.; Ko, J. Celastrol inhibits breast cancer cell invasion via suppression of NF-ĸB-mediated matrix metalloproteinase-9 expression. Cell. Physiol. Biochem., 2011, 28(2), 175-184.
[http://dx.doi.org/10.1159/000331729] [PMID: 21865725]
[64]
Mehner, C.; Hockla, A.; Miller, E.; Ran, S.; Radisky, D.C.; Radisky, E.S. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget, 2014, 5(9), 2736-2749.
[http://dx.doi.org/10.18632/oncotarget.1932] [PMID: 24811362]
[65]
Wu, J.; Ding, M.; Mao, N.; Wu, Y.; Wang, C.; Yuan, J.; Miao, X.; Li, J.; Shi, Z. Celastrol inhibits chondrosarcoma proliferation, migration and invasion through suppression CIP2A/c-MYC signaling pathway. J. Pharmacol. Sci., 2017, 134(1), 22-28.
[http://dx.doi.org/10.1016/j.jphs.2016.12.007] [PMID: 28522217]
[66]
Wang, X.N.; Wu, Q.; Yang, X.; Zhang, L.S.; Wu, Y.P.; Lu, C. Effects of Celastrol on growth inhibition of U937 leukemia cells through the regulation of the notch1/NF-kappaB signaling pathway in vitro. Chin. J. Cancer, 2010, 29(4), 385-390.
[http://dx.doi.org/10.5732/cjc.009.10526] [PMID: 20346213]
[67]
Wang, Y.; Wen, X.; Zhang, N.; Wang, L.; Hao, D.; Jiang, X.; He, G. Small-molecule compounds target paraptosis to improve cancer therapy. Biomed. Pharmacother., 2019, 118, 109203.
[http://dx.doi.org/10.1016/j.biopha.2019.109203] [PMID: 31306970]
[68]
Sha, M.; Ye, J.; Luan, Z.Y.; Guo, T.; Wang, B.; Huang, J.X. Celastrol induces cell cycle arrest by microRNA-21-mTOR-mediated inhibition p27 protein degradation in gastric cancer. Cancer Cell Int., 2015, 15, 101.
[http://dx.doi.org/10.1186/s12935-015-0256-3] [PMID: 26500453]
[69]
Li, X.; Wang, H.; Ding, J.; Nie, S.; Wang, L.; Zhang, L.; Ren, S. Celastrol strongly inhibits proliferation, migration and cancer stem cell properties through suppression of Pin1 in ovarian cancer cells. Eur. J. Pharmacol., 2019, 842, 146-156.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.043] [PMID: 30389635]
[70]
Zhu, B.; Wei, Y. Antitumor activity of celastrol by inhibition of proliferation, invasion, and migration in cholangiocarcinoma via PTEN/PI3K/Akt pathway. Cancer Med., 2020, 9(2), 783-796.
[http://dx.doi.org/10.1002/cam4.2719] [PMID: 31957323]
[71]
Yu, X.; Wang, Q.; Zhou, X.; Fu, C.; Cheng, M.; Guo, R.; Liu, H.; Zhang, B.; Dai, M. Celastrol negatively regulates cell invasion and migration ability of human osteosarcoma via downregulation of the PI3K/Akt/NF-κB signaling pathway in vitro. Oncol. Lett., 2016, 12(5), 3423-3428.
[http://dx.doi.org/10.3892/ol.2016.5049] [PMID: 27900015]
[72]
Zhu, Y.; Liu, X.; Zhao, P.; Zhao, H.; Gao, W.; Wang, L. Celastrol suppresses glioma vasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway. Front. Pharmacol., 2020, 11, 25.
[http://dx.doi.org/10.3389/fphar.2020.00025] [PMID: 32116702]
[73]
Gao, Y.; Zhou, S.; Pang, L.; Yang, J.; Li, H.J.; Huo, X.; Qian, S.Y. Celastrol suppresses nitric oxide synthases and the angiogenesis pathway in colorectal cancer. Free Radic. Res., 2019, 53(3), 324-334.
[http://dx.doi.org/10.1080/10715762.2019.1575512] [PMID: 30773944]
[74]
Kitzen, J.J.; de Jonge, M.J.; Lamers, C.H.; Eskens, F.A.; van der Biessen, D.; van Doorn, L.; Ter Steeg, J.; Brandely, M.; Puozzo, Ch.; Verweij, J. Phase I dose-escalation study of F60008, a novel apoptosis inducer, in patients with advanced solid tumours. Eur. J. Cancer, 2009, 45(10), 1764-1772.
[http://dx.doi.org/10.1016/j.ejca.2009.01.026] [PMID: 19251409]
[75]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[76]
Zhu, H.; Ding, W.J.; Wu, R.; Weng, Q.J.; Lou, J.S.; Jin, R.J.; Lu, W.; Yang, B.; He, Q.J. Synergistic anti-cancer activity by the combination of TRAIL/APO-2L and celastrol. Cancer Invest., 2010, 28(1), 23-32.
[http://dx.doi.org/10.3109/07357900903095664] [PMID: 19916747]
[77]
Medatwal, N.; Ansari, M.N.; Kumar, S.; Pal, S.; Jha, S.K.; Verma, P.; Rana, K.; Dasgupta, U.; Bajaj, A. Hydrogel-mediated delivery of celastrol and doxorubicin induces a synergistic effect on tumor regression via upregulation of ceramides. Nanoscale, 2020, 12(35), 18463-18475.
[http://dx.doi.org/10.1039/D0NR01066A] [PMID: 32941570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy