Review Article

基于 PCSK9 抑制的治疗方法:免疫疗法-观点

卷 29, 期 6, 2022

发表于: 12 January, 2022

页: [980 - 999] 页: 20

弟呕挨: 10.2174/0929867328666211027125245

价格: $65

Open Access Journals Promotions 2
摘要

前蛋白转化酶枯草杆菌蛋白酶/kexin 9 型 (PCSK9) 抑制剂 (PCSK9-I) 是降低心血管风险的新型治疗工具。这些药物通过降低对他汀类药物耐药/不耐受的高胆固醇血症患者的低密度脂蛋白胆固醇 (LDL-C) 起作用。目前临床批准和研究的 PCSK9-I 通常通过阻断血浆中的 PCSK9 活性或抑制其表达或肝细胞分泌来发挥作用。研究最广泛的方法是通过完全人源化单克隆抗体 (mAb)、evolocumab 和 alirocumab 破坏 PCSK9/LDL 受体 (LDLR) 相互作用,这些抗体已被批准用于治疗高胆固醇血症和动脉粥样硬化性心血管疾病 (CVD)。此外,一种称为 inclisiran 的小干扰 RNA 可特异性抑制肝细胞中 PCSK9 的表达,与 mAb 一样有效,但每年给药两次。由于这种治疗方法的高成本,已经对其他几种 PCSK9-I 进行了调查,包括基于肽的抗 PCSK9 疫苗和口服抗 PCSK9 小分子,它们正在临床前和 I 期临床研究中进行研究。有趣的是,与 mAb PCSK9-I 相比,抗 PCSK9 疫苗接种被认为是一种更广泛可行和更具成本效益的治疗工具,用于管理高胆固醇血症。本综述将讨论 PCSK9-I 在临床前和临床研究中的降低 LDL 和心脏保护作用,主要是基于免疫治疗的抑制剂,包括 mAb 和疫苗。

关键词: Alirocumab、evolocumab、免疫疗法、inclisiran、PCSK9、疫苗

« Previous
[1]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[2]
Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; Jukema, J.W.; Lecorps, G.; Mahaffey, K.W.; Moryusef, A.; Pordy, R.; Quintero, K.; Roe, M.T.; Sasiela, W.J.; Tamby, J.F.; Tricoci, P.; White, H.D.; Zeiher, A.M. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med., 2018, 379(22), 2097-2107.
[http://dx.doi.org/10.1056/NEJMoa1801174] [PMID: 30403574]
[3]
Reiner, Ž.; Hatamipour, M.; Banach, M.; Pirro, M.; Al-Rasadi, K.; Jamialahmadi, T.; Radenkovic, D.; Montecucco, F.; Sahebkar, A. Statins and the COVID-19 main protease: In silico evidence on direct interaction. Arch. Med. Sci., 2020, 16(3), 490-496.
[http://dx.doi.org/10.5114/aoms.2020.94655] [PMID: 32399094]
[4]
Sahebkar, A.; Serban, C.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.H.; Muntner, P.; Bittner, V.; Ray, K.K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.; Banach, M. Association between statin use and plasma D-dimer levels. A systematic review and meta-analysis of randomised controlled trials. Thromb. Haemost., 2015, 114(3), 546-557. Available from: https://pubmed.ncbi.nlm.nih.gov/26017749/
[PMID: 26017749]
[5]
Sahebkar, A.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.H.; Bittner, V.; Ray, K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.; Banach, M. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Systematic review and meta-analysis of randomised placebo-controlled trials. Thromb. Haemost., 2016, 115(3), 520-532.
[http://dx.doi.org/10.1160/th15-08-0620] [PMID: 26632869]
[6]
Serban, C.; Sahebkar, A.; Ursoniu, S.; Mikhailidis, D.P.; Rizzo, M.; Lip, G.Y.H.; Kees Hovingh, G.; Kastelein, J.J.; Kalinowski, L.; Rysz, J.; Banach, M. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci. Rep., 2015, 5, 9902.
[http://dx.doi.org/10.1038/srep09902] [PMID: 25970700]
[7]
Bahrami, A.; Bo, S.; Jamialahmadi, T.; Sahebkar, A. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms. Ageing Res. Rev., 2020, 58, 101024.
[http://dx.doi.org/10.1016/j.arr.2020.101024] [PMID: 32006687]
[8]
Mollazadeh, H.; Tavana, E.; Fanni, G.; Bo, S.; Banach, M.; Pirro, M.; von Haehling, S.; Jamialahmadi, T.; Sahebkar, A. Effects of statins on mitochondrial pathways. J. Cachexia Sarcopenia Muscle, 2021, 12(2), 237-251.
[http://dx.doi.org/10.1002/jcsm.12654] [PMID: 33511728]
[9]
Ferretti, G.; Bacchetti, T.; Sahebkar, A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog. Lipid Res., 2015, 60, 50-73.
[http://dx.doi.org/10.1016/j.plipres.2015.08.003] [PMID: 26416579]
[10]
Sahebkar, A.; Watts, G.F. New LDL-cholesterol lowering therapies: Pharmacology, clinical trials, and relevance to acute coronary syndromes. Clin. Ther., 2013, 35(8), 1082-1098.
[http://dx.doi.org/10.1016/j.clinthera.2013.06.019] [PMID: 23932550]
[11]
Rallidis, L.S.; Skoumas, I.; Liberopoulos, E.N.; Vlachopoulos, C.; Kiouri, E.; Koutagiar, I.; Anastasiou, G.; Kosmas, N.; Elisaf, M.S.; Tousoulis, D.; Iliodromitis, E. PCSK9 inhibitors in clinical practice: Novel directions and new experiences. Hellenic J. Cardiol., 2020, 61(4), 241-245.
[http://dx.doi.org/10.1016/j.hjc.2019.10.003] [PMID: 31783124]
[12]
Sahebkar, A.; Watts, G.F. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc. Drugs Ther., 2013, 27(6), 559-567.
[http://dx.doi.org/10.1007/s10557-013-6479-4] [PMID: 23913122]
[13]
Banach, M.; Patti, A.M.; Giglio, R.V.; Cicero, A.F.G.; Atanasov, A.G.; Bajraktari, G.; Bruckert, E.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; von Haehling, S.; Katsiki, N.; Langlois, M.; Latkovskis, G.; Mancini, G.B.J.; Mikhailidis, D.P.; Mitchenko, O.; Moriarty, P.M.; Muntner, P.; Nikolic, D.; Panagiotakos, D.B.; Paragh, G.; Paulweber, B.; Pella, D.; Pitsavos, C.; Reiner, Ž.; Rosano, G.M.C.; Rosenson, R.S.; Rysz, J.; Sahebkar, A.; Serban, M.C.; Vinereanu, D.; Vrablík, M.; Watts, G.F.; Wong, N.D.; Rizzo, M. The role of nutraceuticals in statin intolerant patients. J. Am. Coll. Cardiol., 2018, 72(1), 96-118.
[http://dx.doi.org/10.1016/j.jacc.2018.04.040] [PMID: 29957236]
[14]
Qian, Y-W.; Schmidt, R.J.; Zhang, Y.; Chu, S.; Lin, A.; Wang, H.; Wang, X.; Beyer, T.P.; Bensch, W.R.; Li, W.; Ehsani, M.E.; Lu, D.; Konrad, R.J.; Eacho, P.I.; Moller, D.E.; Karathanasis, S.K.; Cao, G. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J. Lipid Res., 2007, 48(7), 1488-1498.
[http://dx.doi.org/10.1194/jlr.M700071-JLR200] [PMID: 17449864]
[15]
Davis, C.G.; Goldstein, J.L.; Südhof, T.C.; Anderson, R.G.; Russell, D.W.; Brown, M.S. Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature, 1987, 326(6115), 760-765.
[http://dx.doi.org/10.1038/326760a0] [PMID: 3494949]
[16]
Rudenko, G.; Henry, L.; Henderson, K.; Ichtchenko, K.; Brown, M.S.; Goldstein, J.L.; Deisenhofer, J. Structure of the LDL receptor extracellular domain at endosomal pH. Science, 2002, 298(5602), 2353-2358.
[http://dx.doi.org/10.1126/science.1078124] [PMID: 12459547]
[17]
van der Westhuyzen, D.R.; Stein, M.L.; Henderson, H.E.; Marais, A.D.; Fourie, A.M.; Coetzee, G.A. Deletion of two growth-factor repeats from the low-density-lipoprotein receptor accelerates its degradation. Biochem. J., 1991, 277(Pt 3), 677-682.
[http://dx.doi.org/10.1042/bj2770677] [PMID: 1872803]
[18]
Zhang, D-W.; Lagace, T.A.; Garuti, R.; Zhao, Z.; McDonald, M.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem., 2007, 282(25), 18602-18612.
[http://dx.doi.org/10.1074/jbc.M702027200] [PMID: 17452316]
[19]
Kwon, H.J.; Lagace, T.A.; McNutt, M.C.; Horton, J.D.; Deisenhofer, J. Molecular basis for LDL receptor recognition by PCSK9. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 1820-1825.
[http://dx.doi.org/10.1073/pnas.0712064105] [PMID: 18250299]
[20]
Abifadel, M.; Varret, M.; Rabès, J-P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; Derré, A.; Villéger, L.; Farnier, M.; Beucler, I.; Bruckert, E.; Chambaz, J.; Chanu, B.; Lecerf, J.M.; Luc, G.; Moulin, P.; Weissenbach, J.; Prat, A.; Krempf, M.; Junien, C.; Seidah, N.G.; Boileau, C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet., 2003, 34(2), 154-156.
[http://dx.doi.org/10.1038/ng1161] [PMID: 12730697]
[21]
Cohen, J.; Pertsemlidis, A.; Kotowski, I.K.; Graham, R.; Garcia, C.K.; Hobbs, H.H. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet., 2005, 37(2), 161-165.
[http://dx.doi.org/10.1038/ng1509] [PMID: 15654334]
[22]
Cohen, J.C.; Boerwinkle, E.; Mosley, T.H., Jr; Hobbs, H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med., 2006, 354(12), 1264-1272.
[http://dx.doi.org/10.1056/NEJMoa054013] [PMID: 16554528]
[23]
Zhao, Z.; Tuakli-Wosornu, Y.; Lagace, T.A.; Kinch, L.; Grishin, N.V.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet., 2006, 79(3), 514-523.
[http://dx.doi.org/10.1086/507488] [PMID: 16909389]
[24]
Hooper, A.J.; Marais, A.D.; Tanyanyiwa, D.M.; Burnett, J.R. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis, 2007, 193(2), 445-448.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.08.039] [PMID: 16989838]
[25]
Horton, J.D.; Cohen, J.C.; Hobbs, H.H. PCSK9: A convertase that coordinates LDL catabolism. J. Lipid Res., 2009, 50(Suppl.), S172-S177.
[http://dx.doi.org/10.1194/jlr.R800091-JLR200] [PMID: 19020338]
[26]
Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab., 2009, 94(7), 2537-2543.
[http://dx.doi.org/10.1210/jc.2009-0141] [PMID: 19351729]
[27]
Awan, Z.; Seidah, N.G.; MacFadyen, J.G.; Benjannet, S.; Chasman, D.I.; Ridker, P.M.; Genest, J. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin. Chem., 2012, 58(1), 183-189.
[http://dx.doi.org/10.1373/clinchem.2011.172932] [PMID: 22065156]
[28]
Dubuc, G.; Chamberland, A.; Wassef, H.; Davignon, J.; Seidah, N.G.; Bernier, L.; Prat, A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol., 2004, 24(8), 1454-1459.
[http://dx.doi.org/10.1161/01.ATV.0000134621.14315.43] [PMID: 15178557]
[29]
Poirier, S.; Mayer, G.; Benjannet, S.; Bergeron, E.; Marcinkiewicz, J.; Nassoury, N.; Mayer, H.; Nimpf, J.; Prat, A.; Seidah, N.G. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem., 2008, 283(4), 2363-2372.
[http://dx.doi.org/10.1074/jbc.M708098200] [PMID: 18039658]
[30]
Roubtsova, A.; Munkonda, M.N.; Awan, Z.; Marcinkiewicz, J.; Chamberland, A.; Lazure, C.; Cianflone, K.; Seidah, N.G.; Prat, A. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler. Thromb. Vasc. Biol., 2011, 31(4), 785-791.
[http://dx.doi.org/10.1161/ATVBAHA.110.220988] [PMID: 21273557]
[31]
Tavori, H.; Giunzioni, I.; Predazzi, I.M.; Plubell, D.; Shivinsky, A.; Miles, J.; Devay, R.M.; Liang, H.; Rashid, S.; Linton, M.F.; Fazio, S. Human PCSK9 promotes hepatic lipogenesis and atherosclerosis development via apoE- and LDLR-mediated mechanisms. Cardiovasc. Res., 2016, 110(2), 268-278.
[http://dx.doi.org/10.1093/cvr/cvw053] [PMID: 26980204]
[32]
Canuel, M.; Sun, X.; Asselin, M-C.; Paramithiotis, E.; Prat, A.; Seidah, N.G. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One, 2013, 8(5), e64145.
[http://dx.doi.org/10.1371/journal.pone.0064145] [PMID: 23675525]
[33]
Demers, A.; Samami, S.; Lauzier, B.; Des Rosiers, C.; Ngo Sock, E.T.; Ong, H.; Mayer, G. PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arterioscler. Thromb. Vasc. Biol., 2015, 35(12), 2517-2525.
[http://dx.doi.org/10.1161/ATVBAHA.115.306032] [PMID: 26494228]
[34]
Schulz, R.; Schlüter, K-D. PCSK9 targets important for lipid metabolism. Clin. Res. Cardiol. Suppl., 2017, 12(Suppl. 1), 2-11.
[http://dx.doi.org/10.1007/s11789-017-0085-0] [PMID: 28176216]
[35]
Cariou, B.; Si-Tayeb, K.; Le May, C. Role of PCSK9 beyond liver involvement. Curr. Opin. Lipidol., 2015, 26(3), 155-161.
[http://dx.doi.org/10.1097/MOL.0000000000000180] [PMID: 25887680]
[36]
Zaid, A.; Roubtsova, A.; Essalmani, R.; Marcinkiewicz, J.; Chamberland, A.; Hamelin, J.; Tremblay, M.; Jacques, H.; Jin, W.; Davignon, J.; Seidah, N.G.; Prat, A. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology, 2008, 48(2), 646-654.
[http://dx.doi.org/10.1002/hep.22354] [PMID: 18666258]
[37]
Da Dalt, L.; Ruscica, M.; Bonacina, F.; Balzarotti, G.; Dhyani, A.; Di Cairano, E.; Baragetti, A.; Arnaboldi, L.; De Metrio, S.; Pellegatta, F.; Grigore, L.; Botta, M.; Macchi, C.; Uboldi, P.; Perego, C.; Catapano, A.L.; Norata, G.D. PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur. Heart J., 2019, 40(4), 357-368.
[http://dx.doi.org/10.1093/eurheartj/ehy357] [PMID: 29982592]
[38]
Langhi, C.; Le May, C.; Gmyr, V.; Vandewalle, B.; Kerr-Conte, J.; Krempf, M.; Pattou, F.; Costet, P.; Cariou, B. PCSK9 is expressed in pancreatic δ-cells and does not alter insulin secretion. Biochem. Biophys. Res. Commun., 2009, 390(4), 1288-1293.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.138] [PMID: 19878649]
[39]
Kysenius, K.; Muggalla, P.; Mätlik, K.; Arumäe, U.; Huttunen, H.J. PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell. Mol. Life Sci., 2012, 69(11), 1903-1916.
[http://dx.doi.org/10.1007/s00018-012-0977-6] [PMID: 22481440]
[40]
Jonas, M.C.; Costantini, C.; Puglielli, L. PCSK9 is required for the disposal of non-acetylated intermediates of the nascent membrane protein BACE1. EMBO Rep., 2008, 9(9), 916-922.
[http://dx.doi.org/10.1038/embor.2008.132] [PMID: 18660751]
[41]
Elbitar, S.; Khoury, P.E.; Ghaleb, Y.; Rabès, J-P.; Varret, M.; Seidah, N.G.; Boileau, C.; Abifadel, M. Proprotein convertase subtilisin / kexin 9 (PCSK9) inhibitors and the future of dyslipidemia therapy: An updated patent review (2011-2015). Expert Opin. Ther. Pat., 2016, 26(12), 1377-1392.
[http://dx.doi.org/10.1080/13543776.2016.1206080] [PMID: 27359211]
[42]
Nishikido, T.; Ray, K.K. Non-antibody Approaches to proprotein convertase Subtilisin Kexin 9 inhibition: siRNA, antisense oligonucleotides, adnectins, vaccination, and new attempts at small-molecule inhibitors based on new discoveries. Front. Cardiovasc. Med., 2019, 5, 199.
[http://dx.doi.org/10.3389/fcvm.2018.00199] [PMID: 30761308]
[43]
Catapano, A.L.; Pirillo, A.; Norata, G.D. New pharmacological approaches to target PCSK9. Curr. Atheroscler. Rep., 2020, 22(7), 24.
[http://dx.doi.org/10.1007/s11883-020-00847-7] [PMID: 32495301]
[44]
Dong, B.; Li, H.; Singh, A.B.; Cao, A.; Liu, J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway. J. Biol. Chem., 2015, 290(7), 4047-4058.
[http://dx.doi.org/10.1074/jbc.M114.597229] [PMID: 25540198]
[45]
Wang, X.; Chen, X.; Zhang, X.; Su, C.; Yang, M.; He, W.; Du, Y.; Si, S.; Wang, L.; Hong, B. A small-molecule inhibitor of PCSK9 transcription ameliorates atherosclerosis through the modulation of FoxO1/3 and HNF1α. EBioMedicine, 2020, 52, 102650.
[http://dx.doi.org/10.1016/j.ebiom.2020.102650] [PMID: 32058941]
[46]
Sahebkar, A.; Momtazi-Borojeni, A.A.; Banach, M. PCSK9 vaccine: So near, yet so far! Eur. Heart J., 2021, ehab299.
[http://dx.doi.org/10.1093/eurheartj/ehab299] [PMID: 34151957]
[47]
Katzmann, J.L.; Gouni-Berthold, I.; Laufs, U. PCSK9 inhibition: Insights from clinical trials and future prospects. Front. Physiol., 2020, 11, 595819.
[http://dx.doi.org/10.3389/fphys.2020.595819] [PMID: 33304274]
[48]
Ridker, P.M.; Tardif, J-C.; Amarenco, P.; Duggan, W.; Glynn, R.J.; Jukema, J.W.; Kastelein, J.J.P.; Kim, A.M.; Koenig, W.; Nissen, S.; Revkin, J.; Rose, L.M.; Santos, R.D.; Schwartz, P.F.; Shear, C.L.; Yunis, C. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N. Engl. J. Med., 2017, 376(16), 1517-1526.
[http://dx.doi.org/10.1056/NEJMoa1614062] [PMID: 28304227]
[49]
Sabatine, M.S.; Giugliano, R.P.; Wiviott, S.D.; Raal, F.J.; Blom, D.J.; Robinson, J.; Ballantyne, C.M.; Somaratne, R.; Legg, J.; Wasserman, S.M.; Scott, R.; Koren, M.J.; Stein, E.A. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med., 2015, 372(16), 1500-1509.
[http://dx.doi.org/10.1056/NEJMoa1500858] [PMID: 25773607]
[50]
Robinson, J.G.; Farnier, M.; Krempf, M.; Bergeron, J.; Luc, G.; Averna, M.; Stroes, E.S.; Langslet, G.; Raal, F.J.; El Shahawy, M.; Koren, M.J.; Lepor, N.E.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Kastelein, J.J. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med., 2015, 372(16), 1489-1499.
[http://dx.doi.org/10.1056/NEJMoa1501031] [PMID: 25773378]
[51]
Karatasakis, A.; Danek, B.A.; Karacsonyi, J.; Rangan, B.V.; Roesle, M.K.; Knickelbine, T.; Miedema, M.D.; Khalili, H.; Ahmad, Z.; Abdullah, S.; Banerjee, S.; Brilakis, E.S. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: A meta-analysis of 35 randomized controlled trials. J. Am. Heart Assoc., 2017, 6(12), e006910.
[http://dx.doi.org/10.1161/JAHA.117.006910] [PMID: 29223954]
[52]
White, C.M. Therapeutic potential and critical analysis of the PCSK9 monoclonal antibodies evolocumab and alirocumab. Ann. Pharmacother., 2015, 49(12), 1327-1335.
[http://dx.doi.org/10.1177/1060028015608487] [PMID: 26424774]
[53]
Roth, E.M.; Moriarty, P.M.; Bergeron, J.; Langslet, G.; Manvelian, G.; Zhao, J.; Baccara-Dinet, M.T.; Rader, D.J. A phase III randomized trial evaluating alirocumab 300mg every 4 weeks as monotherapy or add-on to statin: ODYSSEY CHOICE I. Atherosclerosis, 2016, 254, 254-262.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.08.043] [PMID: 27639753]
[54]
Scherer, N.; Dings, C.; Böhm, M.; Laufs, U.; Lehr, T. Alternative treatment regimens with the PCSK9 inhibitors alirocumab and evolocumab: A pharmacokinetic and pharmacodynamic modeling approach. J. Clin. Pharmacol., 2017, 57(7), 846-854.
[http://dx.doi.org/10.1002/jcph.866] [PMID: 28263403]
[55]
Blom, D.J.; Harada-Shiba, M.; Rubba, P.; Gaudet, D.; Kastelein, J.J.P.; Charng, M-J.; Pordy, R.; Donahue, S.; Ali, S.; Dong, Y.; Khilla, N.; Banerjee, P.; Baccara-Dinet, M.; Rosenson, R.S. Efficacy and safety of alirocumab in adults with homozygous familial hypercholesterolemia: The ODYSSEY HoFH trial. J. Am. Coll. Cardiol., 2020, 76(2), 131-142.
[http://dx.doi.org/10.1016/j.jacc.2020.05.027] [PMID: 32646561]
[56]
Moşteoru, S.; Gaiţă, D.; Banach, M. An update on PCSK9 inhibitors- pharmacokinetics, drug interactions, and toxicity. Expert Opin. Drug Metab. Toxicol., 2020, 16(12), 1199-1205.
[http://dx.doi.org/10.1080/17425255.2020.1828343] [PMID: 32966148]
[57]
Koren, M.J.; Lundqvist, P.; Bolognese, M.; Neutel, J.M.; Monsalvo, M.L.; Yang, J.; Kim, J.B.; Scott, R.; Wasserman, S.M.; Bays, H. Anti-PCSK9 monotherapy for hypercholesterolemia: The MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J. Am. Coll. Cardiol., 2014, 63(23), 2531-2540.
[http://dx.doi.org/10.1016/j.jacc.2014.03.018] [PMID: 24691094]
[58]
Robinson, J.G.; Nedergaard, B.S.; Rogers, W.J.; Fialkow, J.; Neutel, J.M.; Ramstad, D.; Somaratne, R.; Legg, J.C.; Nelson, P.; Scott, R.; Wasserman, S.M.; Weiss, R. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA, 2014, 311(18), 1870-1882.
[http://dx.doi.org/10.1001/jama.2014.4030] [PMID: 24825642]
[59]
Blom, D.J.; Hala, T.; Bolognese, M.; Lillestol, M.J.; Toth, P.D.; Burgess, L.; Ceska, R.; Roth, E.; Koren, M.J.; Ballantyne, C.M.; Monsalvo, M.L.; Tsirtsonis, K.; Kim, J.B.; Scott, R.; Wasserman, S.M.; Stein, E.A. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N. Engl. J. Med., 2014, 370(19), 1809-1819.
[http://dx.doi.org/10.1056/NEJMoa1316222] [PMID: 24678979]
[60]
Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; Wasserman, S.M.; Scott, R.; Ungi, I.; Podolec, J.; Ophuis, A.O.; Cornel, J.H.; Borgman, M.; Brennan, D.M.; Nissen, S.E. Effect of evolocumab on progression of coronary disease in statin-treated patients: The glagov randomized clinical trial. JAMA, 2016, 316(22), 2373-2384.
[http://dx.doi.org/10.1001/jama.2016.16951] [PMID: 27846344]
[61]
Koskinas, K.C.; Windecker, S.; Pedrazzini, G.; Mueller, C.; Cook, S.; Matter, C.M.; Muller, O.; Häner, J.; Gencer, B.; Crljenica, C.; Amini, P.; Deckarm, O.; Iglesias, J.F.; Räber, L.; Heg, D.; Mach, F. Evolocumab for early reduction of LDL cholesterol levels in patients with acute coronary syndromes (EVOPACS). J. Am. Coll. Cardiol., 2019, 74(20), 2452-2462.
[http://dx.doi.org/10.1016/j.jacc.2019.08.010] [PMID: 31479722]
[62]
Stroes, E.; Colquhoun, D.; Sullivan, D.; Civeira, F.; Rosenson, R.S.; Watts, G.F.; Bruckert, E.; Cho, L.; Dent, R.; Knusel, B.; Xue, A.; Scott, R.; Wasserman, S.M.; Rocco, M. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J. Am. Coll. Cardiol., 2014, 63(23), 2541-2548.
[http://dx.doi.org/10.1016/j.jacc.2014.03.019] [PMID: 24694531]
[63]
Nissen, S.E.; Stroes, E.; Dent-Acosta, R.E.; Rosenson, R.S.; Lehman, S.J.; Sattar, N.; Preiss, D.; Bruckert, E.; Ceška, R.; Lepor, N.; Ballantyne, C.M.; Gouni-Berthold, I.; Elliott, M.; Brennan, D.M.; Wasserman, S.M.; Somaratne, R.; Scott, R.; Stein, E.A. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA, 2016, 315(15), 1580-1590.
[http://dx.doi.org/10.1001/jama.2016.3608] [PMID: 27039291]
[64]
Mannarino, M.R.; Sahebkar, A.; Bianconi, V.; Serban, M.C.; Banach, M.; Pirro, M. PCSK9 and neurocognitive function: Should it be still an issue after FOURIER and EBBINGHAUS results? J. Clin. Lipidol., 2018, 12(5), 1123-1132.
[http://dx.doi.org/10.1016/j.jacl.2018.05.012] [PMID: 30318062]
[65]
Koren, M.J.; Sabatine, M.S.; Giugliano, R.P.; Langslet, G.; Wiviott, S.D.; Ruzza, A.; Ma, Y.; Hamer, A.W.; Wasserman, S.M.; Raal, F.J. Long-term efficacy and safety of evolocumab in patients with hypercholesterolemia. J. Am. Coll. Cardiol., 2019, 74(17), 2132-2146.
[http://dx.doi.org/10.1016/j.jacc.2019.08.1024] [PMID: 31648705]
[66]
Raal, F.J.; Stein, E.A.; Dufour, R.; Turner, T.; Civeira, F.; Burgess, L.; Langslet, G.; Scott, R.; Olsson, A.G.; Sullivan, D.; Hovingh, G.K.; Cariou, B.; Gouni-Berthold, I.; Somaratne, R.; Bridges, I.; Scott, R.; Wasserman, S.M.; Gaudet, D. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): A randomised, double-blind, placebo-controlled trial. Lancet, 2015, 385(9965), 331-340.
[http://dx.doi.org/10.1016/S0140-6736(14)61399-4] [PMID: 25282519]
[67]
Santos, R.D.; Ruzza, A.; Hovingh, G.K.; Wiegman, A.; Mach, F.; Kurtz, C.E.; Hamer, A.; Bridges, I.; Bartuli, A.; Bergeron, J.; Szamosi, T.; Santra, S.; Stefanutti, C.; Descamps, O.S.; Greber-Platzer, S.; Luirink, I.; Kastelein, J.J.P.; Gaudet, D. Evolocumab in pediatric heterozygous familial hypercholesterolemia. N. Engl. J. Med., 2020, 383(14), 1317-1327.
[http://dx.doi.org/10.1056/NEJMoa2019910] [PMID: 32865373]
[68]
Raal, F.J.; Honarpour, N.; Blom, D.J.; Hovingh, G.K.; Xu, F.; Scott, R.; Wasserman, S.M.; Stein, E.A. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): A randomised, double-blind, placebo-controlled trial. Lancet, 2015, 385(9965), 341-350.
[http://dx.doi.org/10.1016/S0140-6736(14)61374-X] [PMID: 25282520]
[69]
Raal, F.J.; Hovingh, G.K.; Blom, D.; Santos, R.D.; Harada-Shiba, M.; Bruckert, E.; Couture, P.; Soran, H.; Watts, G.F.; Kurtz, C.; Honarpour, N.; Tang, L.; Kasichayanula, S.; Wasserman, S.M.; Stein, E.A. Long-term treatment with evolocumab added to conventional drug therapy, with or without apheresis, in patients with homozygous familial hypercholesterolaemia: An interim subset analysis of the open-label TAUSSIG study. Lancet Diabetes Endocrinol., 2017, 5(4), 280-290.
[http://dx.doi.org/10.1016/S2213-8587(17)30044-X] [PMID: 28215937]
[70]
Santos, R.D.; Stein, E.A.; Hovingh, G.K.; Blom, D.J.; Soran, H.; Watts, G.F.; López, J.A.G.; Bray, S.; Kurtz, C.E.; Hamer, A.W.; Raal, F.J. Long-term evolocumab in patients with familial hypercholesterolemia. J. Am. Coll. Cardiol., 2020, 75(6), 565-574.
[http://dx.doi.org/10.1016/j.jacc.2019.12.020] [PMID: 32057369]
[71]
Roth, E.M.; Taskinen, M-R.; Ginsberg, H.N.; Kastelein, J.J.; Colhoun, H.M.; Robinson, J.G.; Merlet, L.; Pordy, R.; Baccara-Dinet, M.T. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24 week, double-blind, randomized Phase 3 trial. Int. J. Cardiol., 2014, 176(1), 55-61.
[http://dx.doi.org/10.1016/j.ijcard.2014.06.049] [PMID: 25037695]
[72]
Kereiakes, D.J.; Robinson, J.G.; Cannon, C.P.; Lorenzato, C.; Pordy, R.; Chaudhari, U. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: The ODYSSEY COMBO I study. Am. Heart J., 2015, 169(6), 906-915.
[73]
Leiter, L.A.; Cariou, B.; Müller-Wieland, D.; Colhoun, H.M.; Del Prato, S.; Tinahones, F.J.; Ray, K.K.; Bujas-Bobanovic, M.; Domenger, C.; Mandel, J.; Samuel, R.; Henry, R.R. Efficacy and safety of alirocumab in insulin-treated individuals with type 1 or type 2 diabetes and high cardiovascular risk: The ODYSSEY DM-INSULIN randomized trial. Diabetes Obes. Metab., 2017, 19(12), 1781-1792.
[http://dx.doi.org/10.1111/dom.13114] [PMID: 28905478]
[74]
Moriarty, P.M.; Thompson, P.D.; Cannon, C.P.; Guyton, J.R.; Bergeron, J.; Zieve, F.J.; Bruckert, E.; Jacobson, T.A.; Kopecky, S.L.; Baccara-Dinet, M.T.; Du, Y.; Pordy, R.; Gipe, D.A. Efficacy and safety of alirocumab vs. ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J. Clin. Lipidol., 2015, 9(6), 758-769.
[http://dx.doi.org/10.1016/j.jacl.2015.08.006] [PMID: 26687696]
[75]
Kastelein, J.J.; Ginsberg, H.N.; Langslet, G.; Hovingh, G.K.; Ceska, R.; Dufour, R.; Blom, D.; Civeira, F.; Krempf, M.; Lorenzato, C.; Zhao, J.; Pordy, R.; Baccara-Dinet, M.T.; Gipe, D.A.; Geiger, M.J.; Farnier, M. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur. Heart J., 2015, 36(43), 2996-3003.
[http://dx.doi.org/10.1093/eurheartj/ehv370] [PMID: 26330422]
[76]
van Bruggen, F.H.; Nijhuis, G.B.J.; Zuidema, S.U.; Luijendijk, H. Serious adverse events and deaths in PCSK9 inhibitor trials reported on ClinicalTrials.gov: A systematic review. Expert Rev. Clin. Pharmacol., 2020, 13(7), 787-796.
[http://dx.doi.org/10.1080/17512433.2020.1787832] [PMID: 32597252]
[77]
Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; Goldberg, R.; Heidenreich, P.A.; Hlatky, M.A.; Jones, D.W.; Lloyd-Jones, D.; Lopez-Pajares, N.; Ndumele, C.E.; Orringer, C.E.; Peralta, C.A.; Saseen, J.J.; Smith, S.C., Jr; Sperling, L.; Virani, S.S.; Yeboah, J. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association TaskForceonClinical Practice Guidelines. J. Am. Coll. Cardiol., 2019, 73(24), e285-e350.
[http://dx.doi.org/10.1016/j.jacc.2018.11.003] [PMID: 30423393]
[78]
Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M.R.; Tokgozoglu, L.; Wiklund, O. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[79]
Kazi, D.S.; Moran, A.E.; Coxson, P.G.; Penko, J.; Ollendorf, D.A.; Pearson, S.D.; Tice, J.A.; Guzman, D.; Bibbins-Domingo, K. Cost-effectiveness of PCSK9 inhibitor therapy in patients with heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease. JAMA, 2016, 316(7), 743-753.
[http://dx.doi.org/10.1001/jama.2016.11004] [PMID: 27533159]
[80]
Kazi, D.S.; Penko, J.; Coxson, P.G.; Guzman, D.; Wei, P.C.; Bibbins-Domingo, K. Cost-effectiveness of alirocumab: A just-in-time analysis based on the ODYSSEY outcomes trial. Ann. Intern. Med., 2019, 170(4), 221-229.
[http://dx.doi.org/10.7326/M18-1776] [PMID: 30597485]
[81]
Kazi, D.S.; Penko, J.; Coxson, P.G.; Moran, A.E.; Ollendorf, D.A.; Tice, J.A.; Bibbins-Domingo, K. Updated cost-effectiveness analysis of PCSK9 inhibitors based on the results of the FOURIER trial. JAMA, 2017, 318(8), 748-750.
[http://dx.doi.org/10.1001/jama.2017.9924] [PMID: 28829863]
[82]
Lee, T.C.; Kaouache, M.; Grover, S.A. Evaluation of the cost-effectiveness of evolocumab in the FOURIER study: A Canadian analysis. CMAJ Open, 2018, 6(2), E162-E167.
[http://dx.doi.org/10.9778/cmajo.20180011] [PMID: 29622685]
[83]
Brunetti, N.D.; De Gennaro, L.; Tricarico, L.; Caldarola, P. Budget impact analysis of PCSK9 inhibitors costs from a community payers’ perspective in Apulia, Italy. Open Heart, 2019, 6(2), e001018.
[http://dx.doi.org/10.1136/openhrt-2019-001018] [PMID: 31413843]
[84]
Dressel, A.; Schmidt, B.; Schmidt, N.; Laufs, U.; Fath, F.; Chapman, M.J.; Grammer, T.B.; März, W. Cost effectiveness of lifelong therapy with PCSK9 inhibitors for lowering cardiovascular events in patients with stable coronary artery disease: Insights from the Ludwigshafen Risk and Cardiovascular Health cohort. Vascul. Pharmacol., 2019, 120, 106566.
[http://dx.doi.org/10.1016/j.vph.2019.106566] [PMID: 31207358]
[85]
Bhatt, D.L.; Briggs, A.H.; Reed, S.D.; Annemans, L.; Szarek, M.; Bittner, V.A.; Diaz, R.; Goodman, S.G.; Harrington, R.A.; Higuchi, K.; Joulain, F.; Jukema, J.W.; Li, Q.H.; Mahaffey, K.W.; Sanchez, R.J.; Roe, M.T.; Lopes, R.D.; White, H.D.; Zeiher, A.M.; Schwartz, G.G.; Gabriel Steg, P. Cost-effectiveness of alirocumab in patients with acute coronary syndromes: The ODYSSEY OUTCOMES trial. J. Am. Coll. Cardiol., 2020, 75(18), 2297-2308.
[http://dx.doi.org/10.1016/j.jacc.2020.03.029] [PMID: 32381160]
[86]
Bartelds, G.M.; Krieckaert, C.L.; Nurmohamed, M.T.; van Schouwenburg, P.A.; Lems, W.F.; Twisk, J.W.; Dijkmans, B.A.; Aarden, L.; Wolbink, G.J. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA, 2011, 305(14), 1460-1468.
[http://dx.doi.org/10.1001/jama.2011.406] [PMID: 21486979]
[87]
Norata, G.D.; Tibolla, G.; Catapano, A.L. Gene silencing approaches for the management of dyslipidaemia. Trends Pharmacol. Sci., 2013, 34(4), 198-205.
[http://dx.doi.org/10.1016/j.tips.2013.01.010] [PMID: 23485362]
[88]
Watts, J.K.; Corey, D.R. Silencing disease genes in the laboratory and the clinic. J. Pathol., 2012, 226(2), 365-379.
[http://dx.doi.org/10.1002/path.2993] [PMID: 22069063]
[89]
Fitzgerald, K.; White, S.; Borodovsky, A.; Bettencourt, B.R.; Strahs, A.; Clausen, V.; Wijngaard, P.; Horton, J.D.; Taubel, J.; Brooks, A.; Fernando, C.; Kauffman, R.S.; Kallend, D.; Vaishnaw, A.; Simon, A. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med., 2017, 376(1), 41-51.
[http://dx.doi.org/10.1056/NEJMoa1609243] [PMID: 27959715]
[90]
Peters, D.T.; Henderson, C.A.; Warren, C.R.; Friesen, M.; Xia, F.; Becker, C.E.; Musunuru, K.; Cowan, C.A. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells. Development, 2016, 143(9), 1475-1481.
[http://dx.doi.org/10.1242/dev.132209] [PMID: 27143754]
[91]
Khvorova, A. Oligonucleotide therapeutics—a new class of cholesterol-lowering drugs. N. Engl. J. Med., 2017, 376(1), 4-7.
[http://dx.doi.org/10.1056/NEJMp1614154] [PMID: 28052224]
[92]
Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.; Turner, T.; Visseren, F.L.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440.
[http://dx.doi.org/10.1056/NEJMoa1615758] [PMID: 28306389]
[93]
Ray, K.; Stoekenbroek, R.M.; Kallend, D.; Leiter, L.; Landmesser, U.; Scott-Wright, R. Effect of an RNAi therapeutic targeting PCSK9 on atherogenic lipoproteins: Pre-specified secondary endpoints in orion 1. Atherosclerosis, 2018, 275, e9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.06.911]
[94]
Ray, K.K.; Stoekenbroek, R.M.; Kallend, D.; Nishikido, T.; Leiter, L.A.; Landmesser, U.; Wright, R.S.; Wijngaard, P.L.J.; Kastelein, J.J.P. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol., 2019, 4(11), 1067-1075.
[http://dx.doi.org/10.1001/jamacardio.2019.3502] [PMID: 31553410]
[95]
Raal, F.J.; Kallend, D.; Ray, K.K.; Turner, T.; Koenig, W.; Wright, R.S.; Wijngaard, P.L.J.; Curcio, D.; Jaros, M.J.; Leiter, L.A.; Kastelein, J.J.P. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N. Engl. J. Med., 2020, 382(16), 1520-1530.
[http://dx.doi.org/10.1056/NEJMoa1913805] [PMID: 32197277]
[96]
Raal, F.; Lepor, N.; Kallend, D.; Stoekenbroek, R.; Wijngaard, P.; Hovingh, G. Inclisiran durably lowers Ldl-C And Pcsk9 expression in subjects with homozygous familial hypercholesterolaemia: the Orion-2 pilot study. Atherosclerosis, 2019, 287, e7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.06.018]
[97]
Laina, A.; Gatsiou, A.; Georgiopoulos, G.; Stamatelopoulos, K.; Stellos, K. RNA therapeutics in cardiovascular precision medicine. Front. Physiol., 2018, 9, 953.
[http://dx.doi.org/10.3389/fphys.2018.00953] [PMID: 30090066]
[98]
Frazier, K.S. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol. Pathol., 2015, 43(1), 78-89.
[http://dx.doi.org/10.1177/0192623314551840] [PMID: 25385330]
[99]
Landmesser, U.; Haghikia, A.; Leiter, L.A.; Wright, R.S.; Kallend, D.; Wijngaard, P. Effect of inclisiran, the siRNA against PCSK9, on platelets, immune cells and immunological biomarkers-a pre-specified analysis from ORION-1. Cardiovasc. Res., 2020, 117(1), 284-291.
[100]
Chandler, P.G.; Buckle, A.M. Development and differentiation in monobodies based on the fibronectin type 3 domain. Cells, 2020, 9(3), 610.
[http://dx.doi.org/10.3390/cells9030610] [PMID: 32143310]
[101]
Mitchell, T.; Chao, G.; Sitkoff, D.; Lo, F.; Monshizadegan, H.; Meyers, D.; Low, S.; Russo, K.; DiBella, R.; Denhez, F.; Gao, M.; Myers, J.; Duke, G.; Witmer, M.; Miao, B.; Ho, S.P.; Khan, J.; Parker, R.A. Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J. Pharmacol. Exp. Ther., 2014, 350(2), 412-424.
[http://dx.doi.org/10.1124/jpet.114.214221] [PMID: 24917546]
[102]
Stein, E.A.; Kasichayanula, S.; Turner, T.; Kranz, T.; Arumugam, U.; Biernat, L. LDL cholesterol reduction with BMS-962476, an adnectin inhibitor of PCSK9: Results of a single ascending dose study. J. Am. Coll. Cardiol., 2014, 63(12S), A1372.
[103]
Stein, E.A.; Turner, T.; Biernat, L.; Dimova, D.; Zhou, R.; Dai, M. Low density lipoprotein cholesterol reduction and safety with Lib003, an anti-proprotein convertase subtilisin/kexin Type 9 fusion protein: Results of a randomized, double-blind, placebo-controlled, single ascending dose study. J. Am. Coll. Cardiol., 2019, 73(9_Supplement_1), 1714.
[104]
Stein, E.; Toth, P.; Butcher, M.; Kereiakes, D.; Magnu, P.; Bays, H. Safety, tolerability and LDL-C reduction with a novel anti-PCSK9 recombinant fusion protein (LIB003): results of a randomized, double-blind, placebo-controlled, phase 2 study. Atherosclerosis, 2019, 287, e7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.06.019]
[105]
Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; Watts, G.F.; Borén, J.; Fazio, S.; Horton, J.D.; Masana, L.; Nicholls, S.J.; Nordestgaard, B.G.; van de Sluis, B.; Taskinen, M.R.; Tokgözoglu, L.; Landmesser, U.; Laufs, U.; Wiklund, O.; Stock, J.K.; Chapman, M.J.; Catapano, A.L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J., 2017, 38(32), 2459-2472.
[http://dx.doi.org/10.1093/eurheartj/ehx144] [PMID: 28444290]
[106]
Ference, B.A.; Yoo, W.; Alesh, I.; Mahajan, N.; Mirowska, K.K.; Mewada, A.; Kahn, J.; Afonso, L.; Williams, K.A., Sr; Flack, J.M. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: A Mendelian randomization analysis. J. Am. Coll. Cardiol., 2012, 60(25), 2631-2639.
[http://dx.doi.org/10.1016/j.jacc.2012.09.017] [PMID: 23083789]
[107]
Packard, C.J.; Weintraub, W.S.; Laufs, U. New metrics needed to visualize the long-term impact of early LDL-C lowering on the cardiovascular disease trajectory. Vascul. Pharmacol., 2015, 71, 37-39.
[http://dx.doi.org/10.1016/j.vph.2015.03.008] [PMID: 25889746]
[108]
Galabova, G.; Brunner, S.; Winsauer, G.; Juno, C.; Wanko, B.; Mairhofer, A.; Lührs, P.; Schneeberger, A.; von Bonin, A.; Mattner, F.; Schmidt, W.; Staffler, G. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management. PLoS One, 2014, 9(12), e114469.
[http://dx.doi.org/10.1371/journal.pone.0114469] [PMID: 25474576]
[109]
Landlinger, C.; Pouwer, M.G.; Juno, C.; van der Hoorn, J.W.A.; Pieterman, E.J.; Jukema, J.W.; Staffler, G.; Princen, H.M.G.; Galabova, G. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur. Heart J., 2017, 38(32), 2499-2507.
[http://dx.doi.org/10.1093/eurheartj/ehx260] [PMID: 28637178]
[110]
Momtazi-Borojeni, A.A.; Jaafari, M.R.; Badiee, A.; Sahebkar, A. Long-term generation of antiPCSK9 antibody using a nanoliposome-based vaccine delivery system. Atherosclerosis, 2019, 283, 69-78.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.02.001] [PMID: 30797988]
[111]
Ferrer, I.; Boada Rovira, M.; Sánchez Guerra, M.L.; Rey, M.J.; Costa-Jussá, F. Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer’s disease. Brain Pathol., 2004, 14(1), 11-20.
[http://dx.doi.org/10.1111/j.1750-3639.2004.tb00493.x] [PMID: 14997933]
[112]
Chackerian, B.; Frietze, K.M. Moving towards a new class of vaccines for non-infectious chronic diseases. Expert Rev. Vaccines, 2016, 15(5), 561-563.
[http://dx.doi.org/10.1586/14760584.2016.1159136] [PMID: 26919571]
[113]
Bachmann, M.F.; Rohrer, U.H.; Kündig, T.M.; Bürki, K.; Hengartner, H.; Zinkernagel, R.M. The influence of antigen organization on B cell responsiveness. Science, 1993, 262(5138), 1448-1451.
[http://dx.doi.org/10.1126/science.8248784] [PMID: 8248784]
[114]
Dintzis, R.Z.; Okajima, M.; Middleton, M.H.; Greene, G.; Dintzis, H.M. The immunogenicity of soluble haptenated polymers is determined by molecular mass and hapten valence. J. Immunol., 1989, 143(4), 1239-1244.
[PMID: 2473123]
[115]
Chackerian, B.; Durfee, M.R.; Schiller, J.T. Virus-like display of a neo-self antigen reverses B cell anergy in a B cell receptor transgenic mouse model. J. Immunol., 2008, 180(9), 5816-5825.
[http://dx.doi.org/10.4049/jimmunol.180.9.5816] [PMID: 18424700]
[116]
Amanna, I.J.; Slifka, M.K. Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol. Rev., 2010, 236(1), 125-138.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00912.x] [PMID: 20636813]
[117]
Zamani, P.; Momtazi-Borojeni, A.A.; Nik, M.E.; Oskuee, R.K.; Sahebkar, A. Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy. J. Cell. Physiol., 2018, 233(7), 5189-5199.
[http://dx.doi.org/10.1002/jcp.26361] [PMID: 29215747]
[118]
Fattori, E.; Cappelletti, M.; Surdo, P.L.; Calzetta, A.; Bendtsen, C.; Ni, Y.G. Immunization against Proprotein Convertase Subtilisin-like/Kexin type 9 (PCSK9) lowers plasma LDL-cholesterol levels in mice. J. Lipid Res., 2012, 2012, M028340.
[119]
Schneeberger, A.; Mandler, M.; Otawa, O.; Zauner, W.; Mattner, F.; Schmidt, W. Development of AFFITOPE vaccines for Alzheimer’s disease (AD)--from concept to clinical testing. J. Nutr. Health Aging, 2009, 13(3), 264-267.
[http://dx.doi.org/10.1007/s12603-009-0070-5] [PMID: 19262965]
[120]
Pan, Y.; Zhou, Y.; Wu, H.; Chen, X.; Hu, X.; Zhang, H.; Zhou, Z.; Qiu, Z.; Liao, Y. A therapeutic peptide vaccine against PCSK9. Sci. Rep., 2017, 7(1), 12534.
[http://dx.doi.org/10.1038/s41598-017-13069-w] [PMID: 28970592]
[121]
Crossey, E.; Amar, M.J.A.; Sampson, M.; Peabody, J.; Schiller, J.T.; Chackerian, B.; Remaley, A.T. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine, 2015, 33(43), 5747-5755.
[http://dx.doi.org/10.1016/j.vaccine.2015.09.044] [PMID: 26413878]
[122]
Bachmann, M.F.; Dyer, M.R. Therapeutic vaccination for chronic diseases: A new class of drugs in sight. Nat. Rev. Drug Discov., 2004, 3(1), 81-88.
[http://dx.doi.org/10.1038/nrd1284] [PMID: 14666113]
[123]
Chackerian, B.; Briglio, L.; Albert, P.S.; Lowy, D.R.; Schiller, J.T. Induction of autoantibodies to CCR5 in macaques and subsequent effects upon challenge with an R5-tropic simian/human immunodeficiency virus. J. Virol., 2004, 78(8), 4037-4047.
[http://dx.doi.org/10.1128/JVI.78.8.4037-4047.2004] [PMID: 15047820]
[124]
Van Rompay, K.K.; Hunter, Z.; Jayashankar, K.; Peabody, J.; Montefiori, D.; LaBranche, C.C.; Keele, B.F.; Jensen, K.; Abel, K.; Chackerian, B. A vaccine against CCR5 protects a subset of macaques upon intravaginal challenge with simian immunodeficiency virus SIVmac251. J. Virol., 2014, 88(4), 2011-2024.
[http://dx.doi.org/10.1128/JVI.02447-13] [PMID: 24307581]
[125]
Momtazi-Borojeni, A.A.; Jaafari, M.R.; Badiee, A.; Banach, M.; Sahebkar, A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med., 2019, 17(1), 223.
[http://dx.doi.org/10.1186/s12916-019-1457-8] [PMID: 31818299]
[126]
Momtazi-Borojeni, A.A.; Jaafari, M.R.; Afshar, M.; Banach, M.; Sahebkar, A. PCSK9 immunization using nanoliposomes: Preventive efficacy against hypercholesterolemia and atherosclerosis. Arch. Med. Sci., 2021, 17(5), 1365-1377.
[http://dx.doi.org/10.5114/aoms/133885] [PMID: 34522266]
[127]
O’Keeffe, L.M.; Simpkin, A.J.; Tilling, K.; Anderson, E.L.; Hughes, A.D.; Lawlor, D.A.; Fraser, A.; Howe, L.D. Sex-specific trajectories of measures of cardiovascular health during childhood and adolescence: A prospective cohort study. Atherosclerosis, 2018, 278, 190-196.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.09.030] [PMID: 30296724]
[128]
Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res., 2016, 118(4), 535-546.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307611] [PMID: 26892956]
[129]
Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers, 2019, 5(1), 56.
[http://dx.doi.org/10.1038/s41572-019-0106-z] [PMID: 31420554]
[130]
Camus, M.C.; Chapman, M.J.; Forgez, P.; Laplaud, P.M. Distribution and characterization of the serum lipoproteins and apoproteins in the mouse, Mus musculus. J. Lipid Res., 1983, 24(9), 1210-1228.
[http://dx.doi.org/10.1016/S0022-2275(20)37904-9] [PMID: 6631247]
[131]
Johnston, T.P.; Korolenko, T.A.; Sahebkar, A. P-407-induced mouse model of dose-controlled hyperlipidemia and atherosclerosis: 25 years later. J. Cardiovasc. Pharmacol., 2017, 70(5), 339-352.
[http://dx.doi.org/10.1097/FJC.0000000000000522] [PMID: 28777256]
[132]
Chackerian, B.; Lowy, D.R.; Schiller, J.T. Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction of protective autoantibodies. J. Clin. Invest., 2001, 108(3), 415-423.
[http://dx.doi.org/10.1172/JCI11849] [PMID: 11489935]
[133]
Ambühl, P.M.; Tissot, A.C.; Fulurija, A.; Maurer, P.; Nussberger, J.; Sabat, R.; Nief, V.; Schellekens, C.; Sladko, K.; Roubicek, K.; Pfister, T.; Rettenbacher, M.; Volk, H.D.; Wagner, F.; Müller, P.; Jennings, G.T.; Bachmann, M.F. A vaccine for hypertension based on virus-like particles: Preclinical efficacy and phase I safety and immunogenicity. J. Hypertens., 2007, 25(1), 63-72.
[http://dx.doi.org/10.1097/HJH.0b013e32800ff5d6] [PMID: 17143175]
[134]
Tissot, A.C.; Maurer, P.; Nussberger, J.; Sabat, R.; Pfister, T.; Ignatenko, S.; Volk, H.D.; Stocker, H.; Müller, P.; Jennings, G.T.; Wagner, F.; Bachmann, M.F. Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: A double-blind, randomised, placebo-controlled phase IIa study. Lancet, 2008, 371(9615), 821-827.
[http://dx.doi.org/10.1016/S0140-6736(08)60381-5] [PMID: 18328929]
[135]
Fettelschoss, A.; Zabel, F.; Bachmann, M.F. Vaccination against Alzheimer disease: An update on future strategies. Hum. Vaccin. Immunother., 2014, 10(4), 847-851.
[http://dx.doi.org/10.4161/hv.28183] [PMID: 24535580]
[136]
Momtazi-Borojeni, A.A.; Jaafari, M.R.; Banach, M.; Gorabi, A.M.; Sahraei, H.; Sahebkar, A. Pre-clinical evaluation of the nanoliposomal antiPCSK9 vaccine in healthy non-human primates. Vaccines (Basel), 2021, 9(7), 749.
[http://dx.doi.org/10.3390/vaccines9070749] [PMID: 34358164]
[137]
Miyosawa, K.; Watanabe, Y.; Murakami, K.; Murakami, T.; Shibata, H.; Iwashita, M.; Yamazaki, H.; Yamazaki, K.; Ohgiya, T.; Shibuya, K.; Mizuno, K.; Tanabe, S.; Singh, S.A.; Aikawa, M. New CETP inhibitor K-312 reduces PCSK9 expression: A potential effect on LDL cholesterol metabolism. Am. J. Physiol. Endocrinol. Metab., 2015, 309(2), E177-E190.
[http://dx.doi.org/10.1152/ajpendo.00528.2014] [PMID: 26015437]
[138]
Lintner, N.G.; McClure, K.F.; Petersen, D.; Londregan, A.T.; Piotrowski, D.W.; Wei, L.; Xiao, J.; Bolt, M.; Loria, P.M.; Maguire, B.; Geoghegan, K.F.; Huang, A.; Rolph, T.; Liras, S.; Doudna, J.A.; Dullea, R.G.; Cate, J.H. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol., 2017, 15(3), e2001882.
[http://dx.doi.org/10.1371/journal.pbio.2001882] [PMID: 28323820]
[139]
Kong, W.; Wei, J.; Abidi, P.; Lin, M.; Inaba, S.; Li, C.; Wang, Y.; Wang, Z.; Si, S.; Pan, H.; Wang, S.; Wu, J.; Wang, Y.; Li, Z.; Liu, J.; Jiang, J.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med., 2004, 10(12), 1344-1351.
[http://dx.doi.org/10.1038/nm1135] [PMID: 15531889]
[140]
Cameron, J.; Ranheim, T.; Kulseth, M.A.; Leren, T.P.; Berge, K.E. Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis, 2008, 201(2), 266-273.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.02.004] [PMID: 18355829]
[141]
Miranda, M.X.; van Tits, L.J.; Lohmann, C.; Arsiwala, T.; Winnik, S.; Tailleux, A.; Stein, S.; Gomes, A.P.; Suri, V.; Ellis, J.L.; Lutz, T.A.; Hottiger, M.O.; Sinclair, D.A.; Auwerx, J.; Schoonjans, K.; Staels, B.; Lüscher, T.F.; Matter, C.M. The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur. Heart J., 2015, 36(1), 51-59.
[http://dx.doi.org/10.1093/eurheartj/ehu095] [PMID: 24603306]
[142]
Ye, X.; Li, M.; Hou, T.; Gao, T.; Zhu, W.G.; Yang, Y. Sirtuins in glucose and lipid metabolism. Oncotarget, 2017, 8(1), 1845-1859.
[http://dx.doi.org/10.18632/oncotarget.12157] [PMID: 27659520]
[143]
Mbikay, M.; Sirois, F.; Simoes, S.; Mayne, J.; Chrétien, M. Quercetin-3-glucoside increases low-density lipoprotein receptor (LDLR) expression, attenuates proprotein convertase subtilisin/kexin 9 (PCSK9) secretion, and stimulates LDL uptake by Huh7 human hepatocytes in culture. FEBS Open Biol., 2014, 4, 755-762.
[http://dx.doi.org/10.1016/j.fob.2014.08.003] [PMID: 25349780]
[144]
Xu, S.; Luo, S.; Zhu, Z.; Xu, J. Small molecules as inhibitors of PCSK9: Current status and future challenges. Eur. J. Med. Chem., 2019, 162, 212-233.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.011] [PMID: 30448414]
[145]
Momtazi, A.A.; Banach, M.; Pirro, M.; Katsiki, N.; Sahebkar, A. Regulation of PCSK9 by nutraceuticals. Pharmacol. Res., 2017, 120, 157-169.
[http://dx.doi.org/10.1016/j.phrs.2017.03.023] [PMID: 28363723]
[146]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[147]
Masuda, Y.; Yamaguchi, S.; Suzuki, C.; Aburatani, T.; Nagano, Y.; Miyauchi, R.; Suzuki, E.; Yamamura, N.; Nagatomo, K.; Ishihara, H.; Okuno, K.; Nara, F.; Matschiner, G.; Hashimoto, R.; Takahashi, T.; Nishizawa, T. Generation and characterization of a novel small biologic alternative to proprotein convertase Subtilisin/Kexin Type 9 (PCSK9) Antibodies, DS-9001a, albumin binding domain–fused anticalin protein. J. Pharmacol. Exp. Ther., 2018, 365(2), 368-378.
[http://dx.doi.org/10.1124/jpet.117.246652] [PMID: 29463608]
[148]
Gebauer, M.; Skerra, A. Anticalins small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol., 2012, 503, 157-188.
[http://dx.doi.org/10.1016/B978-0-12-396962-0.00007-0] [PMID: 22230569]
[149]
Baverel, P.; She, D.; Piper, E.; Ueda, S.; Yoshioka, T.; Faggioni, R.; Gevorkyan, H. A randomized, placebo-controlled, single ascending-dose study to assess the safety, tolerability, pharmacokinetics, and immunogenicity of subcutaneous tralokinumab in Japanese healthy volunteers. Drug Metab. Pharmacokinet., 2018, 33(3), 150-158.
[http://dx.doi.org/10.1016/j.dmpk.2017.12.001] [PMID: 29622380]
[150]
Mayer, G.; Poirier, S.; Seidah, N.G. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J. Biol. Chem., 2008, 283(46), 31791-31801.
[http://dx.doi.org/10.1074/jbc.M805971200] [PMID: 18799458]
[151]
Seidah, N.G.; Poirier, S.; Denis, M.; Parker, R.; Miao, B.; Mapelli, C.; Prat, A.; Wassef, H.; Davignon, J.; Hajjar, K.A.; Mayer, G. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation. PLoS One, 2012, 7(7), e41865.
[http://dx.doi.org/10.1371/journal.pone.0041865] [PMID: 22848640]
[152]
Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M. Inclisiran in patients with high CV risk and elevated LDL-cholesterol. N. Engl. J. Med., 2017, 376, 1430-1440.
[153]
Schroeder, C.I.; Swedberg, J.E.; Withka, J.M.; Rosengren, K.J.; Akcan, M.; Clayton, D.J.; Daly, N.L.; Cheneval, O.; Borzilleri, K.A.; Griffor, M.; Stock, I.; Colless, B.; Walsh, P.; Sunderland, P.; Reyes, A.; Dullea, R.; Ammirati, M.; Liu, S.; McClure, K.F.; Tu, M.; Bhattacharya, S.K.; Liras, S.; Price, D.A.; Craik, D.J. Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem. Biol., 2014, 21(2), 284-294.
[http://dx.doi.org/10.1016/j.chembiol.2013.11.014] [PMID: 24440079]
[154]
McNutt, M.C.; Kwon, H.J.; Chen, C.; Chen, J.R.; Horton, J.D.; Lagace, T.A. Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells. J. Biol. Chem., 2009, 284(16), 10561-10570.
[http://dx.doi.org/10.1074/jbc.M808802200] [PMID: 19224862]
[155]
Zhang, Y.; Eigenbrot, C.; Zhou, L.; Shia, S.; Li, W.; Quan, C.; Tom, J.; Moran, P.; Di Lello, P.; Skelton, N.J.; Kong-Beltran, M.; Peterson, A.; Kirchhofer, D. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J. Biol. Chem., 2014, 289(2), 942-955.
[http://dx.doi.org/10.1074/jbc.M113.514067] [PMID: 24225950]
[156]
Du, F.; Hui, Y.; Zhang, M.; Linton, M.F.; Fazio, S.; Fan, D. Novel domain interaction regulates secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) protein. J. Biol. Chem., 2011, 286(50), 43054-43061.
[http://dx.doi.org/10.1074/jbc.M111.273474] [PMID: 22027821]
[157]
da Costa Leite, L.F.C.; Veras Mourão, R.H.; de Lima, Mdo.C.; Galdino, S.L.; Hernandes, M.Z.; de Assis Rocha Neves, F.; Vidal, S.; Barbe, J.; da Rocha Pitta, I. Synthesis, biological evaluation and molecular modeling studies of arylidene-thiazolidinediones with potential hypoglycemic and hypolipidemic activities. Eur. J. Med. Chem., 2007, 42(10), 1263-1271.
[http://dx.doi.org/10.1016/j.ejmech.2007.02.015] [PMID: 17448573]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy