Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Exploring Phytochemicals from Himalayan Medicinal Plants as Novel Therapeutic Agents

Author(s): Nidhi Saini*, Viney Lather and Suresh Kumar Gahlawat

Volume 22, Issue 9, 2022

Published on: 11 January, 2022

Page: [1674 - 1698] Pages: 25

DOI: 10.2174/1871520621666211015141020

Price: $65

Open Access Journals Promotions 2
Abstract

Over-prescription of medicines leads to some crucial health issues like resistance, non-specificity, etc. Therefore, a human consumes various natural foods, therapeutics, and nutritional supplements to combat this problem. Various therapeutic properties of secondary metabolites, such as anticancer, anti-inflammatory, and antibacterial properties, are important in drug discovery and medicinal application. These natural products have replaced synthetic materials, resulting in a great deal of sustainability, rational use, and preservation of biodiversity. This review described the potential therapeutic applications of secondary plant metabolites found in Himalayan Indian plants. The database contains 45 plants to treat various diseases, such as cancer, inflammation, and microbial infections. Besides authorized ITIS names, it includes Hindi names, family names, and active constituents. The most important information about the molecules can be found in the hyperlinks for the active constituents. It includes structures (two-dimensional and threedimensional), names and identifiers, chemical and physical properties, spectral information, biochemistry, literature and patents. The review also references various phytochemicals responsible for preventing COVID-19. Despite several challenges in manufacturing natural products, researchers may conduct research to produce successful medicines with few side effects.

Keywords: Natural products, herbal drug, complementary medicine, plant-derived drugs, drug discovery, secondary metabolites, antitumoral.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Barcelos, I.P.D.; Troxell, R.M.; Graves, J.S. Mitochondrial dysfunction and multiple sclerosis. Biology (Basel), 2019, 8(2), 37.
[http://dx.doi.org/10.3390/biology8020037] [PMID: 31083577]
[3]
Tsai, D.H.; Riediker, M.; Berchet, A.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Bochud, M. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ. Sci. Pollut. Res. Int., 2019, 26(19), 19697-19704.
[http://dx.doi.org/10.1007/s11356-019-05194-y] [PMID: 31079306]
[4]
Pahwa, R.; Goyal, A.; Bansal, P.; Jialal, I. Chr. Inflamm; StatPearls, 2020.
[5]
Shakya, A.K. Medicinal plants: future source of new drugs. Int. J. Herb. Med., 2016, 4(4), 59-64.
[6]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[7]
Wink, M. Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel), 2015, 2(3), 251-286.
[http://dx.doi.org/10.3390/medicines2030251] [PMID: 28930211]
[8]
Chowdhury, N.S.; Farjana, F.; Jamaly, S.; Begum, M.N.; Zenat, M.E. A Pharmacological Values and Phytochemical Properties of Devil’s Cotton (Ulatkambal)-A Review. Bangladesh Pharm. J., 2019, 22(1), 109-116.
[http://dx.doi.org/10.3329/bpj.v22i1.40082]
[9]
Okhale, S.E. Abrus precatorius Linn (Fabaceae): phytochemistry, ethnomedicinal uses, ethnopharmacology and pharmacological activities. Int. J. Pharm. Sci. Res., 2016, 1, 37-43.
[10]
Sujit, K.; Tanusri, B.; Sourav, P.; Jadupati, M.; Amites, G.; Amitava, G. Pharmacognostical studies and chromatographic evaluation of the different extracts of Abrus precatorius Linn. Int. J. Pharm. Res. Dev., 2012, 4(3), 225-233.
[11]
Ragasa, C.Y.; Lorena, G.S.; Mandia, E.H.; Raga, D.D.; Shen, C.C. Chemical constituents of Abrus precatorius. Am J Essent Oils Nat Prod., 2013, 1(2), 7-10.
[12]
Paul, E.D.; Sangodare, R.S.; Agbaji, A.S. Chemical analysis of leaves of Abrus precatorius. Int. J. Plant Physiol. Biochem., 2013, 5(5), 65-67.
[13]
Garaniya, N.; Bapodra, A. Ethno botanical and Phytophrmacological potential of Abrus precatorius L.: A review. Asian Pac. J. Trop. Biomed., 2014, 4(1)(Suppl. 1), S27-S34.
[http://dx.doi.org/10.12980/APJTB.4.2014C1069] [PMID: 25183095]
[14]
Hamman, J.H. Composition and applications of Aloe vera leaf gel. Molecules, 2008, 13(8), 1599-1616.
[http://dx.doi.org/10.3390/molecules13081599] [PMID: 18794775]
[15]
Kar, S.K.; Bera, T.K. Phytochemical constituents of Aloe vera and their multifunctional properties: A comprehensive review. Int. J. Pharm. Sci. Res., 2018, 9(4), 1416-1423.
[16]
Negi, J.S.; Singh, P.; Joshi, G.P.; Rawat, M.S.; Bisht, V.K. Chemical constituents oZhou, Y.; Shen, Y.H., Zhang, C.; Zhang, W.D. Chemical constituents of Bacopa monnieri. Chem. Nat. Compd., 2007, 43(3), 355-357.
[17]
Kamkaew, N.; Paracha, T.U.; Ingkaninan, K.; Waranuch, N.; Chootip, K. Vasodilatory Effects and Mechanisms of Action of Bacopa monnieri Active Compounds on Rat Mesenteric Arteries. Molecules, 2019, 24(12), 2243.
[http://dx.doi.org/10.3390/molecules24122243] [PMID: 31208086]
[18]
Deo, Y.K.; Reddy, K.R.C. Critical review on pharmacological properties of Brahmi. Int. J. Ayurvedic Med., 2013, 4(2), 92-99.
[http://dx.doi.org/10.47552/ijam.v4i2.238]
[19]
f Asparagus Pharmacogn. Rev., 4(8), 215.
[http://dx.doi.org/10.4103/0973-7847.70921]
[20]
Pankaj, S.; Lokeshwar, T.; Mukesh, B.; Vishnu, B. Review on neem (Azadirachta indica): thousand problems one solution. International Research Journal of Pharmacy, 2011, 2(12), 97-102.
[21]
Chhibber, S.; Sharma, N. Medicinal and Therapeutical potential of Neem (Azadirachta indica): A review. Int. J. Sci. Res. Pub., 2014, 4(5), 1-5.
[22]
Khan, M.A.; Perveen, A. Traditional, Pharmacological and Patenting Potential of Neem (Azadirachta indica): A Review. Res. Pharm. Health Sci., 2017, 3(4), 383-391.
[http://dx.doi.org/10.32463/rphs.2017.v03i04.20]
[23]
Nayak, P.; Thirunavoukkarasu, M. A review of the plant Boerhaavia diffusa: Its chemistry, pharmacology and therapeutical potential. J. Phytopharmacol, 2016, 5(2), 83-92.
[24]
Mahesh, A.R.; Kumar, H.; Ranganath, M.K.; Devkar, R.A. Detail Study on Boerhaavia diffusa plant for its medicinal importance-A Review. Res J Pharm Sci, 2012, 1(1), 28-36.
[25]
Chaudhary, G.; Dantu, P.K. Morphological, phytochemical and pharmacological, studies on Boerhaavia diffusa L. J. Med. Plants Res., 2011, 5(11), 2125-2130.
[26]
Mishra, S.; Aeri, V.; Gaur, P.K.; Jachak, S.M. Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. BioMed Res. Int., 2014, 2014808302
[http://dx.doi.org/10.1155/2014/808302] [PMID: 24949473]
[27]
Hasan, M.R.; Islam, M.N.; Islam, M.R. Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: A review. Int. Curr. Pharm. J., 2016, 5(2), 14-21.
[http://dx.doi.org/10.3329/icpj.v5i2.26441]
[28]
Savan, E.K.; Kucukbay, F.Z. Essential oil composition of Elettaria cardamomum Maton. Journal of Applied Biological Sciences (JABS) E-ISSN: 2146-0108, 2013, 7(3), 42-45.
[29]
Korikanthimathm, V.S.; Prasath, D.; Rao, G. Medicinal properties of cardamom Elettaria cardamomum. Curr. Res. Med. Aromat. Plants, 2000, 22, 683-685.
[30]
Tambe, M.E.A.; Gotmare, S. Chemical characterization of three cardamom oils (elettaria cardamomum) by gcms. World journal of pharmacy and pharmaceuical sciences, 2019, 8(11), 876-885.
[31]
Al-Snafi, A.E. Glycyrrhiza glabra: A phytochemical and pharmacological review. IOSR J. Pharm., 2018, 8(6), 1-17.
[32]
Pandey, S.; Verma, B.; Arya, P. A review on constituents, pharmacological activities and medicinal uses of glycyrrhiza glabra. Uni. J. Pharm. Res., 2017, 2(2), 6-11.
[http://dx.doi.org/10.22270/ujpr.v2i2.RW2]
[33]
Devi, V.G.; John, A.; Devi, R.S.; Prabhakaran, V.A. Pharmacognostical studies on Acacia catechu Willd and identification of antioxidant principles. Int. J. Pharm. Pharm. Sci., 2011, 3(2), 108-111.
[34]
Shen, D.; Wu, Q.; Wang, M.; Yang, Y.; Lavoie, E.J.; Simon, J.E. Determination of the predominant catechins in Acacia catechu by liquid chromatography/electrospray ionization-mass spectrometry. J. Agric. Food Chem., 2006, 54(9), 3219-3224.
[http://dx.doi.org/10.1021/jf0531499] [PMID: 16637676]
[35]
Burnett, B.P.; Jia, Q.; Zhao, Y.; Levy, R.M. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J. Med. Food, 2007, 10(3), 442-451.
[http://dx.doi.org/10.1089/jmf.2006.255] [PMID: 17887937]
[36]
Li, X.; Wang, H.; Liu, C.; Chen, R. [Chemical constituents of Acacia catechu]. Zhongguo Zhongyao Zazhi, 2010, 35(11), 1425-1427.
[PMID: 20822013]
[37]
Crestini, C.; Lange, H.; Bianchetti, G. Detailed chemical composition of condensed tannins via quantitative 31P NMR and HSQC analyses: Acacia catechu, Schinopsis balansae, and Acacia mearnsii. J. Nat. Prod., 2016, 79(9), 2287-2295.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00380] [PMID: 27551744]
[38]
Yadav, N.P.; Chanotia, C.S. Phytochemical and pharmacological profile of leaves of Aegle marmelos Linn. Pharm. Rev., 2010, 144-159.
[39]
Sharma, G.N.; Dubey, S.K.; Sharma, P.; Sati, N. Medicinal values of bael (Aegle marmelos)(L.) Corr.: A review. Int J Curr Pharm Rev Res, 2011, 2(1), 12-22.
[40]
Sanghi, S.B.; Mushtaq, S. Aegle Marmelos a potential medicinal tree: An overview. International Journal of Research - Granthaalayah, 2017, 5(8), 63-66.
[41]
Rahman, S.; Parvin, R. Therapeutic potential of Aegle marmelos (L.)-An overview. Asian Pac. J. Trop. Dis., 2014, 4(1), 71-77.
[http://dx.doi.org/10.1016/S2222-1808(14)60318-2]
[42]
Vinita, ; Mishra, H.S.; Yadav, R.B.; Yadav, K.N. SIRISH (Albizia lebbeck Benth.): A natural anti international ayurvedic medical journal 2018, 6(7), 1386-1392.
[43]
Sharma, G.K.; Dubey, N. Review of Shirish (Albizia lebbeck) therapeutic properties. Int J Ayur Herb Med, 2015, 5(1), 1683-1688.
[44]
Verma, S.C.; Vashishth, E.; Singh, R.; Kumari, A.; Meena, A.K.; Pant, P.; Padhi, M.M. A review on parts of Albizia lebbeck (L.) Benth. used as ayurvedic drugs. Res. J. Pharm. Tech., 2013, 6(11), 1307-1313.
[45]
Shirisha, K.; Priyanka, B.; Rahman, H.; Bardalai, D.; Ali, F. Review on Albizia lebbeck (L.) Benth: A Plant Possessing Diverse Pharmacological Activities. Res. J. Pharm. Phyto., 2013, 5(5), 263-268.
[46]
Kaushik, P.; Kaushik, D.; Sharma, N.; Rana, A.C. Alstonia scholaris: It's Phytochemistry and pharmacology. Chronicles of young scientists 2011, 2(2), 71.
[47]
Dey, A. Alstonia scholaris R. Br.(Apocynaceae): Phytochemistry and pharmacology: A concise review. J. Appl. Pharm. Sci., 2011, 1(06), 51-57.
[48]
Pandey, N.; Barve, D. Phytochemical and pharmacological review on Annona squamosa Linn. Int. J. Res. Pharm. Biomed. Sci., 2011, 2(4), 1404-1412.
[49]
Saha, R. Pharmacognosy and pharmacology of Annona squamosa. International Journal of Pharmacy and Life Sciences, 2011, 2(10), 1183-1189.
[50]
Marahatta, A.B.; Aryal, A.; Basnyat, R.C. The phytochemical and nutritional analysis and biological activity of Annona squamosa Linn., 2019, 7(4), 19-28.
[51]
Bhattacharya, A.; Chakraverty, R. The pharmacological properties of Annona squamosa Linn: a review. Int. J. Pharm. Eng., 2016, 4(2), 692-699.
[52]
Phan, G.M.; Phan, S.T.; Konig, W.A. Chemical composition of the flower essential oil of Artabotrys hexapetalus (L. f.). Bhandare of Vietnam. J. Essent. Oil Res., 2007, 19(6), 523-524.
[http://dx.doi.org/10.1080/10412905.2007.9699321]
[53]
Giang, P.M.; Son, P.T.; Konig, W.A. Chemical composition of the flower essential oil of Artabotrys hexapetalus (L.f.). Bhandare of Vietnam. J. Essent. Oil Res., 2007, 19, 523-524.
[http://dx.doi.org/10.1080/10412905.2007.9699321]
[54]
Thang, T.D.; Dai, D.N.; Hoi, T.M.; Ogunwande, I.A. Essential oils from five species of Annonaceae from Vietnam. Natural product communications,, 2013, 8(2) 1934578X1300800228.
[http://dx.doi.org/10.1177/1934578X1300800228]
[55]
Suleiman, R.A.; Mgani, Q.A.; Nyandoro, S.S. Chemical compositions and mosquito repellency of essential oils from Artabotrys hexapetalus and Artabotrys rupestris. Int. J. Biol. Chem. Sci., 2014, 8(6), 2804-2812.
[http://dx.doi.org/10.4314/ijbcs.v8i6.37]
[56]
Vazhacharickal, P.J.; Sajeshkumar, N.K.; Mathew, J.J.; Kuriakose, A.C.; Abraham, B.; Mathew, R.J.; Jose, S. Chemistry and medicinal properties of jackfruit (Artocarpus heterophyllus): A review on current status of knowledge. International Journal of Innovative Research and Review, 2015, 3(2), 83-95.
[57]
Prakash, O.; Kumar, R.; Mishra, A.; Gupta, R. Artocarpus heterophyllus (Jackfruit): an overview. Pharmacogn. Rev., 2009, 3(6), 353.
[58]
Ranasinghe, R.A.S.N.; Maduwanthi, S.D.T.; Marapana, R.A.U.J. Nutritional and health benefits of jackfruit (Artocarpus heterophyllus Lam.): A review. Int. J. Food Sci., 2019, 20194327183
[http://dx.doi.org/10.1155/2019/4327183] [PMID: 30723733]
[59]
Swami, S.B.; Thakor, N.J.; Haldankar, P.M.; Kalse, S.B. Jackfruit and its many functional components as related to human health: a review. Compr. Rev. Food Sci. Food Saf., 2012, 11(6), 565-576.
[http://dx.doi.org/10.1111/j.1541-4337.2012.00210.x]
[60]
Marimuthu, K.; Dhanalakshmi, R. A study on phytochemicals in Bauhinia purpurea l. leaf and flower. Int. J. Pharm. Sci. Rev. Res., 2014, 29(2), 72-76.
[61]
Negi, A.; Sharma, N.; Singh, M.F. Spectrum of pharmacological activities from Bauhinia variegata: a review. J. Pharm. Res., 2012, 5(2), 792-797.
[62]
Jash, S.K.; Roy, R.; Gorai, D. Bioactive constituents from Bauhinia variegata Linn. Int J Pharm Biomed Res, 2014, 5(2), 51-54.
[63]
Malaviya, T.; Sharma, P.K. Phytochemical, Pharmacological Profile and Commercial Utility of Tropically Distributed Plant Bauhinia variegata. Glob. J. Pharmacol., 2014, 8(2), 196-205.
[64]
Khare, P.R.A.G.A.T.I.; Kishore, K.A.M.A.L.; Sharma, D.K. A study on the standardization parameters of Bauhinia variegate. Asian J. Pharm. Clin. Res., 2017, 10(4), 133-136.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i4.16295]
[65]
Sahu, G.; Gupta, P.K. A review on Bauhinia variegata Linn. International research. J. Pharm. (Cairo), 2012, 3(1), 48-51.
[66]
Patel, G.; Pandey, P.; Tripathi, I.P.; Singh, R. Estimation of antidiabtic, antioxidant and phytochemical constituents of two species of butea monosperma (palash). Indian J. Appl. Res., 2019, 9(11)
[67]
Gupta, P.; Chauhan, N.S.; Pande, M.; Pathak, A. Phytochemical and pharmacological review on Butea monosperma (Palash). Int. J. Agron. Plant Prod., 2012, 3(7), 255-258.
[68]
Sindhia, V.R.; Bairwa, R. Plant review: Butea monosperma. Int. J. Pharm. Clin. Res., 2010, 2(2), 90-94.
[69]
Bahorun, T.; Neergheen, V.S.; Aruoma, O.I. Phytochemical constituents of Cassia fistula. Afr. J. Biotechnol., 2005, 4(13)
[70]
Siddiqua, A.; Zahra, M.; Begum, K.; Jamil, M. The traditional uses, phytochemistry and pharmacological properties of Cassia fistula. J Pharm Pharmacol. Res, 2018, 2(1), 015-023.
[71]
Irshad, M.D.; Ahmad, A.; Zafaryab, M.D.; Ahmad, F.; Manzoor, N.; Singh, M.; Rizvi, M.M.A. Composition of Cassia fistula oil and its antifungal activity by disrupting ergosterol biosynthesis. Nat. Pro. Comm, 2013, 8(2) 1934578X1300800233.
[http://dx.doi.org/10.1177/1934578X1300800233]
[72]
Rahmani, A.H. Cassia fistula Linn: Potential candidate in the health management. Pharmacognosy Res., 2015, 7(3), 217-224.
[http://dx.doi.org/10.4103/0974-8490.157956] [PMID: 26130932]
[73]
Lee, C.K.; Lee, P.H.; Kuo, Y.H. The chemical constituents from the aril of Cassia fistula L. J. Chin. Chem. Soc. (Taipei), 2001, 48(6), 1053-1058.
[http://dx.doi.org/10.1002/jccs.200100154]
[74]
Ogunwande, I.A.; Flamini, G.; Adefuye, A.E.; Lawal, N.O.; Moradeyo, S.; Avoseh, N.O. Chemical compositions of Casuarina equisetifolia L., Eucalyptus toreliana L. and Ficus elastica Roxb. ex Hornem cultivated in Nigeria. S. Afr. J. Bot., 2011, 77(3), 645-649.
[http://dx.doi.org/10.1016/j.sajb.2011.02.001]
[75]
Essien, E.E.; Newby, J.M.; Walker, T.M.; Ogunwande, I.A.; Setzer, W.N.; Ekundayo, O. Essential oil constituents, anticancer and antimicrobial activity of Ficus mucoso and Casuarina equisetifolia leaves. Am. J. Essent. Oils Nat. Prod, 2016, 4, 1-6.
[76]
Patay, E.B.; Bencsik, T.; Papp, N. Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pac. J. Trop. Med., 2016, 9(12), 1127-1135.
[http://dx.doi.org/10.1016/j.apjtm.2016.11.008] [PMID: 27955739]
[77]
Patay, E.B.; Alberti, A.; Csernak, O.; Stranczinger, S.; Papp, N. Comparative phytochemical analysis of Coffea benghalensis Roxb Ex Schult, Coffea arabica L. and Coffea liberica Hiern. Asian Pac. J. Trop. Med., 2018, 11(8), 480.
[http://dx.doi.org/10.4103/1995-7645.240084]
[78]
Shwaish, T.Z.; Al-Imarah, F.J. Chromatographic study of the ethanol extract of Cordia myxa L. fruit. Americas, 2016, 3, 4.
[79]
Mallavadhani, U.V.; Panda, A.K.; Rao, Y.R. Diospyros melanoxylon leaves: a rich source of pentacyclic triterpenes. Pharm. Biol., 2001, 39(1), 20-24.
[http://dx.doi.org/10.1076/phbi.39.1.20.5941]
[80]
Rath, S.K.; Mohapatra, N.; Dubey, D.; Panda, S.K.; Thatoi, H.N.; Dutta, S.K. Antimicrobial activity of Diospyros melanoxylon bark from similipal biosphere reserve, Orissa, India. Afr. J. Biotechnol., 2009, 8(9)
[81]
Sharma, A.K.; Sharma, T.C.; Singh, R.; Payal, P.; Gupta, R.; Sharma, M.C. A novel compound Lup-20 (29)-ene-3α, 6β-diol identified in petroleum ether extract of diospyros melanoxylon Roxb. Leaves and to reveal its antidiabetic activity in rats. Pharmacogn. Mag., 2018, 14(55), 245.
[http://dx.doi.org/10.4103/pm.pm_429_17]
[82]
Al-Snafi, A.E. Chemical constituents and pharmacological effects of Dalbergia sissoo-A review. IOSR J. Pharm., 2017, 7(2), 59-71.
[http://dx.doi.org/10.9790/3013-0702015971]
[83]
Sarg, T.; Ateya, A.M.; Abdel-Ghani, A.; Badr, W.; Shams, G. Phytochemical and Pharmacological studies of Dalbergia sissoo growing in Egypt. Pharm. Biol., 1999, 37(1), 54-62.
[http://dx.doi.org/10.1076/phbi.37.1.54.6310]
[84]
Sehra, S.Y.; Sharma, J. Pharmacological effects and medicinal importance of dalbergia sissoo-a review. Int. J. Pharm. Chem. Biol. Sci., 2018, 8(2)
[85]
Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J. Chemical composition, antioxidant and antimicrobial activity of chamomile flowers essential oil (Matricaria chamomilla L.). J. Essent. Oil-Bear. Plants, 2016, 19(8), 2017-2028.
[http://dx.doi.org/10.1080/0972060X.2016.1224689]
[86]
Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M.K. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn. Rev., 2011, 5(9), 82-95.
[http://dx.doi.org/10.4103/0973-7847.79103] [PMID: 22096322]
[87]
Zadeh, J.B.; Kor, N.M.; Kor, Z.M. Chamomile (Matricaria recutita).As a Valuable Medicinal Plant. Int. J. Adv. Biol. Biomed. Res., 2014, 2(3), 823-829.
[88]
Sharafzadeh, S.; Alizadeh, O. German and Roman chamomile. Journal of applied pharmaceutical science, 2011, 1(10), 01-05.
[89]
Asif, M.; Jafari, S.F.; Iqbal, Z.; Revadigar, V.; Oon, C.E.; Abdul, A.S.; Majid, A.M.S.A.M. Ethnobotanical and phytopharmacological attributes of mesua ferrea: A mini review. J. Appl. Pharm. Sci., 2017, 7(04), 242-251.
[90]
Sayeed, M.A.; Ali, M.A.; Sohel, F.I.; Khan, G.A.M.; Yeasmin, M.S. Physico-chemical characteristics of Mesua ferrea seed oil and nutritional composition of its seed and leaves. Bull. Chem. Soc. Ethiop., 2004, 18(2)
[91]
Chahar, M.K.; Kumar, S.D.S.; Geetha, L.; Lokesh, T.; Manohara, K.P. Mesua ferrea L.: A review of the medical evidence for its phytochemistry and pharmacological actions. Afr. J. Pharm. Pharmacol., 2013, 7(6), 211-219.
[http://dx.doi.org/10.5897/AJPP12.895]
[92]
Das, D.R.; Sachan, A.K.; Mohd, S.; Gangwar, S.S. Nymphaea stellata: a potential herb and its medicinal importance. J. Drug Deliv. Ther., 2012, 2(3)
[http://dx.doi.org/10.22270/jddt.v2i3.173]
[93]
Raja, M.K.; Sethiya, N.K.; Mishra, S.H. A comprehensive review on Nymphaea stellata: A traditionally used bitter. J. Adv. Pharm. Technol. Res., 2010, 1(3), 311-319.
[http://dx.doi.org/10.4103/0110-5558.72424] [PMID: 22247863]
[94]
Selvakumari, E.; Shantha, A.; Kumar, C.S.; Prabhu, T.P. Phytochemistry and Pharmacology of the Genus Nymphaea. J. Acad. Indus. Res., 2016, 5(7), 98.
[95]
Pareek, A.; Kumar, A. Pharmocognostic studies on Nymphaea spp. World J. Pharm. Res.,, 2016, 5(6)
[96]
Baehaki, A.; Lestari, S.D.; Apriyanti, W. Phytochemical screening and antioxidant activity of seeds extract of water plant (Nymphaea stellata and Nelumbo nucifera). J. Chem. Pharm. Res., 2015, 7(11), 221-224.
[97]
Bano, N.; Ahmed, A.; Tanveer, M.; Khan, G.M.; Ansari, M.T. Pharmacological evaluation of Ocimum sanctum. J. Bioequivalence Bioavailab., 2017, 9(3), 387-392.
[98]
Pattanayak, P.; Behera, P.; Das, D.; Panda, S.K. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev., 2010, 4(7), 95-105.
[http://dx.doi.org/10.4103/0973-7847.65323] [PMID: 22228948]
[99]
Dev, N.; Das, A.K.; Hossain, M.A.; Rahman, S.M.M. Chemical compositions of different extracts of Ocimum basilicum leaves. Journal of Scientific Research, 2011, 3(1), 197-197.
[http://dx.doi.org/10.3329/jsr.v3i1.5409]
[100]
Kulkarni, K.V.; Adavirao, B.V. A review on: Indian traditional shrub Tulsi (Ocimum sanctum): the unique medicinal plant. J Med Plants Studies, 2018, 6(2), 106-110.
[101]
Dohare, S.L.; Shuaib, M.; Ahmad, M.I.; Naquvi, K.J. Chemical composition of volatile oil of Ocimum sanctum Linn. Int. J. Biol. Adv. Res., 2012, 3(2), 129-131.
[102]
Masihuddin, M.; Jafri, M.A.; Siddiqui, A.; Chaudhary, S. Traditional uses, phytochemistry and pharmacological activities of papaver somniferum with special reference of unani medicine an updated review. J. Drug Deliv. Ther., 2018, 8(5), 110-114.
[http://dx.doi.org/10.22270/jddt.v8i5-s.2069]
[103]
Onoyovwe, A.; Hagel, J.M.; Chen, X.; Khan, M.F.; Schriemer, D.C.; Facchini, P.J. Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers. Plant Cell, 2013, 25(10), 4110-4122.
[http://dx.doi.org/10.1105/tpc.113.115113] [PMID: 24104569]
[104]
Chalise, U. The poppy plant: phytochemistry and pharmacology. Indo. Global J. Pharm. Sci., 2015, 5(1), 58-65.
[http://dx.doi.org/10.35652/IGJPS.2015.24]
[105]
Hussain, G.; Rasul, A.; Anwar, H.; Aziz, N.; Razzaq, A.; Wei, W.; Ali, M.; Li, J.; Li, X. Muhammad Ali; Jiang Li; Li, X. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int. J. Biol. Sci., 2018, 14(3), 341-357.
[http://dx.doi.org/10.7150/ijbs.23247] [PMID: 29559851]
[106]
Mishra, S.; Kumar, S.; Darokar, M.P.; Shanker, K. Novel bioactive compound from the bark of Putranjiva roxburghii wall. Nat. Prod. Res., 2021, 35(10), 1738-1740.
[http://dx.doi.org/10.1080/14786419.2019.1633650] [PMID: 31232117]
[107]
Raghavendra, H.L.; Prashith, K.T.; Valleesha, N.C.; Sudharshan, S.J.; Chinmaya, A. Screening for cytotoxic activity of methanol extract of putranjiva roxburghii wall (Euphorbiaceae) seeds. Pharmacogn. J., 2010, 2(10), 335-337.
[http://dx.doi.org/10.1016/S0975-3575(10)80105-1]
[108]
Dar, P.; Faisal, M.; Dar, A.; Waqas, U. Journey Describing Biological Activities and Chemical Constituents in the Leaves, Stem Bark and Seed of Putranjiva roxburghii. Curr. Tradit. Med., 2018, 4(4), 263-278.
[http://dx.doi.org/10.2174/2215083805666181206104450]
[109]
Gupta, M. A review of pharmacological properties, pharmacognosy and therapeutic actions of Putranjiva roxburghii Wall.(Putranjiva). Int. J. Herb. Med., 2016, 4(6), 104-108.
[110]
Chauhan, S.; Kaur, A.; Pareek, R.K. Pharmacobotanical and pharmacological evaluation of Ayurvedic crude drug: Rauwolfia serpentina (Apocynaceae). Int J Green Pharm, 2017, 11(4), S686-S693.
[111]
Soni, R.; Jaiswal, S.; Bara, J.K.; Saksena, P. The use of Rauwolfia serpentina in hypertensive patients. J Biotechnol Biochem, 2016, 2, 28-32.
[112]
Agrawal, S.N. Rauvolfia Serpentina: A Medicinal Plant of Exceptional Qualities. Al Med Chiropractic OA J, 2019, 2(2), 1-5.
[113]
Pourhosseini, M.; Asgarpanah, J. Essential and fixed oil chemical profiles of salvia aegyptiaca L. Flowers and seeds. J. Chil. Chem. Soc., 2015, 60(4), 2747-2748.
[http://dx.doi.org/10.4067/S0717-97072015000400021]
[114]
Basaif, S.A. Chemical constituents of Salvia aegyptiaca. Magalat Game’at al-Malik Abdul Aziz. Al-U’lum, 2004, 16, 33-39.
[http://dx.doi.org/10.4197/Sci.16-1.4]
[115]
Fotovvat, M.; Radjabian, T. Saboora, A HPLC fingerprint of important phenolic compounds in some Salvia L. Species from iran, 2019, 1-13.
[116]
Mohammadi, S.; Chalard, P.; Figueredo, G.; Marchioni, E.; Zao, M.; Benayache, F.; Benayache, S. Chemical Composition of the Essential Oil of Salvia aegyptiaca L. Journal of Pharmaceutical. Biological and Chemical Sciences, 2014, 5(6), 20-27.
[117]
Obydulla, O. Sansevieria roxburghiana Schult. and Schult. F., Agavaceae: phytochemistry, traditional uses and its pharmacological activities-a review. World Sci. News, 2016, (59), 24-34.
[118]
Sengupta, A.; Basu, S.P. Chemical investigations of the Sapindus mukorossi seed oil. Fette, Seifen. Anstrichmittel, 1982, 84(10), 411-415.
[http://dx.doi.org/10.1002/lipi.19820841011]
[119]
Sun, S.; Ke, X.; Cui, L.; Yang, G.; Bi, Y.; Song, F.; Xu, X. Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology. Ind. Crops Prod., 2011, 33(3), 676-682.
[http://dx.doi.org/10.1016/j.indcrop.2011.01.002]
[120]
Kauser, A.S.; Hasan, A.; Parrey, S.A.; Ahmad, W.; Ethnobotanical, P. Pharmacological Properties of Saraca asoca Bark: A Review. Eur. J. Pharm. Med. Res., 2016, 3, 274-279.
[121]
Verma, A.; Jana, G.K.; Sen, S.; Chakraborty, R.; Sachan, S.; Mishra, A. Pharmacological evaluation of Saraca indica leaves for central nervous system depressant activity in mice. J Pharm Sci Res, 2010, 2(6), 338-343.
[122]
Mishra, A.; Kumar, A.; Rajbhar, N.; Kumar, A. Phytochemical and pharmacological importance of Saraca indica. Int. J. Pharm. Chem. Sci, 2013, 2, 1009-1013.
[123]
Preeti, B.; Bharti, A.; Sharma, A.; Singh, V. A review on Saraca indica plant. Int. Res. J. Pharm, 2012, 3(4), 80-84.
[124]
Borokar, A.A.; Pansare, T.A. Plant profile, phytochemistry and pharmacology of Ashoka (Saraca asoca (Roxb.) D. Wild)-A comprehensive Review. Int. J. Ayurvedic Herb. Med., 2017, 7(2), 2524-2541.
[125]
Dubey, S.; Maity, S.; Singh, M.; Saraf, S.A.; Saha, S. Phytochemistry, pharmacology and toxicology of Spilanthes acmella: a review. Adv. Pharmacol. Sci., 2013, 2013423750
[http://dx.doi.org/10.1155/2013/423750] [PMID: 24371437]
[126]
Arif, M.; Juyal, D.; Joshi, A. A review on pharmacognostic and phytochemical study of a plant Spilanthes acmella Murr. Pharma Innov., 2017, 6(5), 172-177.
[127]
Rani, A.S.; Sana, H.; Sulakshana, G.; Puri, E.S.; Keerti, M. Spilanthes acmella-an important medicinal plant. International Journal of Minor Fruits. Med. Aromat. Plants, 2019, 5(2), 15-26.
[128]
Paulraj, J.; Govindarajan, R.; Palpu, P. The genus spilanthes ethnopharmacology, phytochemistry, and pharmacological properties: a review. Adv. Pharmacol. Sci., 2013, 2013510298
[http://dx.doi.org/10.1155/2013/510298] [PMID: 24454346]
[129]
Singh, R.L.; Singh, P.; Agarwal, A. Chemical constituents and bio-pharmacological activities of Swertia chirata: a review. Nat Pro Indian J, 2012, 8, 238-247.
[130]
Tabassum, S.; Mahmood, S.; Hanif, J.; Hina, M.; Uzair, B. An overview of medicinal importance of Swertia chirayita. Int. J. App., 2012, 2(1)
[131]
Subedi, I.; Karki, T.B. Anti-Proliferative Activity of Swertia chirayita (Roxb. Ex Fleming) Karst Crude Extracts on Different Cancer Cell Lines. EC Nutrition, 2018, 13, 388-395.
[132]
Kumar, V.; Van Staden, J. A review of Swertia chirayita (Gentianaceae) as a traditional medicinal plant. Front. Pharmacol., 2016, 6, 308.
[http://dx.doi.org/10.3389/fphar.2015.00308] [PMID: 26793105]
[133]
Das, S.C.; Bhadra, S.; Roy, S. Analgesic and anti-inflammatory activities of ethanolic root extract of Swertia chirata (Gentianaceae). Jordan J. Biol. Sci., 2012, 147(617), 1-6.
[134]
Amelia, B.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.; Sulistyoningrum, A.S.; Haib, J. GC-MS analysis of clove (Syzygium aromaticum) bud essential oil from Java and Manado. In: AIP Conference Proceedings; AIP Publishing LLC, 2017; Vol. 1862, p. (No. 1)030082.
[135]
Cortés-Rojas, D.F.; de Souza, C.R.F.; Oliveira, W.P. Clove (Syzygium aromaticum): a precious spice. Asian Pac. J. Trop. Biomed., 2014, 4(2), 90-96.
[http://dx.doi.org/10.1016/S2221-1691(14)60215-X] [PMID: 25182278]
[136]
Pulikottil, S.J.; Nath, S. Potential of clove of Syzygium aromaticum in development of a therapeutic agent for periodontal disease: A review. S. Afr. Dent. J., 2015, 70(3), 108-115.
[137]
Jimoh, S.O.; Arowolo, L.A.; Alabi, K.A. Phytochemical screening and antimicrobial evaluation of Syzygium aromaticum extract and essential oil. Int. J. Curr. Microbiol. Appl. Sci., 2017, 6, 4557-4567.
[http://dx.doi.org/10.20546/ijcmas.2017.607.476]
[138]
Alma, M.H.; Ertas, M.; Nitz, S.; Kollmannsberger, H. Chemical composition and content of essential oil from the bud of cultivated Turkish clove (Syzygium aromaticum L.). BioResources, 2007, 2(2), 65-269.
[http://dx.doi.org/10.15376/biores.2.2.265-269]
[139]
Vicidomini, C.; Roviello, V.; Roviello, G.N. Molecular Basis of the Therapeutical Potential of Clove (Syzygium aromaticum L.) and Clues to Its Anti-COVID-19 Utility. Molecules, 2021, 26(7), 1880.
[http://dx.doi.org/10.3390/molecules26071880] [PMID: 33810416]
[140]
Alabi, K.; Oyeku, T. The chemical constituents extractable from teak tree (Tectona grandis Linn) obtained from Fountain University, Osogbo. Nig. J. Basic App. Sci., 2017, 25(1), 73-80.
[http://dx.doi.org/10.4314/njbas.v25i1.10]
[141]
Kushwah, A.S. In-Vitro antioxidant potential and phytochemical screening of Tectona grandis Linn. leaves. In Vitro, 2013, 10(11), 12.
[142]
Nidavani, R.B.; Mahalakshmi, A.M. Pharmacology of Tectona grandis Linn.: Short review. Int. J. Pharm. Phyto. Res., 2014, 6(1), 86-90.
[143]
Vinothini, B.; Revathi, R.; Priyanka, V.; Uma, D. Analysis of chemical compounds from the withered brown leaves of Tectona grandis. Agric. Update, 2017, 12, 178-181.
[http://dx.doi.org/10.15740/HAS/AU/12.TECHSEAR(1)2017/178-181]
[144]
Anoop, K.; Varun, T.K.; Ajeesh, A.K.; Aravind, A.; Praveen, P. MP, S.A.; Variyar, J. Screening of potential inhibitors for COVID- 19 main protease from phytoconstituents of Tectona grandis Linn: application of molecular modeling studies. 2020.
[145]
Escalona-Arranz, J.C.; Perez-Roses, R.; Jimenez, I.L.; Rodríguez-Amado, J.; Argota-Coello, H.; Canizares-Lay, J.; Humberto, J. Morris-Quevedo; Sierra-Gonzalez, G. Chemical constituents of Tamarindus indica L. leaves. Rev. Cuba. Quím., 2010, 22(3), 65-71.
[146]
Zohrameena, S.; Mujahid, M.; Bagga, P.; Khalid, M.; Noorul, H.; Nesar, A.; Saba, P. Medicinal uses and pharmacological activity of Tamarindus indica. World J. Pharm. Sciences, 2017, 5(2), 121-133.
[147]
Khanzada, S.K.; Shaikh, W.; Sofia, S.; Kazi, T.G.; Usmanghani, K.; Kabir, A.; Sheerazi, T.H. Chemical constituents of Tamarindus indica L. medicinal plant in Sindh. Pak. J. Bot., 2008, 40(6), 2553-2559.
[148]
Bhadoriya, S.S.; Ganeshpurkar, A.; Narwaria, J.; Rai, G.; Jain, A.P. Tamarindus indica: Extent of explored potential. Pharmacogn. Rev., 2011, 5(9), 73-81.
[http://dx.doi.org/10.4103/0973-7847.79102] [PMID: 22096321]
[149]
Riaz, M.; Khan, O.; Sherkheli, M.A.; Khan, M.Q.; Rashid, R. Chemical constituents of Terminalia chebula. Natural Products: An Indian Journal, 2017, 13(2), 112-127.
[150]
Upadhyay, A.; Agrahari, P.; Singh, D.K. A review on the pharmacological aspects of Terminalia chebula. Int. J. Pharmacol., 2014, 10(6), 289-298.
[http://dx.doi.org/10.3923/ijp.2014.289.298]
[151]
Bag, A.; Bhattacharyya, S.K.; Chattopadhyay, R.R. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac. J. Trop. Biomed., 2013, 3(3), 244-252.
[http://dx.doi.org/10.1016/S2221-1691(13)60059-3] [PMID: 23620847]
[152]
Sharma, P.; Dwivedee, B.P.; Bisht, D.; Dash, A.K.; Kumar, D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon, 2019, 5(9)e02437
[http://dx.doi.org/10.1016/j.heliyon.2019.e02437] [PMID: 31701036]
[153]
Joshi, G.; Kaur, R. Tinospora cordifolia: a phytopharmacological review. Int. J. Pharm. Sci. Res., 2016, 7(3), 890.
[154]
Zhang, D.H.; Wu, K.L.; Zhang, X.; Deng, S.Q.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[155]
Lung, J.; Lin, Y.S.; Yang, Y.H.; Chou, Y.L.; Shu, L.H.; Cheng, Y.C.; Liu, H.T.; Wu, C.Y. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J. Med. Virol., 2020, 92(6), 693-697.
[http://dx.doi.org/10.1002/jmv.25761] [PMID: 32167173]
[156]
Zhuang, M.; Jiang, H.; Suzuki, Y.; Li, X.; Xiao, P.; Tanaka, T.; Ling, H.; Yang, B.; Saitoh, H.; Zhang, L.; Qin, C.; Sugamura, K.; Hattori, T. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Res., 2009, 82(1), 73-81.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.001] [PMID: 19428598]
[157]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[158]
Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C.; Hsiang, C.Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[159]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[160]
Chojnacka, K.; Witek-Krowiak, A.; Skrzypczak, D.; Mikula, K.; Młynarz, P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J. Funct. Foods, 2020, 73104146
[http://dx.doi.org/10.1016/j.jff.2020.104146] [PMID: 32834835]
[161]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Nguyen, T.T.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[162]
Ashraf, M.A.; Khatun, A.; Sharmin, T.; Mobin, F.; Tanu, A.R.; Morshed, T.; Fakir, T.A.; Begum, R.A.; Nabi, A.N. MPDB 1.0: a medicinal plant database of Bangladesh. Bioinformation, 2014, 10(6), 384-386.
[http://dx.doi.org/10.6026/97320630010384] [PMID: 25097384]
[163]
Tota, K.; Rayabarapu, N.; Moosa, S.; Talla, V.; Bhyravbhatla, B.; Rao, S. InDiaMed: a comprehensive database of Indian medicinal plants for diabetes. Bioinformation, 2013, 9(7), 378-380.
[http://dx.doi.org/10.6026/97320630009378] [PMID: 23750084]
[164]
Mumtaz, A.; Ashfaq, U.A.; Ul Qamar, M.T.; Anwar, F.; Gulzar, F.; Ali, M.A.; Saari, N.; Pervez, M.T. MPD3: a useful medicinal plants database for drug designing. Nat. Prod. Res., 2017, 31(11), 1228-1236.
[http://dx.doi.org/10.1080/14786419.2016.1233409] [PMID: 27681445]
[165]
Almagro, L.; Pedreño, M.A. Use of cyclodextrins to improve the production of plant bioactive compounds. Phytochem. Rev., 2020, 19(4), 1061-1080.
[http://dx.doi.org/10.1007/s11101-020-09704-6]
[166]
Srinivasan, P.; Smolke, C.D. Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids. Nat. Commun., 2019, 10(1), 3634.
[http://dx.doi.org/10.1038/s41467-019-11588-w] [PMID: 31406117]
[167]
Marsafari, M.; Samizadeh, H.; Rabiei, B.; Mehrabi, A.; Koffas, M.; Xu, P. Biotechnological production of flavonoids: an update on plant metabolic engineering, microbial host selection, and genetically encoded biosensors. Biotechnol. J., 2020, 15(8)e1900432
[http://dx.doi.org/10.1002/biot.201900432] [PMID: 32267085]
[168]
Zha, J.; Wu, X.; Gong, G.; Koffas, M.A.G. Pathway enzyme engineering for flavonoid production in recombinant microbes. Metab. Eng. Commun., 2019, 9e00104
[http://dx.doi.org/10.1016/j.mec.2019.e00104] [PMID: 31720219]
[169]
de Assis, R.M.A.; Carneiro, J.J.; Medeiros, A.P.R.; de Carvalho, A.A.; da Cunha Honorato, A.; Carneiro, M.A.C.; Pinto, J.E.B.P. Arbuscular mycorrhizal fungi and organic manure enhance growth and accumulation of citral, total phenols, and flavonoids in Melissa officinalis L. Ind. Crops Prod., 2020, 158112981
[http://dx.doi.org/10.1016/j.indcrop.2020.112981]
[170]
Esteves, T.; Mota, A.T.; Barbeitos, C.; Andrade, K.; Afonso, C.A.; Ferreira, F.C. A study on lupin beans process wastewater nanofiltration treatment and lupanine recovery. J. Clean. Prod., 2020, 277123349
[http://dx.doi.org/10.1016/j.jclepro.2020.123349]
[171]
Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol. Rep. (Amst.), 2020, 26e00450
[http://dx.doi.org/10.1016/j.btre.2020.e00450] [PMID: 32373483]
[172]
Rawdkuen, S.; Faseha, A.; Benjakul, S.; Kaewprachu, P. Application of anthocyanin as a color indicator in gelatin films. Food Biosci., 2020, 36100603
[http://dx.doi.org/10.1016/j.fbio.2020.100603]
[173]
Alvarez-Suarez, J.M.; Cuadrado, C.; Redondo, I.B.; Giampieri, F.; Gonzalez-Paramas, A.M.; Santos-Buelga, C. Novel approaches in anthocyanin research-Plant fortification and bioavailability issues. Trends Food Sci. Technol., 2021, 117, 92-105.
[http://dx.doi.org/10.1016/j.tifs.2021.01.049]
[174]
Becerril, R.; Nerín, C.; Silva, F. Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends Food Sci. Technol., 2021, 111, 495-505.
[http://dx.doi.org/10.1016/j.tifs.2021.02.042]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy