Review Article

激肽释放酶7在肿瘤发生中的作用

卷 29, 期 15, 2022

发表于: 07 January, 2022

页: [2617 - 2631] 页: 15

弟呕挨: 10.2174/0929867328666210915104537

价格: $65

conference banner
摘要

激肽释放酶 7 (KLK7)是一种分泌型丝氨酸蛋白酶,具有糜蛋白酶活性。KLK7的异常高表达与各类癌症的发生和发展密切相关。因此,KLK7近年来被确定为癌症药物开发设计的潜在靶点。KLK7通过水解膜蛋白,细胞外基质蛋白和细胞因子等一系列底物,介导肿瘤发生的各种生物学和病理过程,包括细胞增殖,迁移,侵袭,血管生成和细胞代谢。本文主要介绍了参与KLK7及其底物相关蛋白活化的下游细胞信号通路。本文不仅有助于我们更好地了解KLK7在调控癌细胞生物学和病理过程中的机制,也为设计靶向KLK7的抑制剂奠定了坚实的基础。

关键词: 激肽释放酶7,治疗靶点,肿瘤发育,细胞信号通路,抑制剂,癌症治疗。

[1]
Egelrud, T. Purification and preliminary characterization of stratum corneum chymotryptic enzyme: a proteinase that may be involved in desquamation. J. Invest. Dermatol., 1993, 101(2), 200-204.
[http://dx.doi.org/10.1111/1523-1747.ep12363804] [PMID: 8393902]
[2]
Clements, J.; Hooper, J.; Dong, Y.; Harvey, T. The expanded human kallikrein (KLK) gene family: genomic organisation, tissue-specific expression and potential functions. Biol. Chem., 2001, 382(1), 5-14.
[http://dx.doi.org/10.1515/BC.2001.002] [PMID: 11258672]
[3]
Avgeris, M.; Mavridis, K.; Scorilas, A. Kallikrein-related peptidase genes as promising biomarkers for prognosis and monitoring of human malignancies. Biol. Chem., 2010, 391(5), 505-511.
[http://dx.doi.org/10.1515/bc.2010.056] [PMID: 20302518]
[4]
Filippou, P.S.; Karagiannis, G.S.; Musrap, N.; Diamandis, E.P. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer. Crit. Rev. Clin. Lab. Sci., 2016, 53(4), 277-291.
[http://dx.doi.org/10.3109/10408363.2016.1154643] [PMID: 26886390]
[5]
Kishibe, M. Physiological and pathological roles of kallikrein-related peptidases in the epidermis. J. Dermatol. Sci., 2019, 95(2), 50-55.
[http://dx.doi.org/10.1016/j.jdermsci.2019.06.007] [PMID: 31279501]
[6]
Shaw, J.L.; Diamandis, E.P. Distribution of 15 human kallikreins in tissues and biological fluids. Clin. Chem., 2007, 53(8), 1423-1432.
[http://dx.doi.org/10.1373/clinchem.2007.088104] [PMID: 17573418]
[7]
Brattsand, M.; Stefansson, K.; Lundh, C.; Haasum, Y.; Egelrud, T. A proteolytic cascade of kallikreins in the stratum corneum. J. Invest. Dermatol., 2005, 124(1), 198-203.
[http://dx.doi.org/10.1111/j.0022-202X.2004.23547.x] [PMID: 15654974]
[8]
Borgoño, C.A.; Michael, I.P.; Komatsu, N.; Jayakumar, A.; Kapadia, R.; Clayman, G.L.; Sotiropoulou, G.; Diamandis, E.P. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J. Biol. Chem., 2007, 282(6), 3640-3652.
[http://dx.doi.org/10.1074/jbc.M607567200] [PMID: 17158887]
[9]
Miyai, M.; Matsumoto, Y.; Yamanishi, H.; Yamamoto-Tanaka, M.; Tsuboi, R.; Hibino, T. Keratinocyte-specific mesotrypsin contributes to the desquamation process via kallikrein activation and LEKTI degradation. J. Invest. Dermatol., 2014, 134(6), 1665-1674.
[http://dx.doi.org/10.1038/jid.2014.3] [PMID: 24390132]
[10]
Talieri, M.; Mathioudaki, K.; Prezas, P.; Alexopoulou, D.K.; Diamandis, E.P.; Xynopoulos, D.; Ardavanis, A.; Arnogiannaki, N.; Scorilas, A. Clinical significance of kallikrein-related peptidase 7 (KLK7) in colorectal cancer. Thromb. Haemost., 2009, 101(4), 741-747.
[http://dx.doi.org/10.1160/TH08-07-0471] [PMID: 19350120]
[11]
Reyes, I.; Reyes, N.; Suriano, R.; Iacob, C.; Suslina, N.; Policastro, A.; Moscatello, A.; Schantz, S.; Tiwari, R.K.; Geliebter, J. Gene expression profiling identifies potential molecular markers of papillary thyroid carcinoma. Cancer Biomark., 2019, 24(1), 71-83.
[http://dx.doi.org/10.3233/CBM-181758] [PMID: 30614796]
[12]
Psyrri, A.; Kountourakis, P.; Scorilas, A.; Markakis, S.; Camp, R.; Diamandis, E.P.; Dimopoulos, M.A.; Kowalski, D. Human tissue kallikrein 7, a novel biomarker for advanced ovarian carcinoma using a novel in situ quantitative method of protein expression. Ann. Oncol., 2008, 19(7), 1271-1277.
[http://dx.doi.org/10.1093/annonc/mdn035] [PMID: 18325919]
[13]
Du, J.P.; Li, L.; Zheng, J.; Zhang, D.; Liu, W.; Zheng, W.H.; Li, X.S.; Yao, R.C.; Wang, F.; Liu, S.; Tan, X. Kallikrein-related peptidase 7 is a potential target for the treatment of pancreatic cancer. Oncotarget, 2018, 9(16), 12894-12906.
[http://dx.doi.org/10.18632/oncotarget.24132] [PMID: 29560118]
[14]
Zhang, C.Y.; Zhu, Y.; Rui, W.B.; Dai, J.; Shen, Z.J. Expression of kallikrein-related peptidase 7 is decreased in prostate cancer. Asian J. Androl., 2015, 17(1), 106-110.
[http://dx.doi.org/10.1002/asia.201402962] [PMID: 25219913]
[15]
Geng, X.; Babayeva, L.; Walch, A.; Aubele, M.; Groß, E.; Kiechle, M.; Bronger, H.; Dreyer, T.; Magdolen, V.; Dorn, J. High levels of KLK7 protein expression are related to a favorable prognosis in triple-negative breast cancer patients. Am. J. Cancer Res., 2020, 10(6), 1785-1792.
[PMID: 32642290]
[16]
Tailor, P.D.; Kodeboyina, S.K.; Bai, S.; Patel, N.; Sharma, S.; Ratnani, A.; Copland, J.A.; She, J.X.; Sharma, A. Diagnostic and prognostic biomarker potential of kallikrein family genes in different cancer types. Oncotarget, 2018, 9(25), 17876-17888.
[http://dx.doi.org/10.18632/oncotarget.24947] [PMID: 29707153]
[17]
Shan, S.J.; Scorilas, A.; Katsaros, D.; Rigault de la Longrais, I.; Massobrio, M.; Diamandis, E.P. Unfavorable prognostic value of human kallikrein 7 quantified by ELISA in ovarian cancer cytosols. Clin. Chem., 2006, 52(10), 1879-1886.
[http://dx.doi.org/10.1373/clinchem.2006.071456] [PMID: 16916986]
[18]
Zheng, Y.; Katsaros, D.; Shan, S.J.; de la Longrais, I.R.; Porpiglia, M.; Scorilas, A.; Kim, N.W.; Wolfert, R.L.; Simon, I.; Li, L.; Feng, Z.; Diamandis, E.P. A multiparametric panel for ovarian cancer diagnosis, prognosis, and response to chemotherapy. Clin. Cancer Res., 2007, 13(23), 6984-6992.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1409] [PMID: 18056174]
[19]
Dorn, J.; Bronger, H.; Kates, R.; Slotta-Huspenina, J.; Schmalfeldt, B.; Kiechle, M.; Diamandis, E.P.; Soosaipillai, A.; Schmitt, M.; Harbeck, N. OVSCORE - a validated score to identify ovarian cancer patients not suitable for primary surgery. Oncol. Lett., 2015, 9(1), 418-424.
[http://dx.doi.org/10.3892/ol.2014.2630] [PMID: 25436002]
[20]
Zheng, S.L.; Feng, M.Y.; Yang, G.; Xiong, G.B.; Zheng, L.F.; Zhang, T.P.; Zhao, Y.P. The expression of KLK7 in pancreatic cancer and the effects on the biological behavior of pancreatic cancer cells. Zhonghua Wai Ke Za Zhi, 2018, 56(5), 391-397.
[PMID: 29779317]
[21]
Iakovlev, V.; Siegel, E.R.; Tsao, M.S.; Haun, R.S. Expression of kallikrein-related peptidase 7 predicts poor prognosis in patients with unresectable pancreatic ductal adenocarcinoma. Cancer Epidemiol. Biomarkers Prev., 2012, 21(7), 1135-1142.
[http://dx.doi.org/10.1158/1055-9965.EPI-11-1079] [PMID: 22573795]
[22]
Tian, X.; Shigemasa, K.; Hirata, E.; Gu, L.; Uebaba, Y.; Nagai, N.; O’Brien, T.J.; Ohama, K. Expression of human kallikrein 7 (hK7/SCCE) and its inhibitor antileukoprotease (ALP/SLPI) in uterine endocervical glands and in cervical adenocarcinomas. Oncol. Rep., 2004, 12(5), 1001-1006.
[http://dx.doi.org/10.3892/or.12.5.1001] [PMID: 15492784]
[23]
Li, W.; Zhao, Y.; Ren, L.; Wu, X. Serum human kallikrein 7 represents a new marker for cervical cancer. Med. Oncol., 2014, 31(10), 208.
[http://dx.doi.org/10.1007/s12032-014-0208-0] [PMID: 25182706]
[24]
Talieri, M.; Li, L.; Zheng, Y.; Alexopoulou, D.K.; Soosaipillai, A.; Scorilas, A.; Xynopoulos, D.; Diamandis, E.P. The use of kallikrein-related peptidases as adjuvant prognostic markers in colorectal cancer. Br. J. Cancer, 2009, 100(10), 1659-1665.
[http://dx.doi.org/10.1038/sj.bjc.6605033] [PMID: 19367279]
[25]
Inoue, Y.; Yokobori, T.; Yokoe, T.; Toiyama, Y.; Miki, C.; Mimori, K.; Mori, M.; Kusunoki, M. Clinical significance of human kallikrein7 gene expression in colorectal cancer. Ann. Surg. Oncol., 2010, 17(11), 3037-3042.
[http://dx.doi.org/10.1245/s10434-010-1132-y] [PMID: 20544292]
[26]
Jamaspishvili, T.; Scorilas, A.; Kral, M.; Khomeriki, I.; Kurfurstova, D.; Kolar, Z.; Bouchal, J. Immunohistochemical localization and analysis of kallikrein-related peptidase 7 and 11 expression in paired cancer and benign foci in prostate cancer patients. Neoplasma, 2011, 58(4), 298-303.
[PMID: 21520985]
[27]
Devetzi, M.; Trangas, T.; Scorilas, A.; Xynopoulos, D.; Talieri, M. Parallel overexpression and clinical significance of kallikrein-related peptidases 7 and 14 (KLK7KLK14) in colon cancer. Thromb. Haemost., 2013, 109(4), 716-725.
[http://dx.doi.org/10.1160/TH12-07-0518] [PMID: 23224034]
[28]
Termini, L.; Maciag, P.C.; Soares, F.A.; Nonogaki, S.; Pereira, S.M.; Alves, V.A.; Longatto-Filho, A.; Villa, L.L. Analysis of human kallikrein 7 expression as a potential biomarker in cervical neoplasia. Int. J. Cancer, 2010, 127(2), 485-490.
[http://dx.doi.org/10.1002/ijc.25046] [PMID: 19921697]
[29]
Kyriakopoulou, L.G.; Yousef, G.M.; Scorilas, A.; Katsaros, D.; Massobrio, M.; Fracchioli, S.; Diamandis, E.P. Prognostic value of quantitatively assessed KLK7 expression in ovarian cancer. Clin. Biochem., 2003, 36(2), 135-143.
[http://dx.doi.org/10.1016/S0009-9120(02)00446-0] [PMID: 12633763]
[30]
Talieri, M.; Diamandis, E.P.; Gourgiotis, D.; Mathioudaki, K.; Scorilas, A. Expression analysis of the human kallikrein 7 (KLK7) in breast tumors: a new potential biomarker for prognosis of breast carcinoma. Thromb. Haemost., 2004, 91(1), 180-186.
[http://dx.doi.org/10.1160/TH03-05-0261] [PMID: 14691584]
[31]
Wang, P.; Magdolen, V.; Seidl, C.; Dorn, J.; Drecoll, E.; Kotzsch, M.; Yang, F.; Schmitt, M.; Schilling, O.; Rockstroh, A.; Clements, J.A.; Loessner, D. Kallikrein-related peptidases 4, 5, 6 and 7 regulate tumour-associated factors in serous ovarian cancer. Br. J. Cancer, 2018, 119(7), 1-9.
[http://dx.doi.org/10.1038/s41416-018-0260-1] [PMID: 30287916]
[32]
Walker, F.; Nicole, P.; Jallane, A.; Soosaipillai, A.; Mosbach, V.; Oikonomopoulou, K.; Diamandis, E.P.; Magdolen, V.; Darmoul, D. Kallikrein-related peptidase 7 (KLK7) is a proliferative factor that is aberrantly expressed in human colon cancer. Biol. Chem., 2014, 395(9), 1075-1086.
[http://dx.doi.org/10.1515/hsz-2014-0142] [PMID: 25153388]
[33]
Silva, L.M.; Kryza, T.; Stoll, T.; Hoogland, C.; Dong, Y.; Stephens, C.R.; Hastie, M.L.; Magdolen, V.; Kleifeld, O.; Gorman, J.J.; Clements, J.A. Integration of two in-depth quantitative proteomics approaches determines the kallikrein-related peptidase 7 (KLK7) degradome in ovarian cancer cell secretome. Mol. Cell. Proteomics, 2019, 18(5), 818-836.
[http://dx.doi.org/10.1074/mcp.RA118.001304] [PMID: 30705123]
[34]
Short, S.M.; Derrien, A.; Narsimhan, R.P.; Lawler, J.; Ingber, D.E.; Zetter, B.R. Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by beta1 integrins. J. Cell Biol., 2005, 168(4), 643-653.
[http://dx.doi.org/10.1083/jcb.200407060] [PMID: 15716381]
[35]
Lawler, P.R.; Lawler, J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb. Perspect. Med., 2012, 2(5)a006627
[http://dx.doi.org/10.1101/cshperspect.a006627] [PMID: 22553494]
[36]
Jiménez, B.; Volpert, O.V.; Crawford, S.E.; Febbraio, M.; Silverstein, R.L.; Bouck, N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat. Med., 2000, 6(1), 41-48.
[http://dx.doi.org/10.1038/71517] [PMID: 10613822]
[37]
Nylander-Lundqvist, E.; Egelrud, T. Formation of active IL-1 beta from pro-IL-1 beta catalyzed by stratum corneum chymotryptic enzyme in vitro. Acta Derm. Venereol., 1997, 77(3), 203-206.
[PMID: 9188871]
[38]
Apte, R.N.; Dotan, S.; Elkabets, M.; White, M.R.; Reich, E.; Carmi, Y.; Song, X.; Dvozkin, T.; Krelin, Y.; Voronov, E. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev., 2006, 25(3), 387-408.
[http://dx.doi.org/10.1007/s10555-006-9004-4] [PMID: 17043764]
[39]
Tosato, G.; Jones, K.D. Interleukin-1 induces interleukin-6 production in peripheral blood monocytes. Blood, 1990, 75(6), 1305-1310.
[http://dx.doi.org/10.1182/blood.V75.6.1305.1305] [PMID: 2310829]
[40]
Ikejima, T.; Okusawa, S.; Ghezzi, P.; van der Meer, J.W.; Dinarello, C.A. Interleukin-1 induces tumor necrosis factor (TNF) in human peripheral blood mononuclear cells in vitro and a circulating TNF-like activity in rabbits. J. Infect. Dis., 1990, 162(1), 215-223.
[http://dx.doi.org/10.1093/infdis/162.1.215] [PMID: 2113076]
[41]
Flores, M.B.S.; Rocha, G.Z.; Damas-Souza, D.M.; Osório-Costa, F.; Dias, M.M.; Ropelle, E.R.; Camargo, J.A.; de Carvalho, R.B.; Carvalho, H.F.; Saad, M.J.A.; Carvalheira, J.B.C. RETRACTED: Obesity-induced increase in tumor necrosis factor-α leads to development of colon cancer in mice. Gastroenterology, 2012, 143(3), 741-753.e4.
[http://dx.doi.org/10.1053/j.gastro.2012.05.045] [PMID: 22677195]
[42]
De Simone, V.; Pallone, F.; Monteleone, G.; Stolfi, C. Role of TH17 cytokines in the control of colorectal cancer. OncoImmunology, 2013, 2(12)e26617
[http://dx.doi.org/10.4161/onci.26617] [PMID: 24498548]
[43]
Kim, E.K.; Choi, E.J. Compromised MAPK signaling in human diseases: an update. Arch. Toxicol., 2015, 89(6), 867-882.
[http://dx.doi.org/10.1007/s00204-015-1472-2] [PMID: 25690731]
[44]
Ozeki, N.; Hase, N.; Hiyama, T.; Yamaguchi, H.; Kawai, R.; Kondo, A.; Nakata, K.; Mogi, M. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway. Exp. Cell Res., 2014, 328(1), 69-86.
[http://dx.doi.org/10.1016/j.yexcr.2014.05.006] [PMID: 24851717]
[45]
Ozeki, N.; Mogi, M.; Hase, N.; Hiyama, T.; Yamaguchi, H.; Kawai, R.; Kondo, A.; Nakata, K. Wnt16 Signaling is required for IL-1β-induced matrix metalloproteinase-13-regulated proliferation of human stem cell-derived osteoblastic cells. Int. J. Mol. Sci., 2016, 17(2), 221.
[http://dx.doi.org/10.3390/ijms17020221] [PMID: 26861315]
[46]
Jimi, E.; Fei, H.; Nakatomi, C. NF-κB signaling regulates physiological and pathological chondrogenesis. Int. J. Mol. Sci., 2019, 20(24), 20.
[http://dx.doi.org/10.3390/ijms20246275] [PMID: 31842396]
[47]
Sitar, T.; Popowicz, G.M.; Siwanowicz, I.; Huber, R.; Holak, T.A. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins. Proc. Natl. Acad. Sci. USA, 2006, 103(35), 13028-13033.
[http://dx.doi.org/10.1073/pnas.0605652103] [PMID: 16924115]
[48]
Yang, Y.; Sheng, M.; Huang, F.; Bu, D.; Liu, X.; Yao, Y.; Dai, C.; Sun, B.; Zhu, J.; Jiao, Y.; Wei, Z.; Zhu, H.; Lu, L.; Zhao, Y.; Jiang, C.; Wang, R. Downregulation of Insulin-like growth factor binding protein 6 is associated with ACTH-secreting pituitary adenoma growth. Pituitary, 2014, 17(6), 505-513.
[http://dx.doi.org/10.1007/s11102-013-0535-8] [PMID: 24379119]
[49]
Zinn, R.L.; Gardner, E.E.; Marchionni, L.; Murphy, S.C.; Dobromilskaya, I.; Hann, C.L.; Rudin, C.M. ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer. Mol. Cancer Ther., 2013, 12(6), 1131-1139.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0618] [PMID: 23515613]
[50]
Bach, L.A. What Happened to the IGF binding proteins? Endocrinology, 2018, 159(2), 570-578.
[http://dx.doi.org/10.1210/en.2017-00908] [PMID: 29165552]
[51]
Bach, L.A. Current ideas on the biology of IGFBP-6: More than an IGF-II inhibitor? Growth Horm. IGF Res., 2016, 30-31, 81-86.
[http://dx.doi.org/10.1016/j.ghir.2016.09.004] [PMID: 27681092]
[52]
Yamasaki, K.; Schauber, J.; Coda, A.; Lin, H.; Dorschner, R.A.; Schechter, N.M.; Bonnart, C.; Descargues, P.; Hovnanian, A.; Gallo, R.L. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J., 2006, 20(12), 2068-2080.
[http://dx.doi.org/10.1096/fj.06-6075com] [PMID: 17012259]
[53]
Chen, X.; Zou, X.; Qi, G.; Tang, Y.; Guo, Y.; Si, J.; Liang, L. Roles and mechanisms of human cathelicidin LL-37 in cancer. Cell. Physiol. Biochem., 2018, 47(3), 1060-1073.
[http://dx.doi.org/10.1159/000490183] [PMID: 29843147]
[54]
von Haussen, J.; Koczulla, R.; Shaykhiev, R.; Herr, C.; Pinkenburg, O.; Reimer, D.; Wiewrodt, R.; Biesterfeld, S.; Aigner, A.; Czubayko, F.; Bals, R. The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. Lung Cancer, 2008, 59(1), 12-23.
[http://dx.doi.org/10.1016/j.lungcan.2007.07.014] [PMID: 17764778]
[55]
Ji, P.; Zhou, Y.; Yang, Y.; Wu, J.; Zhou, H.; Quan, W.; Sun, J.; Yao, Y.; Shang, A.; Gu, C.; Zeng, B.; Firrman, J.; Xiao, W.; Bals, R.; Sun, Z.; Li, D. Myeloid cell-derived LL-37 promotes lung cancer growth by activating Wnt/β-catenin signaling. Theranostics, 2019, 9(8), 2209-2223.
[http://dx.doi.org/10.7150/thno.30726] [PMID: 31149039]
[56]
Hensel, J.A.; Chanda, D.; Kumar, S.; Sawant, A.; Grizzle, W.E.; Siegal, G.P.; Ponnazhagan, S. LL-37 as a therapeutic target for late stage prostate cancer. Prostate, 2011, 71(6), 659-670.
[http://dx.doi.org/10.1002/pros.21282] [PMID: 20957672]
[57]
Wong, S.H.M.; Fang, C.M.; Chuah, L.H.; Leong, C.O.; Ngai, S.C. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit. Rev. Oncol. Hematol., 2018, 121, 11-22.
[http://dx.doi.org/10.1016/j.critrevonc.2017.11.010] [PMID: 29279096]
[58]
Johnson, S.K.; Ramani, V.C.; Hennings, L.; Haun, R.S. Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin. Cancer, 2007, 109(9), 1811-1820.
[http://dx.doi.org/10.1002/cncr.22606] [PMID: 17354228]
[59]
Mendonsa, A.M.; Na, T.Y.; Gumbiner, B.M. E-cadherin in contact inhibition and cancer. Oncogene, 2018, 37(35), 4769-4780.
[http://dx.doi.org/10.1038/s41388-018-0304-2] [PMID: 29780167]
[60]
Gayrard, C.; Bernaudin, C.; Déjardin, T.; Seiler, C.; Borghi, N. Src- and confinement-dependent FAK activation causes E-cadherin relaxation and β-catenin activity. J. Cell Biol., 2018, 217(3), 1063-1077.
[http://dx.doi.org/10.1083/jcb.201706013] [PMID: 29311227]
[61]
Hu, Q.P.; Kuang, J.Y.; Yang, Q.K.; Bian, X.W.; Yu, S.C. Beyond a tumor suppressor: Soluble E-cadherin promotes the progression of cancer. Int. J. Cancer, 2016, 138(12), 2804-2812.
[http://dx.doi.org/10.1002/ijc.29982] [PMID: 26704932]
[62]
Inge, L.J.; Barwe, S.P.; D’Ambrosio, J.; Gopal, J.; Lu, K.; Ryazantsev, S.; Rajasekaran, S.A.; Rajasekaran, A.K. Soluble E-cadherin promotes cell survival by activating epidermal growth factor receptor. Exp. Cell Res., 2011, 317(6), 838-848.
[http://dx.doi.org/10.1016/j.yexcr.2010.12.025] [PMID: 21211535]
[63]
Brouxhon, S.M.; Kyrkanides, S.; Teng, X.; Athar, M.; Ghazizadeh, S.; Simon, M.; O’Banion, M.K.; Ma, L. Soluble E-cadherin: a critical oncogene modulating receptor tyrosine kinases, MAPK and PI3K/Akt/mTOR signaling. Oncogene, 2014, 33(2), 225-235.
[http://dx.doi.org/10.1038/onc.2012.563] [PMID: 23318419]
[64]
Ungewiß, H.; Rötzer, V.; Meir, M.; Fey, C.; Diefenbacher, M.; Schlegel, N.; Waschke, J. Dsg2 via Src-mediated transactivation shapes EGFR signaling towards cell adhesion. Cell. Mol. Life Sci., 2018, 75(22), 4251-4268.
[http://dx.doi.org/10.1007/s00018-018-2869-x] [PMID: 29980799]
[65]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel), 2017, 9(5), 9.
[http://dx.doi.org/10.3390/cancers9050052] [PMID: 28513565]
[66]
Aoki, M.; Fujishita, T. Oncogenic Roles of the PI3K/AKT/mTOR Axis. Curr. Top. Microbiol. Immunol., 2017, 407, 153-189.
[http://dx.doi.org/10.1007/82_2017_6] [PMID: 28550454]
[67]
Fang, K.C.; Raymond, W.W.; Blount, J.L.; Caughey, G.H. Dog mast cell alpha-chymase activates progelatinase B by cleaving the Phe88-Gln89 and Phe91-Glu92 bonds of the catalytic domain. J. Biol. Chem., 1997, 272(41), 25628-25635.
[http://dx.doi.org/10.1074/jbc.272.41.25628] [PMID: 9325284]
[68]
Ramani, V.C.; Kaushal, G.P.; Haun, R.S. Proteolytic action of kallikrein-related peptidase 7 produces unique active matrix metalloproteinase-9 lacking the C-terminal hemopexin domains. Biochim. Biophys. Acta, 2011, 1813(8), 1525-1531.
[http://dx.doi.org/10.1016/j.bbamcr.2011.05.007] [PMID: 21616098]
[69]
Symowicz, J.; Adley, B.P.; Gleason, K.J.; Johnson, J.J.; Ghosh, S.; Fishman, D.A.; Hudson, L.G.; Stack, M.S. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res., 2007, 67(5), 2030-2039.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2808] [PMID: 17332331]
[70]
Mariya, T.; Hirohashi, Y.; Torigoe, T.; Tabuchi, Y.; Asano, T.; Saijo, H.; Kuroda, T.; Yasuda, K.; Mizuuchi, M.; Saito, T.; Sato, N. Matrix metalloproteinase-10 regulates stemness of ovarian cancer stem-like cells by activation of canonical Wnt signaling and can be a target of chemotherapy-resistant ovarian cancer. Oncotarget, 2016, 7(18), 26806-26822.
[http://dx.doi.org/10.18632/oncotarget.8645] [PMID: 27072580]
[71]
Guo, D.; Zhang, D.; Ren, M.; Lu, G.; Zhang, X.; He, S.; Li, Y. THBS4 promotes HCC progression by regulating ITGB1 via FAK/PI3K/AKT pathway. FASEB J., 2020, 34(8), 10668-10681.
[http://dx.doi.org/10.1096/fj.202000043R] [PMID: 32567740]
[72]
David, J.M.; Rajasekaran, A.K. Dishonorable discharge: the oncogenic roles of cleaved E-cadherin fragments. Cancer Res., 2012, 72(12), 2917-2923.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3498] [PMID: 22659456]
[73]
Grabowska, M.M.; Day, M.L. Soluble E-cadherin: more than a symptom of disease. Front. Biosci., 2012, 17, 1948-1964.
[http://dx.doi.org/10.2741/4031] [PMID: 22201848]
[74]
Huang, H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors (Basel), 2018, 18(10), 18.
[http://dx.doi.org/10.3390/s18103249] [PMID: 30262739]
[75]
Schultz, S.; Saalbach, A.; Heiker, J.T.; Meier, R.; Zellmann, T.; Simon, J.C.; Beck-Sickinger, A.G. Proteolytic activation of prochemerin by kallikrein 7 breaks an ionic linkage and results in C-terminal rearrangement. Biochem. J., 2013, 452(2), 271-280.
[http://dx.doi.org/10.1042/BJ20121880] [PMID: 23495698]
[76]
Farsam, V.; Basu, A.; Gatzka, M.; Treiber, N.; Schneider, L.A.; Mulaw, M.A.; Lucas, T.; Kochanek, S.; Dummer, R.; Levesque, M.P.; Wlaschek, M.; Scharffetter-Kochanek, K. Senescent fibroblast-derived chemerin promotes squamous cell carcinoma migration. Oncotarget, 2016, 7(50), 83554-83569.
[http://dx.doi.org/10.18632/oncotarget.13446] [PMID: 27907906]
[77]
Kumar, J.D.; Kandola, S.; Tiszlavicz, L.; Reisz, Z.; Dockray, G.J.; Varro, A. The role of chemerin and ChemR23 in stimulating the invasion of squamous oesophageal cancer cells. Br. J. Cancer, 2016, 114(10), 1152-1159.
[http://dx.doi.org/10.1038/bjc.2016.93] [PMID: 27092781]
[78]
Ramani, V.C.; Hennings, L.; Haun, R.S. Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer. BMC Cancer, 2008, 8, 373.
[http://dx.doi.org/10.1186/1471-2407-8-373] [PMID: 19091121]
[79]
Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol., 2002, 29(6)(Suppl. 16), 15-18.
[http://dx.doi.org/10.1016/S0093-7754(02)70065-1] [PMID: 12516034]
[80]
Carmeliet, P.; Ferreira, V.; Breier, G.; Pollefeyt, S.; Kieckens, L.; Gertsenstein, M.; Fahrig, M.; Vandenhoeck, A.; Harpal, K.; Eberhardt, C.; Declercq, C.; Pawling, J.; Moons, L.; Collen, D.; Risau, W.; Nagy, A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 1996, 380(6573), 435-439.
[http://dx.doi.org/10.1038/380435a0] [PMID: 8602241]
[81]
Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev., 2004, 56(4), 549-580.
[http://dx.doi.org/10.1124/pr.56.4.3] [PMID: 15602010]
[82]
Gupta, K.; Gupta, P.; Wild, R.; Ramakrishnan, S.; Hebbel, R.P. Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis, 1999, 3(2), 147-158.
[http://dx.doi.org/10.1023/A:1009018702832] [PMID: 14517432]
[83]
Dawson, D.W.; Pearce, S.F.; Zhong, R.; Silverstein, R.L.; Frazier, W.A.; Bouck, N.P. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J. Cell Biol., 1997, 138(3), 707-717.
[http://dx.doi.org/10.1083/jcb.138.3.707] [PMID: 9245797]
[84]
Wu, Q.; Finley, S.D. Mathematical model predicts effective strategies to inhibit VEGF-eNOS signaling. J. Clin. Med., 2020, 9(5), 9.
[http://dx.doi.org/10.3390/jcm9051255] [PMID: 32357492]
[85]
Tang, M.K.S.; Yue, P.Y.K.; Ip, P.P.; Huang, R.L.; Lai, H.C.; Cheung, A.N.Y.; Tse, K.Y.; Ngan, H.Y.S.; Wong, A.S.T. Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat. Commun., 2018, 9(1), 2270.
[http://dx.doi.org/10.1038/s41467-018-04695-7] [PMID: 29891938]
[86]
Carrer, A.; Trefely, S.; Zhao, S.; Campbell, S.L.; Norgard, R.J.; Schultz, K.C.; Sidoli, S.; Parris, J.L.D.; Affronti, H.C.; Sivanand, S.; Egolf, S.; Sela, Y.; Trizzino, M.; Gardini, A.; Garcia, B.A.; Snyder, N.W.; Stanger, B.Z.; Wellen, K.E. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov., 2019, 9(3), 416-435.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0567] [PMID: 30626590]
[87]
Liu, G.Y.; Sabatini, D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol., 2020, 21(4), 183-203.
[http://dx.doi.org/10.1038/s41580-019-0199-y] [PMID: 31937935]
[88]
Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol., 2005, 1, 10.
[http://dx.doi.org/10.1038/msb4100014] [PMID: 16729045]
[89]
Herzig, S.; Shaw, R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[90]
Kim, J.W.; Gao, P.; Liu, Y.C.; Semenza, G.L.; Dang, C.V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol., 2007, 27(21), 7381-7393.
[http://dx.doi.org/10.1128/MCB.00440-07] [PMID: 17785433]
[91]
Le, A.; Cooper, C.R.; Gouw, A.M.; Dinavahi, R.; Maitra, A.; Deck, L.M.; Royer, R.E.; Vander Jagt, D.L.; Semenza, G.L.; Dang, C.V. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 2037-2042.
[http://dx.doi.org/10.1073/pnas.0914433107] [PMID: 20133848]
[92]
Dang, C.V.; Kim, J.W.; Gao, P.; Yustein, J. The interplay between MYC and HIF in cancer. Nat. Rev. Cancer, 2008, 8(1), 51-56.
[http://dx.doi.org/10.1038/nrc2274] [PMID: 18046334]
[93]
Yang, W.; Zheng, Y.; Xia, Y.; Ji, H.; Chen, X.; Guo, F.; Lyssiotis, C.A.; Aldape, K.; Cantley, L.C.; Lu, Z. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol., 2012, 14(12), 1295-1304.
[http://dx.doi.org/10.1038/ncb2629] [PMID: 23178880]
[94]
Rouger, L.; Denis, G.R.; Luangsay, S.; Parmentier, M. ChemR23 knockout mice display mild obesity but no deficit in adipocyte differentiation. J. Endocrinol., 2013, 219(3), 279-289.
[http://dx.doi.org/10.1530/JOE-13-0106] [PMID: 24084834]
[95]
Goettig, P.; Magdolen, V.; Brandstetter, H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie, 2010, 92(11), 1546-1567.
[http://dx.doi.org/10.1016/j.biochi.2010.06.022] [PMID: 20615447]
[96]
Potempa, J.; Korzus, E.; Travis, J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J. Biol. Chem., 1994, 269(23), 15957-15960.
[http://dx.doi.org/10.1016/S0021-9258(17)33954-6] [PMID: 8206889]
[97]
Luo, L.Y.; Jiang, W. Inhibition profiles of human tissue kallikreins by serine protease inhibitors. Biol. Chem., 2006, 387(6), 813-816.
[http://dx.doi.org/10.1515/BC.2006.103] [PMID: 16800745]
[98]
Mägert, H.J.; Ständker, L.; Kreutzmann, P.; Zucht, H.D.; Reinecke, M.; Sommerhoff, C.P.; Fritz, H.; Forssmann, W.G. LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J. Biol. Chem., 1999, 274(31), 21499-21502.
[http://dx.doi.org/10.1074/jbc.274.31.21499] [PMID: 10419450]
[99]
Deraison, C.; Bonnart, C.; Lopez, F.; Besson, C.; Robinson, R.; Jayakumar, A.; Wagberg, F.; Brattsand, M.; Hachem, J.P.; Leonardsson, G.; Hovnanian, A. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol. Biol. Cell, 2007, 18(9), 3607-3619.
[http://dx.doi.org/10.1091/mbc.e07-02-0124] [PMID: 17596512]
[100]
Egelrud, T.; Brattsand, M.; Kreutzmann, P.; Walden, M.; Vitzithum, K.; Marx, U.C.; Forssmann, W.G.; Mägert, H.J. hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Br. J. Dermatol., 2005, 153(6), 1200-1203.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06834.x] [PMID: 16307658]
[101]
Luckett, S.; Garcia, R.S.; Barker, J.J.; Konarev, A.V.; Shewry, P.R.; Clarke, A.R.; Brady, R.L. High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J. Mol. Biol., 1999, 290(2), 525-533.
[http://dx.doi.org/10.1006/jmbi.1999.2891] [PMID: 10390350]
[102]
Chen, W.; Kinsler, V.A.; Macmillan, D.; Di, W.L. Tissue kallikrein inhibitors based on the sunflower trypsin inhibitor scaffold - a potential therapeutic intervention for skin diseases. PLoS One, 2016, 11(11)e0166268
[http://dx.doi.org/10.1371/journal.pone.0166268] [PMID: 27824929]
[103]
Jendrny, C.; Beck-Sickinger, A.G. Inhibition of kallikrein-related peptidases 7 and 5 by grafting serpin reactive-center loop sequences onto sunflower trypsin inhibitor-1 (SFTI-1). ChemBioChem, 2016, 17(8), 719-726.
[http://dx.doi.org/10.1002/cbic.201500539] [PMID: 26574674]
[104]
de Veer, S.J.; Ukolova, S.S.; Munro, C.A.; Swedberg, J.E.; Buckle, A.M.; Harris, J.M. Mechanism-based selection of a potent kallikrein-related peptidase 7 inhibitor from a versatile library based on the sunflower trypsin inhibitor SFTI-1. Biopolymers, 2013, 100(5), 510-518.
[http://dx.doi.org/10.1002/bip.22231] [PMID: 24078181]
[105]
Debela, M.; Hess, P.; Magdolen, V.; Schechter, N.M.; Steiner, T.; Huber, R.; Bode, W.; Goettig, P. Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7. Proc. Natl. Acad. Sci. USA, 2007, 104(41), 16086-16091.
[http://dx.doi.org/10.1073/pnas.0707811104] [PMID: 17909180]
[106]
Pochet, L.; Doucet, C.; Dive, G.; Wouters, J.; Masereel, B.; Reboud-Ravaux, M.; Pirotte, B. Coumarinic derivatives as mechanism-based inhibitors of alpha-chymotrypsin and human leukocyte elastase. Bioorg. Med. Chem., 2000, 8(6), 1489-1501.
[http://dx.doi.org/10.1016/S0968-0896(00)00071-7] [PMID: 10896125]
[107]
Tan, X.; Soualmia, F.; Furio, L.; Renard, J.F.; Kempen, I.; Qin, L.; Pagano, M.; Pirotte, B.; El Amri, C.; Hovnanian, A.; Reboud-Ravaux, M. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J. Med. Chem., 2015, 58(2), 598-612.
[http://dx.doi.org/10.1021/jm500988d] [PMID: 25489658]
[108]
Sztanke, K.; Tuzimski, T.; Rzymowska, J.; Pasternak, K.; Kandefer-Szerszeń, M. Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2008, 43(2), 404-419.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.033] [PMID: 17531354]
[109]
Tan, X.; Furio, L.; Reboud-Ravaux, M.; Villoutreix, B.O.; Hovnanian, A.; El Amri, C. 1,2,4-Triazole derivatives as transient inactivators of kallikreins involved in skin diseases. Bioorg. Med. Chem. Lett., 2013, 23(16), 4547-4551.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.039] [PMID: 23849879]
[110]
Freitas, R.F.; Teixeira, T.S.; Barros, T.G.; Santos, J.A.; Kondo, M.Y.; Juliano, M.A.; Juliano, L.; Blaber, M.; Antunes, O.A.; Abrahão, O., Jr; Pinheiro, S.; Muri, E.M.; Puzer, L. Isomannide derivatives as new class of inhibitors for human kallikrein 7. Bioorg. Med. Chem. Lett., 2012, 22(19), 6072-6075.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.047] [PMID: 22959247]
[111]
Oliveira, J.P.; Freitas, R.F.; Melo, L.S.; Barros, T.G.; Santos, J.A.; Juliano, M.A.; Pinheiro, S.; Blaber, M.; Juliano, L.; Muri, E.M.; Puzer, L. Isomannide-based peptidomimetics as inhibitors for human tissue kallikreins 5 and 7. ACS Med. Chem. Lett., 2013, 5(2), 128-132.
[http://dx.doi.org/10.1021/ml4003698] [PMID: 24900785]
[112]
Arama, D.P.; Soualmia, F.; Lisowski, V.; Longevial, J.F.; Bosc, E.; Maillard, L.T.; Martinez, J.; Masurier, N.; El Amri, C. Pyrido-imidazodiazepinones as a new class of reversible inhibitors of human kallikrein 7. Eur. J. Med. Chem., 2015, 93, 202-213.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.008] [PMID: 25682203]
[113]
Hanke, S.; Tindall, C.A.; Pippel, J.; Ulbricht, D.; Pirotte, B.; Reboud-Ravaux, M.; Heiker, J.T.; Sträter, N. Structural studies on the inhibitory binding mode of aromatic coumarinic esters to human kallikrein-related peptidase 7. J. Med. Chem., 2020, 63(11), 5723-5733.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01806] [PMID: 32374603]
[114]
Teixeira, T.S.; Freitas, R.F.; Abrahão, O., Jr; Devienne, K.F.; de Souza, L.R.; Blaber, S.I.; Blaber, M.; Kondo, M.Y.; Juliano, M.A.; Juliano, L.; Puzer, L. Biological evaluation and docking studies of natural isocoumarins as inhibitors for human kallikrein 5 and 7. Bioorg. Med. Chem. Lett., 2011, 21(20), 6112-6115.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.044] [PMID: 21903387]
[115]
Murafuji, H.; Sakai, H.; Goto, M.; Imajo, S.; Sugawara, H.; Muto, T. Discovery and structure-activity relationship study of 1,3,6-trisubstituted 1,4-diazepane-7-ones as novel human kallikrein 7 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(23), 5272-5276.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.030] [PMID: 29102227]
[116]
Murafuji, H.; Sakai, H.; Goto, M.; Oyama, Y.; Imajo, S.; Sugawara, H.; Tomoo, T.; Muto, T. Structure-based drug design of 1,3,6-trisubstituted 1,4-diazepan-7-ones as selective human kallikrein 7 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(8), 1371-1375.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.011] [PMID: 29550094]
[117]
Murafuji, H.; Muto, T.; Goto, M.; Imajo, S.; Sugawara, H.; Oyama, Y.; Minamitsuji, Y.; Miyazaki, S.; Murai, K.; Fujioka, H. Discovery and structure-activity relationship of imidazolinylindole derivatives as kallikrein 7 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(2), 334-338.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.011] [PMID: 30522951]
[118]
Dorn, J.; Gkazepis, A.; Kotzsch, M.; Kremer, M.; Propping, C.; Mayer, K.; Mengele, K.; Diamandis, E.P.; Kiechle, M.; Magdolen, V.; Schmitt, M. Clinical value of protein expression of kallikrein-related peptidase 7 (KLK7) in ovarian cancer. Biol. Chem., 2014, 395(1), 95-107.
[http://dx.doi.org/10.1515/hsz-2013-0172] [PMID: 23999494]
[119]
Holzscheiter, L.; Biermann, J.C.; Kotzsch, M.; Prezas, P.; Farthmann, J.; Baretton, G.; Luther, T.; Tjan-Heijnen, V.C.; Talieri, M.; Schmitt, M.; Sweep, F.C.; Span, P.N.; Magdolen, V. Quantitative reverse transcription-PCR assay for detection of mRNA encoding full-length human tissue kallikrein 7: prognostic relevance of KLK7 mRNA expression in breast cancer. Clin. Chem., 2006, 52(6), 1070-1079.
[http://dx.doi.org/10.1373/clinchem.2005.065599] [PMID: 16627559]
[120]
Li, X.; Liu, J.; Wang, Y.; Zhang, L.; Ning, L.; Feng, Y. Parallel underexpression of kallikrein 5 and kallikrein 7 mRNA in breast malignancies. Cancer Sci., 2009, 100(4), 601-607.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01090.x] [PMID: 19453546]
[121]
Ejaz, S.; Nasim, F.U.; Ashraf, M.; Ahmad, G. Down-regulation of hK7 in the sera of breast cancer and benign breast disease patients. Heliyon, 2017, 3(7)e00356
[http://dx.doi.org/10.1016/j.heliyon.2017.e00356] [PMID: 28761938]
[122]
Sun, Y.; Zhao, C.; Ye, Y.; Wang, Z.; He, Y.; Li, Y.; Mao, H. High expression of fibronectin 1 indicates poor prognosis in gastric cancer. Oncol. Lett., 2020, 19(1), 93-102.
[PMID: 31897119]
[123]
Qian, S.; Tan, X.; Liu, X.; Liu, P.; Wu, Y. Exosomal Tenascin-c induces proliferation and invasion of pancreatic cancer cells by WNT signaling. OncoTargets Ther., 2019, 12, 3197-3205.
[http://dx.doi.org/10.2147/OTT.S192218] [PMID: 31118672]
[124]
Sarkar, S.; Mirzaei, R.; Zemp, F.J.; Wei, W.; Senger, D.L.; Robbins, S.M.; Yong, V.W. Activation of NOTCH signaling by tenascin-C promotes growth of human brain tumor-initiating cells. Cancer Res., 2017, 77(12), 3231-3243.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2171] [PMID: 28416488]
[125]
Wang, G.; Yang, Q.; Li, M.; Zhang, Y.; Cai, Y.; Liang, X.; Fu, Y.; Xiao, Z.; Zhou, M.; Xie, Z.; Huang, H.; Huang, Y.; Chen, Y.; He, Q.; Peng, F.; Chen, Z. Quantitative proteomic profiling of tumor-associated vascular endothelial cells in colorectal cancer. Biol. Open, 2019, 8(5), 8.
[http://dx.doi.org/10.1242/bio.042838] [PMID: 31036754]
[126]
Yu, Y.; Prassas, I.; Dimitromanolakis, A.; Diamandis, E.P. Novel biological substrates of human kallikrein 7 identified through degradomics. J. Biol. Chem., 2015, 290(29), 17762-17775.
[http://dx.doi.org/10.1074/jbc.M115.643551] [PMID: 26032414]
[127]
Ramani, V.C.; Haun, R.S. The extracellular matrix protein fibronectin is a substrate for kallikrein 7. Biochem. Biophys. Res. Commun., 2008, 369(4), 1169-1173.
[http://dx.doi.org/10.1016/j.bbrc.2008.03.021] [PMID: 18343220]
[128]
Nowicki, T.S.; Zhao, H.; Darzynkiewicz, Z.; Moscatello, A.; Shin, E.; Schantz, S.; Tiwari, R.K.; Geliebter, J. Downregulation of uPAR inhibits migration, invasion, proliferation, FAK/PI3K/Akt signaling and induces senescence in papillary thyroid carcinoma cells. Cell Cycle, 2011, 10(1), 100-107.
[http://dx.doi.org/10.4161/cc.10.1.14362] [PMID: 21191179]
[129]
Xue, A.; Xue, M.; Jackson, C.; Smith, R.C. Suppression of urokinase plasminogen activator receptor inhibits proliferation and migration of pancreatic adenocarcinoma cells via regulation of ERK/p38 signaling. Int. J. Biochem. Cell Biol., 2009, 41(8-9), 1731-1738.
[http://dx.doi.org/10.1016/j.biocel.2009.03.004] [PMID: 19433314]
[130]
Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, O.; Doganlar, Z.B.; Bilir, A.; Oktem, G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed. Pharmacother., 2018, 107, 793-805.
[http://dx.doi.org/10.1016/j.biopha.2018.08.061] [PMID: 30142541]
[131]
Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 2009, 16(3), 183-194.
[http://dx.doi.org/10.1016/j.ccr.2009.06.017] [PMID: 19732719]
[132]
Mantovani, A.; Locati, M. Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1478-1483.
[http://dx.doi.org/10.1161/ATVBAHA.113.300168] [PMID: 23766387]
[133]
Dai, E.; Han, L.; Liu, J.; Xie, Y.; Kroemer, G.; Klionsky, D.J.; Zeh, H.J.; Kang, R.; Wang, J.; Tang, D. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy, 2020, 16(11), 2069-2083.
[http://dx.doi.org/10.1080/15548627.2020.1714209] [PMID: 31920150]
[134]
Augsten, M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front. Oncol., 2014, 4, 62.
[http://dx.doi.org/10.3389/fonc.2014.00062] [PMID: 24734219]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy