Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Developments in Oxazole Derivatives as Anticancer Agents: Review on Synthetic Strategies, Mechanism of Action and SAR Studies

Author(s): Swanand Kulkarni, Kamalpreet Kaur and Vikas Jaitak*

Volume 22, Issue 10, 2022

Published on: 07 January, 2022

Page: [1859 - 1882] Pages: 24

DOI: 10.2174/1871520621666210915095421

Price: $65

conference banner
Abstract

Background: Cancer is the world’s third deadliest disease. Despite the availability of numerous treatments, researchers are focusing on the development of new drugs with no resistance and toxicity issues. Many newly synthesized drugs fail to reach clinical trials due to poor pharmacokinetic properties. Therefore, there is an imperative requisite to expand novel anticancer agents with in vivo efficacy.

Objective: This review emphasizes synthetic methods, contemporary strategies used for the inclusion of oxazole moiety, mechanistic targets, along with comprehensive structure-activity relationship studies to provide perspective into the rational design of highly efficient oxazole-based anticancer drugs.

Methods: Literature related to oxazole derivatives engaged in cancer research is reviewed. This article gives a detailed account of synthetic strategies, targets of oxazole in cancer, including STAT3, Microtubules, G-quadruplex, DNA topoisomerases, DNA damage, protein kinases, miscellaneous targets, in vitro studies, and some SAR studies.

Results: Oxazole derivatives possess potent anticancer activity by inhibiting novel targets such as STAT3 and Gquadruplex. Oxazoles also inhibit tubulin protein to induce apoptosis in cancer cells. Some other targets such as DNA topoisomerase enzyme, protein kinases, and miscellaneous targets including Cdc25, mitochondrial enzymes, HDAC, LSD1, HPV E2 TAD, NQO1, Aromatase, BCl-6, Estrogen receptor, GRP-78, and Keap-Nrf2 pathway are inhibited by oxazole derivatives. Many derivatives showed excellent potencies on various cancer cell lines with IC50 values in nanomolar concentrations.

Conclusion: Oxazole is a five-membered heterocycle, with oxygen and nitrogen at 1 and 3 positions, respectively. It is often combined with other pharmacophores in the expansion of novel anticancer drugs. In summary, oxazole is a promising entity to develop new anticancer drugs.

Keywords: Oxazole, anticancer, synthesis, mechanism of action, SAR, apoptosis.

Graphical Abstract
[1]
Sharma, H.; Sharma, K. Principles of pharmacology, 2nd ed; Paras Medical Publisher: New Delhi, 2007, pp. 834-864.
[2]
Dhiman, N.; Kaur, K.; Jaitak, V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg. Med. Chem., 2020, 28(15)115599
[http://dx.doi.org/10.1016/j.bmc.2020.115599 ] [PMID: 32631569]
[3]
van Elsas, M.J.; van Hall, T.; van der Burg, S.H. Future challenges in cancer resistance to immunotherapy. Cancers (Basel), 2020, 12(4), 935.
[http://dx.doi.org/10.3390/cancers12040935 ] [PMID: 32290124]
[4]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2 ] [PMID: 31304563]
[5]
Bischof, J.J.; Presley, C.J.; Caterino, J.M. Addressing new diagnostic and treatment challenges associated with a new age of cancer treatment. Ann. Emerg. Med., 2019, 73(1), 88-90.
[http://dx.doi.org/10.1016/j.annemergmed.2018.08.421 ] [PMID: 30243546]
[6]
Kaur, K.; Jaitak, V. Recent development in indole derivatives as anticancer agents for breast cancer. Anti-cancer Agents Medi.Chem. (formerly current medicinal chemistry-anti-cancer agents),, 2019, 119(8), 962-983.
[7]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-xanthendione hybrids as selective estrogen receptor modulators. Bioorg. Med. Chem., 2018, 26(1), 266-277.
[http://dx.doi.org/10.1016/j.bmc.2017.11.040 ] [PMID: 29198894]
[8]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-benzimidazole hybrids targeting estrogen receptor alpha (ER-α). Eur. J. Med. Chem., 2018, 146, 206-219.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.051 ] [PMID: 29407951]
[9]
Singla, R.; Prakash, K.; Bihari Gupta, K.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Identification of novel indole based heterocycles as selective estrogen receptor modulator. Bioorg. Chem., 2018, 79, 72-88.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.002 ] [PMID: 29723744]
[10]
Kumar, M.; Singla, R.; Dandriyal, J.; Jaitak, V. Coumarin derivatives as anticancer agents for lung cancer therapy: A review. Anticancer Agents Med. Chem. (formerly current medicinal chemistryanti- cancer agents),, 2018, 18(7), 964-984.
[11]
Kaur, R.; Palta, K.; Kumar, M.; Bhargava, M.; Dahiya, L. Therapeutic potential of oxazole scaffold: a patent review (2006-2017). Expert Opin. Ther. Pat., 2018, 28(11), 783-812.
[http://dx.doi.org/10.1080/13543776.2018.1526280 ] [PMID: 30239247]
[12]
Kakkar, S.; Narasimhan, B. A comprehensive review on biological activities of oxazole derivatives. BMC Chem., 2019, 13(1), 16.
[http://dx.doi.org/10.1186/s13065-019-0531-9 ] [PMID: 31384765]
[13]
Yan, X.; Wen, J.; Zhou, L.; Fan, L.; Wang, X.; Xu, Z. Current scenario of 1,3-oxazole derivatives for anticancer activity. Curr. Top. Med. Chem., 2020, 20(21), 1916-1937.
[http://dx.doi.org/10.2174/1568026620666200624161151 ] [PMID: 32579505]
[14]
Cornforth, J.; Cornforth, R. Mechanism and extension of the Fischer oxazole synthesis. Chem. Soc; (Resumed); , 1949, pp. 1028-1030.
[15]
Meng, H.; Zi, Y.; Xu, X-P.; Ji, S-J. Metal-free one-pot domino reaction: chemoselective synthesis of polyarylated oxazoles. Tetrahedron, 2015, 71(23), 3819-3826.
[http://dx.doi.org/10.1016/j.tet.2015.03.119]
[16]
Wu, B.; Wen, J.; Zhang, J.; Li, J.; Xiang, Y-Z.; Yu, X-Q. One-pot van Leusen synthesis of 4, 5-disubstituted oxazoles in ionic liquids. Synlett, 2009, 20(3), 500.
[17]
Cao, M.; Fang, Y-L.; Wang, Y-C.; Xu, X-J.; Xi, Z-W.; Tang, S. Ce(OTf)3-catalyzed multicomponent reaction of alkynyl carboxylic acids, tert-butyl isocyanide, and azides for the assembly of triazole-oxazole derivatives. ACS Comb. Sci., 2020, 22(5), 268-273.
[http://dx.doi.org/10.1021/acscombsci.0c00012 ] [PMID: 32275136]
[18]
Ren, Z-L.; Guan, Z-R.; Kong, H-H.; Ding, M-W. Multifunctional odorless isocyano (triphenylphosphoranylidene)-acetates: Synthesis and direct one-pot four-component ugi/wittig cyclization to multisubstituted oxazoles. Org. Chem. Front., 2017, 4(10), 2044-2048.
[http://dx.doi.org/10.1039/C7QO00490G]
[19]
Wipf, P.; Fletcher, J.M.; Scarone, L. Microwave promoted oxazole synthesis: Cyclocondensation cascade of oximes and acyl chlorides. Tetrahedron Lett., 2005, 46(33), 5463-5466.
[http://dx.doi.org/10.1016/j.tetlet.2005.06.063]
[20]
Gao, W-C.; Wang, R-L.; Zhang, C. Practical oxazole synthesis mediated by iodine from α-bromoketones and benzylamine derivatives. Org. Biomol. Chem., 2013, 11(41), 7123-7128.
[http://dx.doi.org/10.1039/c3ob41566j ] [PMID: 24057123]
[21]
Singh, B.S.; Lobo, H.R.; Pinjari, D.V.; Jarag, K.J.; Pandit, A.B.; Shankarling, G.S. Ultrasound and deep eutectic solvent (DES): a novel blend of techniques for rapid and energy efficient synthesis of oxazoles. Ultrason. Sonochem., 2013, 20(1), 287-293.
[http://dx.doi.org/10.1016/j.ultsonch.2012.06.003 ] [PMID: 22784641]
[22]
Gokhale, K.M.; Wagal, O.; Kanitkar, A. Synthesis of di and trisubstituted oxazoles in nonionic liquid under catalyst free conditions. Int. J. Pharm. Phytopharmacol. Res, 2012, 1(4), 156-160.
[23]
Kidwai, M.; Dave, B.; Bhushan, K. Alumina-supported synthesis of aminoazoles using microwaves. Chemical Papers-Slovak Academy Of Sciences, 2000, 54(4), 231-234.
[24]
Merkul, E.; Müller, T.J. A new consecutive three-component oxazole synthesis by an amidation-coupling-cycloisomerization (ACCI) sequence. Chem. Commun. (Camb.), 2006, (46), 4817-4819.
[http://dx.doi.org/10.1039/B610839C ] [PMID: 17345739]
[25]
Zhu, Z. L.; Ye Feng, T.; Shi Zhi, C. Formation of benzyl oxazole, a competitive path with the classical bishler-napieralski reaction. Chin. Chem. Lett., 2001, 12(11), 947-950.
[26]
Cheung, C.W.; Buchwald, S.L. Room temperature copper(II)-catalyzed oxidative cyclization of enamides to 2,5-disubstituted oxazoles via vinylic C-H functionalization. J. Org. Chem., 2012, 77(17), 7526-7537.
[http://dx.doi.org/10.1021/jo301332s ] [PMID: 22838632]
[27]
Barbero, N.; Carril, M.; SanMartin, R.; Dominguez, E. Copper-catalysed intramolecular O-arylation of aryl chlorides and bromides: A straightforward approach to benzo [d] oxazoles in water. Tetrahedron, 2007, 63(42), 10425-10432.
[http://dx.doi.org/10.1016/j.tet.2007.08.013]
[28]
Wan, C.; Zhang, J.; Wang, S.; Fan, J.; Wang, Z. Facile synthesis of polysubstituted oxazoles via a copper-catalyzed tandem oxidative cyclization. Org. Lett., 2010, 12(10), 2338-2341.
[http://dx.doi.org/10.1021/ol100688c ] [PMID: 20394433]
[29]
Xu, Z.; Zhang, C.; Jiao, N. Synthesis of oxazoles through copper-mediated aerobic oxidative dehydrogenative annulation and oxygenation of aldehydes and amines. Angew. Chem. Int. Ed. Engl., 2012, 51(45), 11367-11370.
[http://dx.doi.org/10.1002/anie.201206382 ] [PMID: 23047285]
[30]
Lautens, M.; Roy, A. Synthetic studies of the formation of oxazoles and isoxazoles from N-acetoacetyl derivatives: scope and limitations. Org. Lett., 2000, 2(4), 555-557.
[http://dx.doi.org/10.1021/ol005519e ] [PMID: 10814375]
[31]
Lee, J.J.; Kim, J.; Jun, Y.M.; Lee, B.M.; Kim, B.H. Indium-mediated one-pot synthesis of benzoxazoles or oxazoles from 2-nitrophenols or 1-aryl-2-nitroethanones. Tetrahedron, 2009, 65(43), 8821-8831.
[http://dx.doi.org/10.1016/j.tet.2009.08.059]
[32]
Wan, C.; Gao, L.; Wang, Q.; Zhang, J.; Wang, Z. Simple and efficient preparation of 2,5-disubstituted oxazoles via a metal-free-catalyzed cascade cyclization. Org. Lett., 2010, 12(17), 3902-3905.
[http://dx.doi.org/10.1021/ol101596s ] [PMID: 20681600]
[33]
Cuny, G.; Gámez-Montaño, R.; Zhu, J. Truncated diastereoselective passerini reaction, a rapid construction of polysubstituted oxazole and peptides having an α-hydroxy-β-amino acid component. Tetrahedron, 2004, 60(22), 4879-4885.
[http://dx.doi.org/10.1016/j.tet.2004.03.084]
[34]
Luo, B.; Weng, Z. Elemental tellurium mediated synthesis of 2-(trifluoromethyl)oxazoles using trifluoroacetic anhydride as reagent. Chem. Commun. (Camb.), 2018, 54(76), 10750-10753.
[http://dx.doi.org/10.1039/C8CC05670F ] [PMID: 30191210]
[35]
Weng, Y.; Lv, W.; Yu, J.; Ge, B.; Cheng, G. Preparation of 2,4,5-trisubstituted oxazoles through iodine-mediated aerobic oxidative cyclization of enaminones. Org. Lett., 2018, 20(7), 1853-1856.
[http://dx.doi.org/10.1021/acs.orglett.8b00376 ] [PMID: 29552889]
[36]
Al Zaid Siddiquee, K.; Turkson, J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res., 2008, 18(2), 254-267.
[http://dx.doi.org/10.1038/cr.2008.18 ] [PMID: 18227858]
[37]
Zhao, M.; Jiang, B.; Gao, F-H. Small molecule inhibitors of STAT3 for cancer therapy. Curr. Med. Chem., 2011, 18(26), 4012-4018.
[http://dx.doi.org/10.2174/092986711796957284 ] [PMID: 21824090]
[38]
Xiong, A.; Yang, Z.; Shen, Y.; Zhou, J.; Shen, Q. Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers (Basel), 2014, 6(2), 926-957.
[http://dx.doi.org/10.3390/cancers6020926 ] [PMID: 24743778]
[39]
Geiger, J.L.; Grandis, J.R.; Bauman, J.E. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol., 2016, 56, 84-92.
[http://dx.doi.org/10.1016/j.oraloncology.2015.11.022 ] [PMID: 26733183]
[40]
Hirano, T.; Ishihara, K.; Hibi, M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene, 2000, 19(21), 2548-2556.
[http://dx.doi.org/10.1038/sj.onc.1203551] [PMID: 10851053]
[41]
Turkson, J.; Kim, J.S.; Zhang, S.; Yuan, J.; Huang, M.; Glenn, M.; Haura, E.; Sebti, S.; Hamilton, A.D.; Jove, R. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol. Cancer Ther., 2004, 3(3), 261-269.
[PMID: 15026546]
[42]
Siddiquee, K.A.; Gunning, P.T.; Glenn, M.; Katt, W.P.; Zhang, S.; Schrock, C.; Sebti, S.M.; Jove, R.; Hamilton, A.D.; Turkson, J. An oxazole-based small-molecule Stat3 inhibitor modulates Stat3 stability and processing and induces antitumor cell effects. ACS Chem. Biol., 2007, 2(12), 787-798.
[http://dx.doi.org/10.1021/cb7001973 ] [PMID: 18154266]
[43]
Siddiquee, K.A.; Gunning, P.T.; Glenn, M.; Katt, W.P.; Zhang, S.; Schrock, C.; Sebti, S.M.; Jove, R.; Hamilton, A.D.; Turkson, J. An oxazole-based small-molecule Stat3 inhibitor modulates Stat3 stability and processing and induces antitumor cell effects. ACS Chem. Biol., 2009, 4(4), 309-309.
[http://dx.doi.org/10.1021/cb9000684 ] [PMID: 18154266]
[44]
Gunning, P.T.; Glenn, M.P.; Siddiquee, K.A.; Katt, W.P.; Masson, E.; Sebti, S.M.; Turkson, J.; Hamilton, A.D. Targeting protein-protein interactions: suppression of Stat3 dimerization with rationally designed small-molecule, nonpeptidic SH2 domain binders. ChemBioChem, 2008, 9(17), 2800-2803.
[http://dx.doi.org/10.1002/cbic.200800291 ] [PMID: 19006150]
[45]
Calligaris, D.; Lafitte, D. Chemical inhibitors: the challenge of finding the right target. Chem. Biol., 2011, 18(5), 555-557.
[http://dx.doi.org/10.1016/j.chembiol.2011.05.003 ] [PMID: 21609834]
[46]
Singh Sidhu, J.; Singla, R.; Jaitak, V. Indole derivatives as anticancer agents for breast cancer therapy: A review. . Anti-cancer Agents Med. Chem. (formerly current medicinal chemistry-anticancer agents),, 2016, 16(2), 160-173.
[47]
Chen, J.; Liu, T.; Dong, X.; Hu, Y. Recent development and SAR analysis of colchicine binding site inhibitors. Mini Rev. Med. Chem., 2009, 9(10), 1174-1190.
[http://dx.doi.org/10.2174/138955709789055234 ] [PMID: 19817710]
[48]
Nam, N-H.; Kim, Y.; You, Y-J.; Hong, D-H.; Kim, H-M.; Ahn, B-Z. Combretoxazolones: synthesis, cytotoxicity and antitumor activity. Bioorg. Med. Chem. Lett., 2001, 11(23), 3073-3076.
[http://dx.doi.org/10.1016/S0960-894X(01)00622-9] [PMID: 11714613]
[49]
Tahir, S.K.; Nukkala, M.A.; Zielinski Mozny, N.A.; Credo, R.B.; Warner, R.B.; Li, Q.; Woods, K.W.; Claiborne, A.; Gwaltney, S.L., II; Frost, D.J.; Sham, H.L.; Rosenberg, S.H.; Ng, S.C. Biological activity of A-289099: an orally active tubulin-binding indolyloxazoline derivative. Mol. Cancer Ther., 2003, 2(3), 227-233.
[PMID: 12657717]
[50]
Biersack, B.; Effenberger, K.; Schobert, R.; Ocker, M. Oxazole-bridged combretastatin A analogues with improved anticancer properties. ChemMedChem, 2010, 5(3), 420-427.
[http://dx.doi.org/10.1002/cmdc.200900477 ] [PMID: 20112324]
[51]
Biersack, B.; Effenberger, K.; Knauer, S.; Ocker, M.; Schobert, R. Ru(η6-arene) complexes of combretastatin-analogous oxazoles with enhanced anti-tumoral impact. Eur. J. Med. Chem., 2010, 45(11), 4890-4896.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.061 ] [PMID: 20727621]
[52]
Yamazaki, Y.; Kido, Y.; Hidaka, K.; Yasui, H.; Kiso, Y.; Yakushiji, F.; Hayashi, Y. Tubulin photoaffinity labeling study with a plinabulin chemical probe possessing a biotin tag at the oxazole. Bioorg. Med. Chem., 2011, 19(1), 595-602.
[http://dx.doi.org/10.1016/j.bmc.2010.10.055 ] [PMID: 21106379]
[53]
Patterson, A.W.; Peltier, H.M.; Sasse, F.; Ellman, J.A. Design, synthesis, and biological properties of highly potent tubulysin D analogues. Chemistry, 2007, 13(34), 9534-9541.
[http://dx.doi.org/10.1002/chem.200701057 ] [PMID: 17828721]
[54]
Sani, M.; Saunders, F.R.; Wallace, H.M.; Zanda, M. Total synthesis and cytotoxicity evaluation of an oxazole analogue of tubulysin U. Synlett, 2011, 2011(12), 1673-1676.
[http://dx.doi.org/10.1055/s-0030-1260806]
[55]
Henderson, M.C.; Shaw, Y-J.Y.; Wang, H.; Han, H.; Hurley, L.H.; Flynn, G.; Dorr, R.T.; Von Hoff, D.D. UA62784, a novel inhibitor of centromere protein E kinesin-like protein. Mol. Cancer Ther., 2009, 8(1), 36-44.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0789 ] [PMID: 19139111]
[56]
Tcherniuk, S.; Deshayes, S.; Sarli, V.; Divita, G.; Abrieu, A. UA62784 Is a cytotoxic inhibitor of microtubules, not CENP-E. Chem. Biol., 2011, 18(5), 631-641.
[http://dx.doi.org/10.1016/j.chembiol.2011.03.006 ] [PMID: 21609844]
[57]
Yang, W.S.; Shimada, K.; Delva, D.; Patel, M.; Ode, E.; Skouta, R.; Stockwell, B.R. Identification of simple compounds with microtubule-binding activity that inhibit cancer cell growth with high potency. ACS Med. Chem. Lett., 2012, 3(1), 35-38.
[http://dx.doi.org/10.1021/ml200195s ] [PMID: 22247791]
[58]
Wolpaw, A.J.; Stockwell, B.R. Multidimensional profiling in the investigation of small-molecule-induced cell death. In: Methods in enzymology; Elsevier, 2014; 545, pp. 265-302;
[59]
Landowski, T.H.; Samulitis, B.K.; Dorr, R.T. The diaryl oxazole PC-046 is a tubulin-binding agent with experimental anti-tumor efficacy in hematologic cancers. Invest. New Drugs, 2013, 31(6), 1616-1625.
[http://dx.doi.org/10.1007/s10637-013-0019-8 ] [PMID: 24037082]
[60]
Banerji, B.; Adhikary, S.; Majumder, L.; Ghosh, S. A green synthetic approach towards polyarylated oxazoles via iodine‐catalyzed one‐pot sp3 C− H functionalization in water: From natural product synthesis to photophysical studies. Asian J. Org. Chem., 2019, 8(4), 514-525.
[http://dx.doi.org/10.1002/ajoc.201800742]
[61]
Mahal, K.; Biersack, B.; Schobert, R. New oxazole-bridged combretastatin A-4 analogues as potential vascular-disrupting agents. Int. J. Clin. Pharmacol. Ther., 2013, 51(1), 41-43.
[http://dx.doi.org/10.5414/CPP51041 ] [PMID: 23259996]
[62]
Zhou, J.; Jin, J.; Zhang, Y.; Yin, Y.; Chen, X.; Xu, B. Synthesis and antiproliferative evaluation of novel benzoimidazole-contained oxazole-bridged analogs of combretastatin A-4. Eur. J. Med. Chem., 2013, 68, 222-232.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.006 ] [PMID: 23981529]
[63]
Semenyuta, I.; Kovalishyn, V.; Tanchuk, V.; Pilyo, S.; Zyabrev, V.; Blagodatnyy, V.; Trokhimenko, O.; Brovarets, V.; Metelytsia, L. 1,3-Oxazole derivatives as potential anticancer agents: Computer modeling and experimental study. Comput. Biol. Chem., 2016, 65, 8-15.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.09.012 ] [PMID: 27684433]
[64]
Romagnoli, R.; Baraldi, P.G.; Prencipe, F.; Oliva, P.; Baraldi, S.; Salvador, M.K.; Lopez-Cara, L.C.; Brancale, A.; Ferla, S.; Hamel, E.; Ronca, R.; Bortolozzi, R.; Mariotto, E.; Porcù, E.; Basso, G.; Viola, G. Synthesis and biological evaluation of 2-methyl-4,5-disubstituted oxazoles as a novel class of highly potent antitubulin agents. Sci. Rep., 2017, 7, 46356.
[http://dx.doi.org/10.1038/srep46356 ] [PMID: 28406191]
[65]
Kachaeva, M.V.; Hodyna, D.M.; Semenyuta, I.V.; Pilyo, S.G.; Prokopenko, V.M.; Kovalishyn, V.V.; Metelytsia, L.O.; Brovarets, V.S. Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Comput. Biol. Chem., 2018, 74, 294-303.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.04.006 ] [PMID: 29698921]
[66]
Kachaeva, M.V.; Pilyo, S.G.; Zhirnov, V.V.; Brovarets, V.S. Synthesis, characterization, and in vitro anticancer evaluation of 2-substituted 5-arylsulfonyl-1, 3-oxazole-4-carbonitriles. Med. Chem. Res., 2019, 28(1), 71-80.
[http://dx.doi.org/10.1007/s00044-018-2265-y]
[67]
Ohnmacht, S.A.; Micco, M.; Petrucci, V.; Todd, A.K.; Reszka, A.P.; Gunaratnam, M.; Carvalho, M.A.; Zloh, M.; Neidle, S. Sequences in the HSP90 promoter form G-quadruplex structures with selectivity for disubstituted phenyl bis-oxazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(18), 5930-5935.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.065 ] [PMID: 22892119]
[68]
Neidle, S. Quadruplex nucleic acids as targets for anticancer therapeutics. Nat. Rev. Chem., 2017, 1(5), 1-10.
[http://dx.doi.org/10.1038/s41570-017-0041]
[69]
Minhas, G.S.; Pilch, D.S.; Kerrigan, J.E.; LaVoie, E.J.; Rice, J.E. Synthesis and G-quadruplex stabilizing properties of a series of oxazole-containing macrocycles. Bioorg. Med. Chem. Lett., 2006, 16(15), 3891-3895.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.038 ] [PMID: 16735121]
[70]
Jabir, N. R.; Firoz, C. K.; Bhushan, A.; Tabrez, S.; Kamal, M. A. The use of azoles containing natural products in cancer prevention and treatment: An overview. Anti-cancer Agents Med. Chem. (formerly current medicinal chemistry-anti-cancer agents), 2018, 18(1), 6-14.
[71]
Sohda, K.Y.; Hiramoto, M.; Suzumura, K.; Takebayashi, Y.; Suzuki, K.; Tanaka, A. YM-216391, a novel cytotoxic cyclic peptide from Streptomyces nobilis. II. Physico-chemical properties and structure elucidation. J. Antibiot. (Tokyo), 2005, 58(1), 32-36.
[http://dx.doi.org/10.1038/ja.2005.3 ] [PMID: 15813178]
[72]
Jantos, K.; Rodriguez, R.; Ladame, S.; Shirude, P.S.; Balasubramanian, S. Oxazole-based peptide macrocycles: a new class of G-quadruplex binding ligands. J. Am. Chem. Soc., 2006, 128(42), 13662-13663.
[http://dx.doi.org/10.1021/ja064713e ] [PMID: 17044674]
[73]
Pilch, D.S.; Barbieri, C.M.; Rzuczek, S.G.; Lavoie, E.J.; Rice, J.E. Targeting human telomeric G-quadruplex DNA with oxazole-containing macrocyclic compounds. Biochimie, 2008, 90(8), 1233-1249.
[http://dx.doi.org/10.1016/j.biochi.2008.03.011 ] [PMID: 18439430]
[74]
Ritson, D.J.; Moses, J.E. A fragment based click chemistry approach towards hybrid G-quadruplex ligands: Design, synthesis and biophysical evaluation. Tetrahedron, 2012, 68(1), 197-203.
[http://dx.doi.org/10.1016/j.tet.2011.10.066]
[75]
Georgiades, S.N.; Rizeq, N. Synthesis of a ‘Propeller-like’ Oligoheteroaryl with Alternating Pyridine and Oxazole Motifs. Synlett, 2015, 26(04), 489-493.
[http://dx.doi.org/10.1055/s-0034-1379549]
[76]
Rizeq, N.; Georgiades, S.N. Investigation of ‘head-to-tail’-connected oligoaryl N,O-ligands as recognition motifs for cancer-relevant G-quadruplexes. Molecules, 2017, 22(12), 2160.
[http://dx.doi.org/10.3390/molecules22122160 ] [PMID: 29210998]
[77]
Halawa, A.H.; Elgammal, W.E.; Hassan, S.M.; Hassan, A.H.; Nassar, H.S.; Ebrahim, H.Y.; Mehany, A.B.M.; El-Agrody, A.M. Synthesis, anticancer evaluation and molecular docking studies of new heterocycles linked to sulfonamide moiety as novel human topoisomerase types I and II poisons. Bioorg. Chem., 2020, 98103725
[http://dx.doi.org/10.1016/j.bioorg.2020.103725 ] [PMID: 32199303]
[78]
Peel, M.R.; Milstead, M.W.; Sternbach, D.D.; Besterman, J.M.; Leitner, P.; Morton, B.; Wall, M.E.; Wani, M.C. Novel A-ring modified camptothecins as topoisomerase i inhibitors. Bioorg. Med. Chem. Lett., 1995, 5(18), 2129-2132.
[http://dx.doi.org/10.1016/0960-894X(95)00360-6]
[79]
Carrigan, S.W.; Fox, P.C.; Wall, M.E.; Wani, M.C.; Bowen, J.P. Comparative molecular field analysis and molecular modeling studies of 20-(S)-camptothecin analogs as inhibitors of DNA topoisomerase I and anticancer/antitumor agents. J. Comput. Aided Mol. Des., 1997, 11(1), 71-78.
[http://dx.doi.org/10.1023/A:1008027528218 ] [PMID: 9139114]
[80]
Tan, S.; Yin, H.; Chen, Z.; Qian, X.; Xu, Y. Oxo-heterocyclic fused naphthalimides as antitumor agents: synthesis and biological evaluation. Eur. J. Med. Chem., 2013, 62, 130-138.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.039 ] [PMID: 23353750]
[81]
Chen, C-L.; Liu, F-L.; Lee, C-C.; Chen, T-C.; Chang, W-W.; Guh, J-H.; Ahmed Ali, A.A.; Chang, D-M.; Huang, H-S. Ring fusion strategy for the synthesis of anthra[2,3-d]oxazole-2-thione-5,10-dione homologues as DNA topoisomerase inhibitors and as antitumor agents. Eur. J. Med. Chem., 2014, 87, 30-38.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.016 ] [PMID: 25240093]
[82]
Shah, S.R.; Katariya, K.D.; Reddy, D. Quinoline‐1, 3‐oxazole hybrids: Syntheses, anticancer activity and molecular docking studies. ChemistrySelect, 2020, 5(3), 1097-1102.
[http://dx.doi.org/10.1002/slct.201903763]
[83]
Cheng, E.H.; Wei, M.C.; Weiler, S.; Flavell, R.A.; Mak, T.W.; Lindsten, T.; Korsmeyer, S.J. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell, 2001, 8(3), 705-711.
[http://dx.doi.org/10.1016/S1097-2765(01)00320-3 ] [PMID: 11583631]
[84]
Barca, A.; Pani, B.; Tamaro, M.; Russo, E. Molecular interactions of ruthenium complexes in isolated mammalian nuclei and cytotoxicity on V79 cells in culture. Mutat. Res., 1999, 423(1-2), 171-181.
[http://dx.doi.org/10.1016/S0027-5107(98)00240-1 ] [PMID: 10029694]
[85]
Bjorndal, M.T.; Fygenson, D.K. DNA melting in the presence of fluorescent intercalating oxazole yellow dyes measured with a gel-based assay. Biopolymers, 2002, 65(1), 40-44.
[http://dx.doi.org/10.1002/bip.10220 ] [PMID: 12209471]
[86]
Murade, C.U.; Subramaniam, V.; Otto, C.; Bennink, M.L. Interaction of oxazole yellow dyes with DNA studied with hybrid optical tweezers and fluorescence microscopy. Biophys. J., 2009, 97(3), 835-843.
[http://dx.doi.org/10.1016/j.bpj.2009.05.024 ] [PMID: 19651041]
[87]
Tai, V.W-F.; Sperandio, D.; Shelton, E.J.; Litvak, J.; Pararajasingham, K.; Cebon, B.; Lohman, J.; Eksterowicz, J.; Kantak, S.; Sabbatini, P.; Brown, C.; Zeitz, J.; Reed, C.; Maske, B.; Graupe, D.; Estevez, A.; Oeh, J.; Wong, D.; Ni, Y.; Sprengeler, P.; Yee, R.; Magill, C.; Neri, A.; Cai, S.X.; Drewe, J.; Qiu, L.; Herich, J.; Tseng, B.; Kasibhatla, S.; Spencer, J.R. Discovery and structure-activity relationship of 2-phenyl-oxazole-4-carboxamide derivatives as potent apoptosis inducers. Bioorg. Med. Chem. Lett., 2006, 16(17), 4554-4558.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.018 ] [PMID: 16784854]
[88]
Hernández, D.; Altuna, M.; Cuevas, C.; Aligué, R.; Albericio, F.; Alvarez, M. Synthesis and antitumor activity of mechercharmycin A analogues. J. Med. Chem., 2008, 51(18), 5722-5730.
[http://dx.doi.org/10.1021/jm800513w ] [PMID: 18763756]
[89]
Islam, M.A.; Zhang, Y.; Wang, Y.; McAlpine, S.R. Design, synthesis and anticancer mechanistic studies of linked azoles. MedChemComm, 2015, 6(2), 300-305.
[http://dx.doi.org/10.1039/C4MD00387J]
[90]
Farmanzadeh, D.; Najafi, M. Theoretical study of anticancer properties of indolyl-oxazole drugs and their interactions with dna base pairs in gas phase and solvent. Struct. Chem., 2015, 26(3), 831-844.
[http://dx.doi.org/10.1007/s11224-014-0546-8]
[91]
Tangellamudi, N.D.; Shinde, S.B.; Pooladanda, V.; Godugu, C.; Balasubramanian, S. Facile synthesis of 2-aryl 5-hydroxy benzo[d]oxazoles and their in vitro anti-proliferative effects on various cancer cell lines. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3639-3647.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.038 ] [PMID: 30389295]
[92]
Khan, T.A.; Bhar, K.; Thirumoorthi, R.; Roy, T.K.; Sharma, A.K. Design, synthesis, characterization and evaluation of the anticancer activity of water-soluble half-sandwich ruthenium (II) arene halido complexes. New J. Chem., 2020, 44(1), 239-257.
[http://dx.doi.org/10.1039/C9NJ03663F]
[93]
Shaw, A.Y.; Henderson, M.C.; Flynn, G.; Samulitis, B.; Han, H.; Stratton, S.P.; Chow, H-H.S.; Hurley, L.H.; Dorr, R.T. Characterization of novel diaryl oxazole-based compounds as potential agents to treat pancreatic cancer. J. Pharmacol. Exp. Ther., 2009, 331(2), 636-647.
[http://dx.doi.org/10.1124/jpet.109.156406 ] [PMID: 19657049]
[94]
Martín-Cantalejo, Y.; Sáez, B.; Monterde, M.I.; Murillo, M.T.; Braña, M.F. Synthesis and biological activity of new bispyridinium salts of 4,4¢-bispyridyl-5,5¢-perfluoroalkyl-2,2¢-bisoxazoles. Eur. J. Med. Chem., 2011, 46(11), 5662-5667.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.046 ] [PMID: 21996467]
[95]
Oka, Y.; Yabuuchi, T.; Fujii, Y.; Ohtake, H.; Wakahara, S.; Matsumoto, K.; Endo, M.; Tamura, Y.; Sekiguchi, Y. Discovery and optimization of a series of 2-aminothiazole-oxazoles as potent phosphoinositide 3-kinase γ inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(24), 7534-7538.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.028 ] [PMID: 23122859]
[96]
Venkat Swamy, P.; Kiran Kumar, V.; Radhakrishnam Raju, R.; Venkata Reddy, R.; Chatterjee, A.; Kiran, G.; Sridhar, G. Amide derivatives of 4-azaindole: design, synthesis, and EGFR targeting anticancer agents. Synth. Commun., 2020, 50(1), 71-84.
[http://dx.doi.org/10.1080/00397911.2019.1683206]
[97]
Lin, J.; Shen, W.; Xue, J.; Sun, J.; Zhang, X.; Zhang, C. Novel oxazolo[4,5-g]quinazolin-2(1H)-ones: dual inhibitors of EGFR and Src protein tyrosine kinases. Eur. J. Med. Chem., 2012, 55, 39-48.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.055 ] [PMID: 22818848]
[98]
Hou, X.; Zhang, J.; Zhao, X.; Chang, L.; Hu, P.; Liu, H. Design, synthesis and bioactivities evaluation of novel quinazoline analogs containing oxazole units. Chin. J. Chem., 2014, 32(6), 538-544.
[http://dx.doi.org/10.1002/cjoc.201400271]
[99]
OuYang, Y.; Wang, C.; Zhao, B.; Xiong, H.; Xiao, Z.; Zhang, B.; Zheng, P.; Hu, J.; Gao, Y.; Zhang, M. Design, synthesis, antiproliferative activity and docking studies of quinazoline derivatives bearing oxazole or imidazole as potential EGFR inhibitors. New J. Chem., 2018, 42(21), 17203-17215.
[http://dx.doi.org/10.1039/C8NJ03594F]
[100]
Abdel-Maksoud, M.S.; Ammar, U.M.; El-Gamal, M.I.; Gamal El-Din, M.M.; Mersal, K.I.; Ali, E.M.H.; Yoo, K.H.; Lee, K-T.; Oh, C-H. Design, synthesis, and anticancer activity of imidazo[2,1-b]oxazole-based RAF kinase inhibitors. Bioorg. Chem., 2019, 93103349
[http://dx.doi.org/10.1016/j.bioorg.2019.103349 ] [PMID: 31627060]
[101]
Bao, J.; Liu, H.; Zhi, Y.; Yang, W.; Zhang, J.; Lu, T.; Wang, Y.; Lu, S. Discovery of benzo[d]oxazole derivatives as the potent type-I FLT3-ITD inhibitors. Bioorg. Chem., 2020, 94103248
[http://dx.doi.org/10.1016/j.bioorg.2019.103248 ] [PMID: 31548092]
[102]
Shen, T.; Huang, S. The role of Cdc25A in the regulation of cell proliferation and apoptosis. Anti-cancer Agents Med. Chem. (formerly current medicinal chemistry-anti-cancer agents),, 2012, 12(6), 631-639.
[103]
Rice, R.L.; Rusnak, J.M.; Yokokawa, F.; Yokokawa, S.; Messner, D.J.; Boynton, A.L.; Wipf, P.; Lazo, J.S. A targeted library of small-molecule, tyrosine, and dual-specificity phosphatase inhibitors derived from a rational core design and random side chain variation. Biochemistry, 1997, 36(50), 15965-15974.
[http://dx.doi.org/10.1021/bi971338h ] [PMID: 9398331]
[104]
Wang, G.; Shang, L.; Burgett, A.W.; Harran, P.G.; Wang, X. Diazonamide toxins reveal an unexpected function for ornithine δ-amino transferase in mitotic cell division. Proc. Natl. Acad. Sci. USA, 2007, 104(7), 2068-2073.
[http://dx.doi.org/10.1073/pnas.0610832104 ] [PMID: 17287350]
[105]
Williams, N.S.; Burgett, A.W.; Atkins, A.S.; Wang, X.; Harran, P.G.; McKnight, S.L. Therapeutic anticancer efficacy of a synthetic diazonamide analog in the absence of overt toxicity. Proc. Natl. Acad. Sci. USA, 2007, 104(7), 2074-2079.
[http://dx.doi.org/10.1073/pnas.0611340104 ] [PMID: 17287337]
[106]
Tauchman, J.; Paul, L.E.; Furrer, J.; Therrien, B.; Süss-Fink, G. Cationic triruthenium (III) oxo complexes of the type [Ru3O (OAc) 6L3]+ containing imidazole, pyrazole, thiazole and oxazole ligands: Synthesis, molecular structure, and cytotoxicity. Inorg. Chim. Acta, 2014, 423, 16-20.
[http://dx.doi.org/10.1016/j.ica.2014.07.049]
[107]
Guerra-Bubb, J.M.; Bowers, A.A.; Smith, W.B.; Paranal, R.; Estiu, G.; Wiest, O.; Bradner, J.E.; Williams, R.M. Synthesis and HDAC inhibitory activity of isosteric thiazoline-oxazole largazole analogs. Bioorg. Med. Chem. Lett., 2013, 23(21), 6025-6028.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.012 ] [PMID: 24035339]
[108]
Dulla, B.; Kirla, K.T.; Rathore, V.; Deora, G.S.; Kavela, S.; Maddika, S.; Chatti, K.; Reiser, O.; Iqbal, J.; Pal, M. Synthesis and evaluation of 3-amino/guanidine substituted phenyl oxazoles as a novel class of LSD1 inhibitors with anti-proliferative properties. Org. Biomol. Chem., 2013, 11(19), 3103-3107.
[http://dx.doi.org/10.1039/c3ob40217g ] [PMID: 23575971]
[109]
Kumar, R.; Ravi, S.; Sundaram, K.; Venkatachalapathi, S.; Ali Muhammad, S. Conventional and microwave assisted synthesis of 2-aminothiazoles and oxazoles and their anti cancer activity. Indo Amer. Pharma. Res., 2015, 5, 555-561.
[110]
Nishimura, A.; Ono, T.; Ishimoto, A.; Dowhanick, J.J.; Frizzell, M.A.; Howley, P.M.; Sakai, H. Mechanisms of human papillomavirus E2-mediated repression of viral oncogene expression and cervical cancer cell growth inhibition. J. Virol., 2000, 74(8), 3752-3760.
[http://dx.doi.org/10.1128/JVI.74.8.3752-3760.2000 ] [PMID: 10729150]
[111]
Li, X.; Bian, J.; Wang, N.; Qian, X.; Gu, J.; Mu, T.; Fan, J.; Yang, X.; Li, S.; Yang, T.; Sun, H.; You, Q.; Zhang, X. Novel naphtho[2,1-d]oxazole-4,5-diones as NQO1 substrates with improved aqueous solubility: Design, synthesis, and in vivo antitumor evaluation. Bioorg. Med. Chem., 2016, 24(5), 1006-1013.
[http://dx.doi.org/10.1016/j.bmc.2016.01.024 ] [PMID: 26803578]
[112]
Yamaguchi, Y.; Nishizono, N.; Kobayashi, D.; Yoshimura, T.; Wada, K.; Oda, K. Evaluation of synthesized coumarin derivatives on aromatase inhibitory activity. Bioorg. Med. Chem. Lett., 2017, 27(12), 2645-2649.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.062 ] [PMID: 28512028]
[113]
Cerchietti, L.C.; Ghetu, A.F.; Zhu, X.; Da Silva, G.F.; Zhong, S.; Matthews, M.; Bunting, K.L.; Polo, J.M.; Farès, C.; Arrowsmith, C.H.; Yang, S.N.; Garcia, M.; Coop, A.; Mackerell, A.D., Jr; Privé, G.G.; Melnick, A. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell, 2010, 17(4), 400-411.
[http://dx.doi.org/10.1016/j.ccr.2009.12.050 ] [PMID: 20385364]
[114]
Kachaeva, M.; Pilyo, S.; Demydchuk, B.; Prokopenko, V.; Zhirnov, V.; Brovarets, V. 4-cyano-1, 3-oxazole-5-sulfonamides as novel promising anticancer lead compounds. Int. J. Curr. Res., 2018, 10(5), 69410-69425.
[115]
Govek, S.P.; Bonnefous, C.; Julien, J.D.; Nagasawa, J.Y.; Kahraman, M.; Lai, A.G.; Douglas, K.L.; Aparicio, A.M.; Darimont, B.D.; Grillot, K.L.; Joseph, J.D.; Kaufman, J.A.; Lee, K.J.; Lu, N.; Moon, M.J.; Prudente, R.Y.; Sensintaffar, J.; Rix, P.J.; Hager, J.H.; Smith, N.D. Selective estrogen receptor degraders with novel structural motifs induce regression in a tamoxifen-resistant breast cancer xenograft. Bioorg. Med. Chem. Lett., 2019, 29(3), 367-372.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.042 ] [PMID: 30587451]
[116]
Qiao, Y.; Dsouza, C.; Matthews, A.A.; Jin, Y.; He, W.; Bao, J.; Jiang, F.; Chandna, R.; Ge, R.; Fu, L. Discovery of small molecules targeting GRP78 for antiangiogenic and anticancer therapy. Eur. J. Med. Chem., 2020, 193112228
[http://dx.doi.org/10.1016/j.ejmech.2020.112228 ] [PMID: 32199134]
[117]
Baird, L.; Dinkova-Kostova, A.T. The cytoprotective role of the Keap1-Nrf2 pathway. Arch. Toxicol., 2011, 85(4), 241-272.
[http://dx.doi.org/10.1007/s00204-011-0674-5 ] [PMID: 21365312]
[118]
Khusnutdinova, E.F.; Petrova, A.V.; Lobov, A.N.; Kukovinets, O.S.; Baev, D.S.; Kazakova, O.B. Synthesis of C17-[5-methyl-1,3]-oxazoles by N-propargylation of triterpenic acids and evaluation of their cytotoxic activity. Nat. Prod. Res., 2020, 1-9.
[http://dx.doi.org/10.1080/14786419.2020.1744139 ] [PMID: 32223360]
[119]
Marcotte, D.; Zeng, W.; Hus, J-C.; McKenzie, A.; Hession, C.; Jin, P.; Bergeron, C.; Lugovskoy, A.; Enyedy, I.; Cuervo, H.; Wang, D.; Atmanene, C.; Roecklin, D.; Vecchi, M.; Vivat, V.; Kraemer, J.; Winkler, D.; Hong, V.; Chao, J.; Lukashev, M.; Silvian, L. Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Bioorg. Med. Chem., 2013, 21(14), 4011-4019.
[http://dx.doi.org/10.1016/j.bmc.2013.04.019 ] [PMID: 23647822]
[120]
Sączewski, F.; Stencel, A.; Bieńczak, A.M.; Langowska, K.A.; Michaelis, M.; Werel, W.; Hałasa, R.; Reszka, P.; Bednarski, P.J. Structure-activity relationships of novel heteroaryl-acrylonitriles as cytotoxic and antibacterial agents. Eur. J. Med. Chem., 2008, 43(9), 1847-1857.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.017 ] [PMID: 18187237]
[121]
Tandel, R.; Mammen, D. Synthesis and study of some compounds containing oxazolone ring, showing biological activity, 2008.
[122]
Liu, X.; Bai, L.; Pan, C.; Song, B.; Zhu, H. Novel 5‐Methyl‐2‐[(un) substituted phenyl]‐4‐{4, 5‐dihydro‐3‐[(un) substituted phenyl]‐5‐(1, 2, 3, 4‐tetrahydroisoquinoline‐2‐yl) pyrazol‐1‐yl}‐oxazole Derivatives: Synthesis and Anticancer Activity. Chin. J. Chem., 2009, 27(10), 1957-1961.
[http://dx.doi.org/10.1002/cjoc.200990329]
[123]
Liu, X-H.; Lv, P-C.; Xue, J-Y.; Song, B-A.; Zhu, H-L. Novel 2,4,5-trisubstituted oxazole derivatives: synthesis and antiproliferative activity. Eur. J. Med. Chem., 2009, 44(10), 3930-3935.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.019 ] [PMID: 19423198]
[124]
Kumar, D.; Kumar, N.M.; Sundaree, S.; Johnson, E.O.; Shah, K. An expeditious synthesis and anticancer activity of novel 4-(3¢-indolyl)oxazoles. Eur. J. Med. Chem., 2010, 45(3), 1244-1249.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.024 ] [PMID: 20047778]
[125]
Brandy, Y.; Ononiwu, I.; Adedeji, D.; Williams, V.; Mouamba, C.; Kanaan, Y.; Copeland, R.L., Jr; Wright, D.A.; Butcher, R.J.; Denmeade, S.R.; Bakare, O. Synthesis and cytotoxic activities of some 2-arylnaphtho[2,3-d]oxazole-4,9-dione derivatives on androgen-dependent (LNCaP) and androgen-independent (PC3) human prostate cancer cell lines. Invest. New Drugs, 2012, 30(4), 1709-1714.
[http://dx.doi.org/10.1007/s10637-011-9635-3 ] [PMID: 21243402]
[126]
Savariz, F.C.; Foglio, M.A.; de Carvalho, J.E.; Ruiz, A.L.T.; Duarte, M.C.; da Rosa, M.F.; Meyer, E.; Sarragiotto, M.H. Synthesis and evaluation of new β-carboline-3-(4-benzylidene)-4H-oxazol-5-one derivatives as antitumor agents. Molecules, 2012, 17(5), 6100-6113.
[http://dx.doi.org/10.3390/molecules17056100 ] [PMID: 22614863]
[127]
Mathew, J.E.; Divya, G.; Vachala, S.D.; Mathew, J.A.; Jeyaprakash, R.S. Synthesis and characterisation of novel 2, 4-diphenyloxazole derivatives and evaluation of their in vitro antioxidant and anticancer activity. J. Pharm. Res., 2013, 6(1), 210-213.
[http://dx.doi.org/10.1016/j.jopr.2012.12.001]
[128]
Premakumari, C.; Muralikrishna, A.; Padmaja, A.; Padmavathi, V.; Park, S.J.; Kim, T-J.; Reddy, G.D. Synthesis, antimicrobial and anticancer activities of amido sulfonamido methane linked bis heterocycles. Arab. J. Chem., 2014, 7(4), 385-395.
[http://dx.doi.org/10.1016/j.arabjc.2013.10.024]
[129]
Wu, C.; Liang, Z-W.; Xu, Y-Y.; He, W-M.; Xiang, J-N. Gold-catalyzed oxazoles synthesis and their relevant antiproliferative activities. Chin. Chem. Lett., 2013, 24(12), 1064-1066.
[http://dx.doi.org/10.1016/j.cclet.2013.06.026]
[130]
El-Arab, E.E.; El-Said, A.; Amine, M.; Moharram, H. Synthesis and antitumor activity evaluation of new 2-(4-aminophenyl) benzothiazole/oxazole/imidazole derivatives. Egypt. J. Chem., 2016, 59(6), 967-984.
[http://dx.doi.org/10.21608/ejchem.2016.1544]
[131]
Abdel-Kader, M.S.; Ghorab, M.M.; Alsaid, M.S.; Alqasoumi, S.I. Design, synthesis, and anticancer evaluation of some novel thiourea, carbamimidothioic acid, oxazole, oxazolidine, and 2-amino-1-phenylpropyl-2-chloroacetate derived from L-norephedrine. Russ. J. Bioorganic Chem., 2016, 42(4), 434-440.
[http://dx.doi.org/10.1134/S1068162016040026]
[132]
Kachaeva, M.V.; Hodyna, D.M.; Obernikhina, N.V.; Pilyo, S.G.; Kovalenko, Y.S.; Prokopenko, V.M.; Kachkovsky, O.D.; Brovarets, V.S. Dependence of the anticancer activity of 1, 3‐oxazole derivatives on the donor/acceptor nature of his substitues. J. Heterocycl. Chem., 2019, 56(11), 3122-3134.
[http://dx.doi.org/10.1002/jhet.3711]
[133]
Perupogu, N.; Kumar, D.R.; Ramachandran, D. Anticancer activity of newly synthesized 1, 2, 4-oxadiazole linked 4-(oxazolo [5, 4-d] pyrimidine derivatives. Elsevier, , 2020.
[134]
Krishna, R.; Sridhar, G.; Jayaprakash, H. Synthesis and anticancer activity of novel 1, 2, 3-triazole ring incorporated 1, 2, 4-oxadiazole-1, 3-oxazole derivatives. Russ. J. Gen. Chem.,, 2020, 90(5), 901-906.
[http://dx.doi.org/10.1134/S1070363220050242]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy