Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Interaction of Host Pattern Recognition Receptors (PRRs) with Mycobacterium Tuberculosis and Ayurvedic Management of Tuberculosis: A Systemic Approach

Author(s): Nirmaladevi Ponnusamy and Mohanapriya Arumugam*

Volume 22, Issue 2, 2022

Published on: 13 September, 2021

Article ID: e130921196420 Pages: 13

DOI: 10.2174/1871526521666210913110834

Price: $65

Abstract

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb), infects the lungs' alveolar surfaces through aerosol droplets. At this stage, the disease progression may have many consequences, determined primarily by the reactions of the human immune system. However, one approach will be to more actively integrate the immune system, especially the pattern recognition receptor (PRR) systems of the host, which notices pathogen-associated molecular patterns (PAMPs) of Mtb. Several types of PRRs are involved in the detection of Mtb, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), Dendritic cell (DC) -specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), Mannose receptor (MR), and NOD-like receptors (NLRs) related to inflammasome activation. In this study, we focus on reviewing the Mtb pathophysiology and interaction of host PPRs with Mtb as well as adverse drug effects of anti-tuberculosis drugs (ATDs) and systematic TB treatment via Ayurvedic medicine.

Keywords: Mycobacterium tuberculosis, toll-like receptor, pattern recognition receptor, ayurvedic medicine, anti-tuberculosis drugs.

Graphical Abstract
[1]
Pan SC, Ku CC, Kao D, Ezzati M, Fang CT, Lin HH. Effect of diabetes on tuberculosis control in 13 countries with high tuberculosis: A modelling study. Lancet Diabetes Endocrinol 2015; 3(5): 323-30.
[http://dx.doi.org/10.1016/S2213-8587(15)00042-X] [PMID: 25754415]
[2]
Cayabyab MJ, Macovei L, Campos-Neto A. Current and novel approaches to vaccine development against tuberculosis. Front Cell Infect Microbiol 2012; 2: 154.
[http://dx.doi.org/10.3389/fcimb.2012.00154] [PMID: 23230563]
[3]
WHO. Global Tuberculosis Report 2018. Geneva: World Health Organization 2018.
[4]
Turvey SE, Broide DH. Innate immunity. J Allergy Clin Immunol 2010; 125(2)(Suppl. 2): S24-32.
[http://dx.doi.org/10.1016/j.jaci.2009.07.016] [PMID: 19932920]
[5]
Sandhu GK. Tuberculosis: current situation, challenges and overview of its control programs in India. J Glob Infect Dis 2011; 3(2): 143-50.
[http://dx.doi.org/10.4103/0974-777X.81691] [PMID: 21731301]
[6]
Khan PY, Yates TA, Osman M, et al. Transmission of drug-resistant tuberculosis in HIV-endemic settings. Lancet Infect Dis 2019; 19(3): e77-88.
[http://dx.doi.org/10.1016/S1473-3099(18)30537-1] [PMID: 30554996]
[7]
Chetty S, Ramesh M, Singh-Pillay A, Soliman MES. Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett 2017; 27(3): 370-86.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.084] [PMID: 28017531]
[8]
Jeon D. WHO treatment guidelines for drug-resistant tuberculosis, 2016 update: Applicability in South Korea. Tuberc Respir Dis (Seoul) 2017; 80(4): 336-43.
[http://dx.doi.org/10.4046/trd.2017.0049] [PMID: 28905529]
[9]
Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2003; 83(1-3): 91-7.
[http://dx.doi.org/10.1016/S1472-9792(02)00089-6] [PMID: 12758196]
[10]
Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front Immunol 2014; 5: 514.
[http://dx.doi.org/10.3389/fimmu.2014.00514] [PMID: 25368618]
[11]
Pribul PK, Harker J, Wang B, et al. Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development. J Virol 2008; 82(9): 4441-8.
[http://dx.doi.org/10.1128/JVI.02541-07] [PMID: 18287232]
[12]
Schafer DP, Stevens B. Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol 2015; 7(10): a020545.
[http://dx.doi.org/10.1101/cshperspect.a020545] [PMID: 26187728]
[13]
Filipovich A, McClain K, Grom A. Histiocytic disorders: recent insights into pathophysiology and practical guidelines. Biol Blood Marrow Transplant 2010; 16(1)(Suppl.): S82-9.
[http://dx.doi.org/10.1016/j.bbmt.2009.11.014] [PMID: 19932759]
[14]
Nguyen-Lefebvre AT, Horuzsko A. Kupffer cell metabolism and function. J Enzymol Metab 2015; 1(1): 101.
[PMID: 26937490]
[15]
Jaitley S, Saraswathi T. Pathophysiology of langerhans cells. J Oral Maxillofac Pathol 2012; 16(2): 239-44.
[http://dx.doi.org/10.4103/0973-029X.99077] [PMID: 22923897]
[16]
Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol 2013; 3: 411.
[http://dx.doi.org/10.3389/fimmu.2012.00411] [PMID: 23308075]
[17]
Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and chemokines in Mycobacterium tuberculosis infection. Microbiol Spectr 2016; 4(5)
[http://dx.doi.org/10.1128/microbiolspec.TBTB2-0018-2016] [PMID: 27763255]
[18]
Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 2015; 264(1): 182-203.
[http://dx.doi.org/10.1111/imr.12266] [PMID: 25703560]
[19]
Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The immune escape mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci 2019; 20(2): 340.
[http://dx.doi.org/10.3390/ijms20020340] [PMID: 30650615]
[20]
Jo EK, Yuk JM, Shin DM, Sasakawa C. Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol 2013; 4: 97.
[http://dx.doi.org/10.3389/fimmu.2013.00097] [PMID: 23653625]
[21]
Guerra F, Bucci C. Multiple roles of the small GTPase Rab7. Cells 2016; 5(3): 34.
[http://dx.doi.org/10.3390/cells5030034] [PMID: 27548222]
[22]
Zulauf KE, Sullivan JT, Braunstein M. The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation. PLoS Pathog 2018; 14(4): e1007011.
[http://dx.doi.org/10.1371/journal.ppat.1007011] [PMID: 29709019]
[23]
Chandra P, Ghanwat S, Matta SK, et al. Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages. Sci Rep 2015; 5: 16320.
[http://dx.doi.org/10.1038/srep16320] [PMID: 26541268]
[24]
Mortaz E, Adcock IM, Tabarsi P, et al. Interaction of pattern recognition receptors with Mycobacterium Tuberculosis. J Clin Immunol 2015; 35(1): 1-10.
[http://dx.doi.org/10.1007/s10875-014-0103-7] [PMID: 25312698]
[25]
Horvai A, Palinski W, Wu H, Moulton KS, Kalla K, Glass CK. Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions. Proc Natl Acad Sci USA 1995; 92(12): 5391-5.
[http://dx.doi.org/10.1073/pnas.92.12.5391] [PMID: 7777517]
[26]
Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M. Essentials of glycobiology. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press 2017; pp. 2015-7.
[27]
Plato A, Willment JA, Brown GD. C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways. Int Rev Immunol 2013; 32(2): 134-56.
[http://dx.doi.org/10.3109/08830185.2013.777065] [PMID: 23570314]
[28]
Kim YK, Shin JS, Nahm MH. NOD-like receptors in infection, immunity, and diseases. Yonsei Med J 2016; 57(1): 5-14.
[http://dx.doi.org/10.3349/ymj.2016.57.1.5] [PMID: 26632377]
[29]
Dixit E, Kagan JC. Intracellular pathogen detection by RIG-I-like receptors. Adv Immunol 2013; 117: 99-125.
[http://dx.doi.org/10.1016/B978-0-12-410524-9.00004-9] [PMID: 23611287]
[30]
Bajic G, Yatime L, Sim RB, Vorup-Jensen T, Andersen GR. Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc Natl Acad Sci USA 2013; 110(41): 16426-31.
[http://dx.doi.org/10.1073/pnas.1311261110] [PMID: 24065820]
[31]
McCormack FX. Structure, processing and properties of surfactant protein A. Biochim Biophys Acta 1998; 1408(2-3): 109-31.
[http://dx.doi.org/10.1016/S0925-4439(98)00062-3] [PMID: 9813267]
[32]
Jakel A, Qaseem AS, Kishore U, Sim RB. Ligands and receptors of lung surfactant proteins SP-A and SP-D. Front Biosci 2013; 18: 1129-40.
[http://dx.doi.org/10.2741/4168] [PMID: 23747872]
[33]
Lennartz MR, Wileman TE, Stahl PD. Isolation and characterization of a mannose-specific endocytosis receptor from rabbit alveolar macrophages. Biochem J 1987; 245(3): 705-11.
[http://dx.doi.org/10.1042/bj2450705] [PMID: 3663187]
[34]
Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34(5): 637-50.
[http://dx.doi.org/10.1016/j.immuni.2011.05.006] [PMID: 21616434]
[35]
Biyikli OO, Baysak A, Ece G, Oz AT, Ozhan MH, Berdeli A. Role of toll-like receptors in tuberculosis infection. Jundishapur J Microbiol 2016; 9(10): e20224.
[http://dx.doi.org/10.5812/jjm.20224] [PMID: 27942355]
[36]
Faridgohar M, Nikoueinejad H. New findings of Toll-like receptors involved in Mycobacterium tuberculosis infection. Pathog Glob Health 2017; 111(5): 256-64.
[http://dx.doi.org/10.1080/20477724.2017.1351080] [PMID: 28715935]
[37]
Heldwein KA, Fenton MJ. The role of Toll-like receptors in immunity against mycobacterial infection. Microbes Infect 2002; 4(9): 937-44.
[http://dx.doi.org/10.1016/S1286-4579(02)01611-8] [PMID: 12106786]
[38]
Mortaz E, Adcock IM, Barnes PJ. Sarcoidosis: Role of non-tuberculosis mycobacteria and Mycobacterium tuberculosis. Int J Mycobacteriol 2014; 3(4): 225-9.
[http://dx.doi.org/10.1016/j.ijmyco.2014.10.008] [PMID: 26786620]
[39]
Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 1999; 163(7): 3920-7.
[PMID: 10490993]
[40]
Pai M, Riley LW, Colford JM Jr. Interferon-γ assays in the immunodiagnosis of tuberculosis: A systematic review. Lancet Infect Dis 2004; 4(12): 761-76.
[http://dx.doi.org/10.1016/S1473-3099(04)01206-X] [PMID: 15567126]
[41]
Pestka S, Kotenko SV, Muthukumaran G, Izotova LS, Cook JR, Garotta G. The interferon gamma (IFN-gamma) receptor: A paradigm for the multichain cytokine receptor. Cytokine Growth Factor Rev 1997; 8(3): 189-206.
[http://dx.doi.org/10.1016/S1359-6101(97)00009-9] [PMID: 9462485]
[42]
Flesch IEA, Hess JH, Huang S, et al. Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon γ and tumor necrosis factor α. J Exp Med 1995; 181(5): 1615-21.
[http://dx.doi.org/10.1084/jem.181.5.1615] [PMID: 7722441]
[43]
Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon γ gene-disrupted mice. J Exp Med 1993; 178(6): 2243-7.
[http://dx.doi.org/10.1084/jem.178.6.2243] [PMID: 8245795]
[44]
Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993; 178(6): 2249-54.
[http://dx.doi.org/10.1084/jem.178.6.2249] [PMID: 7504064]
[45]
Moura EP, Toledo VPCP, Oliveira MHP, Spíndola-de-Miranda S, Andrade HM, Guimarães TMPD. Pulmonary tuberculosis: evaluation of interferon-γ levels as an immunological healing marker based on the response to the Bacillus Calmette-Guerin. Mem Inst Oswaldo Cruz 2004; 99(3): 283-7.
[http://dx.doi.org/10.1590/S0074-02762004000300008] [PMID: 15273801]
[46]
Algood HMS, Chan J, Flynn JL. Chemokines and tuberculosis. Cytokine Growth Factor Rev 2003; 14(6): 467-77.
[http://dx.doi.org/10.1016/S1359-6101(03)00054-6] [PMID: 14563349]
[47]
Andrade Júnior DR, Santos SA. Castro Id, Andrade DR. Correlation between serum tumor necrosis factor alpha levels and clinical severity of tuberculosis. Braz J Infect Dis 2008; 12(3): 226-33.
[PMID: 18833408]
[48]
Imperiali FG, Zaninoni A, La Maestra L, Tarsia P, Blasi F, Barcellini W. Increased Mycobacterium tuberculosis growth in HIV-1-infected human macrophages: role of tumour necrosis factor-alpha. Clin Exp Immunol 2001; 123(3): 435-42.
[http://dx.doi.org/10.1046/j.1365-2249.2001.01481.x] [PMID: 11298131]
[49]
Dinarello CA. Proinflammatory cytokines. Chest 2000; 118(2): 503-8.
[http://dx.doi.org/10.1378/chest.118.2.503] [PMID: 10936147]
[50]
Flynn JL, Goldstein MM, Chan J, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 1995; 2(6): 561-72.
[http://dx.doi.org/10.1016/1074-7613(95)90001-2] [PMID: 7540941]
[51]
Farber JM. Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 1997; 61(3): 246-57.
[http://dx.doi.org/10.1002/jlb.61.3.246] [PMID: 9060447]
[52]
Cole KE, Strick CA, Paradis TJ, et al. Interferon-inducible T cell alpha chemoattractant (I-TAC): A novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 1998; 187(12): 2009-21.
[http://dx.doi.org/10.1084/jem.187.12.2009] [PMID: 9625760]
[53]
Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 2014; 32: 659-702.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120145] [PMID: 24655300]
[54]
Kart L, Buyukoglan H, Tekin IO, et al. Correlation of serum tumor necrosis factor-alpha, interleukin-4 and soluble interleukin-2 receptor levels with radiologic and clinical manifestations in active pulmonary tuberculosis. Mediators Inflamm 2003; 12(1): 9-14.
[http://dx.doi.org/10.1080/0962935031000096926] [PMID: 12745543]
[55]
Tramontana JM, Utaipat U, Molloy A, et al. Thalidomide treatment reduces tumor necrosis factor alpha production and enhances weight gain in patients with pulmonary tuberculosis. Mol Med 1995; 1(4): 384-97.
[http://dx.doi.org/10.1007/BF03401576] [PMID: 8521296]
[56]
Tan CH, Kontoyiannis DP, Viswanathan C, Iyer RB. Tuberculosis: A benign impostor. AJR Am J Roentgenol 2010; 194(3): 555-61.
[http://dx.doi.org/10.2214/AJR.09.3055] [PMID: 20173128]
[57]
Ladel CH, Szalay G, Riedel D, Kaufmann SHE. Interleukin-12 secretion by Mycobacterium tuberculosis-infected macrophages. Infect Immun 1997; 65(5): 1936-8.
[http://dx.doi.org/10.1128/iai.65.5.1936-1938.1997] [PMID: 9125583]
[58]
Cooper AM, Magram J, Ferrante J, Orme IM. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med 1997; 186(1): 39-45.
[http://dx.doi.org/10.1084/jem.186.1.39] [PMID: 9206995]
[59]
Jo EK, Kim HJ, Lim JH, et al. Dysregulated production of interferon-gamma, interleukin-4 and interleukin-6 in early tuberculosis patients in response to antigen 85B of Mycobacterium tuberculosis. Scand J Immunol 2000; 51(2): 209-17.
[http://dx.doi.org/10.1046/j.1365-3083.2000.00663.x] [PMID: 10652166]
[60]
WHO. Global Tuberculosis Control. In: Control. WHO 2010.
[61]
Seung KJ, Keshavjee S, Rich ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med 2015; 5(9): a017863.
[http://dx.doi.org/10.1101/cshperspect.a017863] [PMID: 25918181]
[62]
Hazbón MH, Brimacombe M, Bobadilla del Valle M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2006; 50(8): 2640-9.
[http://dx.doi.org/10.1128/AAC.00112-06] [PMID: 16870753]
[63]
Heym B, Alzari PM, Honoré N, Cole ST. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 1995; 15(2): 235-45.
[http://dx.doi.org/10.1111/j.1365-2958.1995.tb02238.x] [PMID: 7746145]
[64]
Banerjee A, Dubnau E, Quemard A, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 1994; 263(5144): 227-30.
[http://dx.doi.org/10.1126/science.8284673] [PMID: 8284673]
[65]
Morlock GP, Metchock B, Sikes D, Crawford JT, Cooksey RC. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 2003; 47(12): 3799-805.
[http://dx.doi.org/10.1128/AAC.47.12.3799-3805.2003] [PMID: 14638486]
[66]
Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 1998; 79(1): 3-29.
[http://dx.doi.org/10.1054/tuld.1998.0002] [PMID: 10645439]
[67]
Somoskovi A, Parsons LM, Salfinger M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res 2001; 2(3): 164-8.
[http://dx.doi.org/10.1186/rr54] [PMID: 11686881]
[68]
Caws M, Duy PM, Tho DQ, Lan NTN, Hoa DV, Farrar J. Mutations prevalent among rifampin- and isoniazid-resistant Mycobacterium tuberculosis isolates from a hospital in Vietnam. J Clin Microbiol 2006; 44(7): 2333-7.
[http://dx.doi.org/10.1128/JCM.00330-06] [PMID: 16825345]
[69]
Telenti A, Imboden P, Marchesi F, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993; 341(8846): 647-50.
[http://dx.doi.org/10.1016/0140-6736(93)90417-F] [PMID: 8095569]
[70]
Konno K, Feldmann FM, McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 1967; 95(3): 461-9.
[PMID: 4225184]
[71]
Scorpio A, Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 1996; 2(6): 662-7.
[http://dx.doi.org/10.1038/nm0696-662] [PMID: 8640557]
[72]
Cardoso RF, Cardoso MA, Leite CQF, et al. Characterization of ndh gene of isoniazid resistant and susceptible Mycobacterium tuberculosis isolates from Brazil. Mem Inst Oswaldo Cruz 2007; 102(1): 59-61.
[http://dx.doi.org/10.1590/S0074-02762007000100009] [PMID: 17294000]
[73]
Ando H, Kitao T, Miyoshi-Akiyama T, Kato S, Mori T, Kirikae T. Downregulation of katG expression is associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 2011; 79(6): 1615-28.
[http://dx.doi.org/10.1111/j.1365-2958.2011.07547.x] [PMID: 21244531]
[74]
Sreevatsan S, Stockbauer KE, Pan X, et al. Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother 1997; 41(8): 1677-81.
[http://dx.doi.org/10.1128/AAC.41.8.1677] [PMID: 9257740]
[75]
Walwaikar PP, Morye VK, Gawde AS. Ofloxacin in multidrug resistant tuberculosis. J Indian Med Assoc 2003; 101(3): 210-2.
[PMID: 14603981]
[76]
Pitaksajjakul P, Worakhunpiset S, Chaiprasert A, Boonyasopun J, Ramasoota P. gyrA and gyrB mutations in ofloxacin-resistant Mycobacterium tuberculosis clinical isolates in Thailand. Southeast Asian J Trop Med Public Health 2011; 42(5): 1163-7.
[PMID: 22299442]
[77]
Pranger AD, van der Werf TS, Kosterink JGW, Alffenaar JWC. The role of fluoroquinolones in the treatment of tuberculosis in 2019. Drugs 2019; 79(2): 161-71.
[http://dx.doi.org/10.1007/s40265-018-1043-y] [PMID: 30617959]
[78]
Van’t Boveneind-Vrubleuskaya N, Seuruk T, van Hateren K, et al. Pharmacokinetics of levofloxacin in multidrug- and extensively drug-resistant tuberculosis patients. Antimicrob Agents Chemother 2017; 61(8): e00343-17.
[http://dx.doi.org/10.1128/AAC.00343-17] [PMID: 28507117]
[79]
Gillespie SH. The role of moxifloxacin in tuberculosis therapy. Eur Respir Rev 2016; 25(139): 19-28.
[http://dx.doi.org/10.1183/16000617.0085-2015] [PMID: 26929417]
[80]
Codecasa LR, Ferrara G, Ferrarese M, et al. Long-term moxifloxacin in complicated tuberculosis patients with adverse reactions or resistance to first line drugs. Respir Med 2006; 100(9): 1566-72.
[http://dx.doi.org/10.1016/j.rmed.2006.01.002] [PMID: 16469488]
[81]
Chiang CY, Van Deun A, Rieder HL. Gatifloxacin for short, effective treatment of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 2016; 20(9): 1143-7.
[http://dx.doi.org/10.5588/ijtld.15.0884] [PMID: 27510237]
[82]
Nair J, Rouse DA, Bai G-H, Morris SL. The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol Microbiol 1993; 10(3): 521-7.
[http://dx.doi.org/10.1111/j.1365-2958.1993.tb00924.x] [PMID: 7968530]
[83]
Meier A, Kirschner P, Bange FC, Vogel U, Böttger EC. Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob Agents Chemother 1994; 38(2): 228-33.
[http://dx.doi.org/10.1128/AAC.38.2.228] [PMID: 8192448]
[84]
Maus CE, Plikaytis BB, Shinnick TM. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2005; 49(8): 3192-7.
[http://dx.doi.org/10.1128/AAC.49.8.3192-3197.2005] [PMID: 16048924]
[85]
Maus CE, Plikaytis BB, Shinnick TM. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2005; 49(2): 571-7.
[http://dx.doi.org/10.1128/AAC.49.2.571-577.2005] [PMID: 15673735]
[86]
Monshupanee T, Johansen SK, Dahlberg AE, Douthwaite S. Capreomycin susceptibility is increased by TlyA-directed 2¢-O-methylation on both ribosomal subunits. Mol Microbiol 2012; 85(6): 1194-203.
[http://dx.doi.org/10.1111/j.1365-2958.2012.08168.x] [PMID: 22779429]
[87]
Alangaden GJ, Kreiswirth BN, Aouad A, et al. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998; 42(5): 1295-7.
[http://dx.doi.org/10.1128/AAC.42.5.1295] [PMID: 9593173]
[88]
Kambli P, Ajbani K, Nikam C, et al. Corrigendum to “Correlating rrs and eis promoter mutations in clinical isolates of Mycobacterium tuberculosis with phenotypic susceptibility levels to the second-line injectables. Int J Mycobacteriol 2016; 5(3): 370-2.
[http://dx.doi.org/10.1016/j.ijmyco.2016.06.009] [PMID: 27847030]
[89]
Beckert P, Hillemann D, Kohl TA, et al. rplC T460C identified as a dominant mutation in linezolid-resistant Mycobacterium tuberculosis strains. Antimicrob Agents Chemother 2012; 56(5): 2743-5.
[http://dx.doi.org/10.1128/AAC.06227-11] [PMID: 22371899]
[90]
Hillemann D, Rüsch-Gerdes S, Richter E. in vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother 2008; 52(2): 800-1.
[http://dx.doi.org/10.1128/AAC.01189-07] [PMID: 18070973]
[91]
Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014; 58(5): 2979-81.
[http://dx.doi.org/10.1128/AAC.00037-14] [PMID: 24590481]
[92]
Cohen KA, Manson AL, Desjardins CA, Abeel T, Earl AM. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med 2019; 11(1): 45.
[http://dx.doi.org/10.1186/s13073-019-0660-8] [PMID: 31345251]
[93]
Mulubwa M, Mugabo P. Amount of cycloserine emanating from terizidone metabolism and relationship with hepatic function in patients with drug-resistant tuberculosis. Drugs R D 2019; 19(3): 289-96.
[http://dx.doi.org/10.1007/s40268-019-00281-4] [PMID: 31396892]
[94]
Fox W, Robinson DK, Tall R, Kent PW, Macfadyen DM, MacFadyen DM. A study of acute intolerance to ethionamide, including a comparison with prothionamide, and of the influence of a vitamin B-complex additive in prophylaxis. Tubercle 1969; 50(2): 125-43.
[http://dx.doi.org/10.1016/0041-3879(69)90019-1] [PMID: 4894707]
[95]
Desjardins CA, Cohen KA, Munsamy V, et al. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nat Genet 2016; 48(5): 544-51.
[http://dx.doi.org/10.1038/ng.3548] [PMID: 27064254]
[96]
Manjunatha UH, Boshoff H, Dowd CS, et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2006; 103(2): 431-6.
[http://dx.doi.org/10.1073/pnas.0508392103] [PMID: 16387854]
[97]
Haver HL, Chua A, Ghode P, et al. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2015; 59(9): 5316-23.
[http://dx.doi.org/10.1128/AAC.00308-15] [PMID: 26100695]
[98]
Field SK. Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis 2015; 6(4): 170-84.
[http://dx.doi.org/10.1177/2040622315582325] [PMID: 26137207]
[99]
Bloemberg GV, Keller PM, Stucki D, et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 2015; 373(20): 1986-8.
[http://dx.doi.org/10.1056/NEJMc1505196] [PMID: 26559594]
[100]
Huynh J, Marais BJ. Multidrug-resistant tuberculosis infection and disease in children: A review of new and repurposed drugs. Ther Adv Infect Dis 2019; 6: 2049936119864737.
[http://dx.doi.org/10.1177/2049936119864737] [PMID: 31367376]
[101]
Zhao F, Wang XD, Erber LN, et al. Binding pocket alterations in dihydrofolate synthase confer resistance to para-aminosalicylic acid in clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014; 58(3): 1479-87.
[http://dx.doi.org/10.1128/AAC.01775-13] [PMID: 24366731]
[102]
Minato Y, Thiede JM, Kordus SL, McKlveen EJ, Turman BJ, Baughn AD. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob Agents Chemother 2015; 59(9): 5097-106.
[http://dx.doi.org/10.1128/AAC.00647-15] [PMID: 26033719]
[103]
Nahid P, Mase SR, Migliori GB, et al. Treatment of drug-resistant tuberculosis an official ATS/CDC/ERS/IDSA clinical practice guideline. Am J Respir Crit Care Med 2019; 200(10): e93-e142.
[http://dx.doi.org/10.1164/rccm.201909-1874ST] [PMID: 31729908]
[104]
Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 2010; 363(11): 1005-15.
[http://dx.doi.org/10.1056/NEJMoa0907847] [PMID: 20825313]
[105]
Schluger NW, Rom WN. The host immune response to tuberculosis. Am J Respir Crit Care Med 1998; 157(3 Pt 1): 679-91.
[http://dx.doi.org/10.1164/ajrccm.157.3.9708002] [PMID: 9517576]
[106]
Morcos MM, Gabr AA, Samuel S, et al. Vitamin D administration to tuberculous children and its value. Boll Chim Farm 1998; 137(5): 157-64.
[PMID: 9689902]
[107]
Martineau AR, Wilkinson KA, Newton SM, et al. IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol 2007; 178(11): 7190-8.
[http://dx.doi.org/10.4049/jimmunol.178.11.7190] [PMID: 17513768]
[108]
Liu PT, Modlin RL. Human macrophage host defense against Mycobacterium tuberculosis. Curr Opin Immunol 2008; 20(4): 371-6.
[http://dx.doi.org/10.1016/j.coi.2008.05.014] [PMID: 18602003]
[109]
Hassanein EG, Mohamed EE, Baess AI. EL-Sayed ET, Yossef AM. The role of supplementary vitamin D in treatment course of pulmonary tuberculosis. Egypt J Chest Dis Tuberc 2016; 65(3): 629-35.
[http://dx.doi.org/10.1016/j.ejcdt.2016.03.004]
[110]
Garaniya N, Bapodra A. Ethno botanical and Phytophrmacological potential of Abrus precatorius L.: A review. Asian Pac J Trop Biomed 2014; 4(Suppl. 1): S27-34.
[http://dx.doi.org/10.12980/APJTB.4.2014C1069] [PMID: 25183095]
[111]
Hernández-García E, García A, Garza-González E, et al. Chemical composition of Acacia farnesiana (L) wild fruits and its activity against Mycobacterium tuberculosis and dysentery bacteria. J Ethnopharmacol 2019; 230: 74-80.
[http://dx.doi.org/10.1016/j.jep.2018.10.031] [PMID: 30367988]
[112]
Oladosu P, Samuel BB, Okhale SE, Ibrahim K, Okogun JI. Antitubercular activity of the dried fruits of Acacia nilotica Linn Willd. J Phytomedicine Ther 2007; 12: 76-9.
[113]
Mariita RM, Ogol CKPO, Oguge NO, Okemo PO. Antitubercular and phytochemical investigation of methanol extracts of medicinal plants used by the Samburu community in Kenya. Trop J Pharm Res 2010; 9(4): 379-85.
[http://dx.doi.org/10.4314/tjpr.v9i4.58935]
[114]
Applequist WL, Moerman DE. Yarrow (Achillea millefolium L.): A neglected panacea? A review of ethnobotany, bioactivity, and biomedical research1. Econ Bot 2011; 65: 209.
[http://dx.doi.org/10.1007/s12231-011-9154-3]
[115]
Mukherjee PK, Kumar V, Mal M, Houghton PJ. Acorus calamus: Scientific validation of ayurvedic tradition from natural resources. Pharm Biol 2007; 45(8): 651-66.
[http://dx.doi.org/10.1080/13880200701538724]
[116]
Bhatter PD, Gupta PD, Birdi TJ. Activity of medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen conditions using intracellular and axenic assays. Int J Microbiol 2016; 2016: 8073079.
[http://dx.doi.org/10.1155/2016/8073079] [PMID: 26941797]
[117]
Patyal MP, Bhatnagar S, Shashidhar SSM. Emergence of Allium Cepa as Antitubercular Agent. Glob J Med Res 2015; 15(4): 1-3.
[118]
Gupta R, Thakur B, Singh P, et al. Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J Med Res 2010; 131: 809-13.
[PMID: 20571171]
[119]
Jha DK, Panda L, Lavanya P, Ramaiah S, Anbarasu A. Detection and confirmation of alkaloids in leaves of Justicia adhatoda and bioinformatics approach to elicit its anti-tuberculosis activity. Appl Biochem Biotechnol 2012; 168(5): 980-90.
[http://dx.doi.org/10.1007/s12010-012-9834-1] [PMID: 22899014]
[120]
Ignacimuthu S, Shanmugam N. Antimycobacterial activity of two natural alkaloids, vasicine acetate and 2-acetyl benzylamine, isolated from Indian shrub Adhatoda vasica Ness. leaves. J Biosci 2010; 35(4): 565-70.
[http://dx.doi.org/10.1007/s12038-010-0065-8] [PMID: 21289439]
[121]
Patil AP, Karade PG. Anti-tuberculosis activity of Murrya koenigii using TH micro plate alamar blue assay. World J Pharm Res 2014; 3(10): 1284-91.
[122]
Singh C, Singh SK, Nath G, Rai NP. Anti-mycobacterial activity of Piper longum L. fruit extracts against multi drug resistant Mycobacterium Spp. Int J Phytomed 2011; 3(3): 353-61.
[123]
Hussain T, Gupta RK,KS,et al. Evaluation of antihepatotoxic potential of Solanum xanthocarpum fruit extract against antitubercular drugs induced hepatopathy in experimental rodents. Asian Pac J Trop Biomed 2012; 2(6): 454-60.
[http://dx.doi.org/10.1016/S2221-1691(12)60075-6] [PMID: 23569949]
[124]
Yadav A, Bhardwaj R, Joshi YC, Sharma RA. Free radical-scavenging potential of methanol extracts of Solanum surattense. Res J Phytochem 2014; 8(4): 139-47.
[http://dx.doi.org/10.3923/rjphyto.2014.139.147]
[125]
Adaikkappan P, Kannapiran M, Anthonisamy A. Anti-mycobacterial activity of Withania somnifera and Pueraria tuberosa against Mycobacterium tuberculosis H37Rv. J Acad Indus Res 2012; 1(4): 153-6.
[126]
Mangwani N, Singh PK, Kumar V. Medicinal plants: Adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. J Ayurveda Integr Med 2020; 11(4): 522-8.
[http://dx.doi.org/10.1016/j.jaim.2019.02.004] [PMID: 31679802]
[127]
Samal J. Ayurvedic management of pulmonary tuberculosis: A systematic review. J Intercult Ethnopharmacol 2015; 5(1): 86-91.
[http://dx.doi.org/10.5455/jice.20151107020621] [PMID: 27069721]
[128]
Balasubramani SP, Venkatasubramanian P, Kukkupuni SK, Patwardhan B. Plant-based Rasayana drugs from Ayurveda. Chin J Integr Med 2011; 17(2): 88-94.
[http://dx.doi.org/10.1007/s11655-011-0659-5] [PMID: 21390573]
[129]
Debnath PK, Chattopadhyay J, Mitra A, et al. Adjunct therapy of Ayurvedic medicine with anti tubercular drugs on the therapeutic management of pulmonary tuberculosis. J Ayurveda Integr Med 2012; 3(3): 141-9.
[http://dx.doi.org/10.4103/0975-9476.100180] [PMID: 23125511]
[130]
Pari L, Kumar NA. Hepatoprotective activity of Moringa oleifera on antitubercular drug-induced liver damage in rats. J Med Food 2002; 5(3): 171-7.
[http://dx.doi.org/10.1089/10966200260398206] [PMID: 12495589]
[131]
Jaydeokar AV, Bandawane DD, Bibave KH, Patil TV. Hepatoprotective potential of Cassia auriculata roots on ethanol and antitubercular drug-induced hepatotoxicity in experimental models. Pharm Biol 2014; 52(3): 344-55.
[http://dx.doi.org/10.3109/13880209.2013.837075] [PMID: 24472085]
[132]
Mahapatra A, Maheswari V, Kalia NP, Rajput VS, Khan IA. Synthesis and antitubercular activity of berberine derivatives. Chem Nat Compd 2014; 50: 321-5.
[http://dx.doi.org/10.1007/s10600-014-0942-8]
[133]
Tasduq SA, Singh K, Satti NK, Gupta DK, Suri KA, Johri RK. Terminalia chebula (fruit) prevents liver toxicity caused by sub-chronic administration of rifampicin, isoniazid and pyrazinamide in combination. Hum Exp Toxicol 2006; 25(3): 111-8.
[http://dx.doi.org/10.1191/0960327106ht601oa] [PMID: 16634329]
[134]
Gupta AK, Ganguly P, Majumder UK, Ghosal S. Hepatoprotective and antioxidant effects of total extracts and stereoidal saponins of Solanum xanthocarpum and Solanum nigrum in paracetamol induced hepatotoxicity in rats. Pharmacologyonline 2009.
[135]
Torres-Romero D, Jiménez IA, Rojas R, Gilman RH, López M, Bazzocchi IL. Dihydro-β-agarofuran sesquiterpenes isolated from Celastrus vulcanicola as potential anti-Mycobacterium tuberculosis multidrug-resistant agents. Bioorg Med Chem 2011; 19(7): 2182-9.
[http://dx.doi.org/10.1016/j.bmc.2011.02.034] [PMID: 21419633]
[136]
Kumar P, Singh A, Sharma U, Singh D, Dobhal MP, Singh S. Anti-mycobacterial activity of plumericin and isoplumericin against MDR Mycobacterium tuberculosis. Pulm Pharmacol Ther 2013; 26(3): 332-5.
[http://dx.doi.org/10.1016/j.pupt.2013.01.003] [PMID: 23333815]
[137]
Uc-Cachón AH, Borges-Argáez R, Said-Fernández S, et al. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm Pharmacol Ther 2014; 27(1): 114-20.
[http://dx.doi.org/10.1016/j.pupt.2013.08.001] [PMID: 23968826]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy