Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Neuroprotective Activities of Orientin: A Review

Author(s): Deepak Vasudevan Sajini, Praveen Thaggikuppe Krishnamurthy* and Amritha Chakkittu Kandiyil

Volume 8, Issue 1, 2022

Published on: 14 January, 2022

Article ID: e130921196409 Pages: 11

DOI: 10.2174/2215083807666210913104505

Price: $65

Open Access Journals Promotions 2
Abstract

Orientin is a flavonoid C-glycoside found in many plants, and studies investigating its neuropharmacological benefits have received significant attention in recent years. Orientin has modulating effects on various neuropathological pathways such as Nrf2-ARE, PI3K/Akt, JNKERK1/ 2, and TLR4/NF-kB. Orientin, therefore, is evaluated for its benefits in various neurodegenerative diseases such as Alzheimer's and Huntington's disease. This paper reviews Orientin's neuroprotective mechanisms and benefits.

Keywords: Orientin, Nrf2-ARE, PI3K/Akt, JNK-ERK1/2, TLR4/NF-kB, neuroprotection.

Graphical Abstract
[1]
Przedborski S, Vila M, Jackson-Lewis V. Neurodegeneration: What is it and where are we? J Clin Invest 2003; 111(1): 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[2]
Yu L, Wang S, Chen X, et al. Orientin alleviates cognitive deficits and oxidative stress in Aβ1-42-induced mouse model of Alzheimer’s disease. Life Sci 2015; 121: 104-9.
[http://dx.doi.org/10.1016/j.lfs.2014.11.021] [PMID: 25497709]
[3]
Lu N, Sun Y, Zheng X. Orientin-induced cardioprotection against reperfusion is associated with attenuation of mitochondrial permeability transition. Planta Med 2011; 77(10): 984-91.
[http://dx.doi.org/10.1055/s-0030-1250718] [PMID: 21283956]
[4]
Tian T, Zeng J, Zhao G, Zhao W, Gao S, Liu L. Neuroprotective effects of orientin on oxygen-glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons. Exp Biol Med (Maywood) 2018; 243(1): 78-86.
[http://dx.doi.org/10.1177/1535370217737983] [PMID: 29073777]
[5]
Guo D, Hu X, Zhang H, Lu C, Cui G, Luo X. Orientin and neuropathic pain in rats with spinal nerve ligation. Int Immunopharmacol 2018; 58: 72-9.
[http://dx.doi.org/10.1016/j.intimp.2018.03.013] [PMID: 29558662]
[6]
Dhakal H, Lee S, Choi JK, Kwon TK, Khang D, Kim S-H. Inhibitory effects of orientin in mast cell-mediated allergic inflammation. Pharmacol Rep 2020; 72(4): 1002-10.
[http://dx.doi.org/10.1007/s43440-019-00048-3] [PMID: 32048267]
[7]
Xiao Q, Qu Z, Zhao Y, Yang L, Gao P. Orientin ameliorates lps-induced inflammatory responses through the inhibitory of the nf-κb pathway and nlrp3 inflammasome. Evid-based Complement Altern Med 2017; 2017
[http://dx.doi.org/10.1155/2017/2495496]
[8]
Thangaraj K, Vaiyapuri M. Orientin, a C-glycosyl dietary flavone, suppresses colonic cell proliferation and mitigates NF-κB mediated inflammatory response in 1,2-dimethylhydrazine induced colorectal carcinogenesis. Biomed Pharmacother 2017; 96: 1253-66.
[http://dx.doi.org/10.1016/j.biopha.2017.11.088] [PMID: 29198745]
[9]
Akefe IO, Yusuf IL, Adegoke VA. C-glycosyl flavonoid orientin alleviates learning and memory impairment by radiofrequency electromagnetic radiation in mice via improving antioxidant defence mechanism. Asian Pac J Trop Biomed 2019; 9(12): 518.
[http://dx.doi.org/10.4103/2221-1691.271725]
[10]
Thangaraj K, Natesan K, Settu K, et al. Orientin mitigates 1, 2-dimethylhydrazine induced lipid peroxidation, antioxidant and biotransforming bacterial enzyme alterations in experimental rats. J Cancer Res Ther 2018; 14(6): 1379-88.
[PMID: 30488860]
[11]
Xiao Q, Piao R, Wang H, Li C, Song L. Orientin-mediated Nrf2/HO-1 signal alleviates H2O2-induced oxidative damage via induction of JNK and PI3K/AKT activation. Int J Biol Macromol 2018; 118(Pt A): 747-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.130] [PMID: 29959995]
[12]
An F, Yang G, Tian J, Wang S. Antioxidant effects of the orientin and vitexin in Trollius chinensis Bunge in D-galactose-aged mice. Neural Regen Res 2012; 7(33): 2565-75.
[PMID: 25368632]
[13]
Praveena R, Sadasivam K, Deepha V, Sivakumar R. Antioxidant potential of orientin: A combined experimental and DFT approach. J Mol Struct 2014; 1061: 114-23.
[http://dx.doi.org/10.1016/j.molstruc.2014.01.002]
[14]
Tian F, Tong M, Li Z, et al. The effects of orientin on proliferation and apoptosis of t24 human bladder carcinoma cells occurs through the inhibition of nuclear factor-kappab and the hedgehog signaling pathway. Med Sci Monit 2019; 25: 9547-54.
[http://dx.doi.org/10.12659/MSM.919203] [PMID: 31837261]
[15]
Liu Y, Lan N, Ren J, et al. Orientin improves depression-like behavior and BDNF in chronic stressed mice. Mol Nutr Food Res 2015; 59(6): 1130-42.
[http://dx.doi.org/10.1002/mnfr.201400753] [PMID: 25788013]
[16]
Da Silva RZ, Yunes RA, de Souza MM, Delle Monache F, Cechinel-Filho V. Antinociceptive properties of conocarpan and orientin obtained from Piper solmsianum C. DC. var. solmsianum (Piperaceae). J Nat Med 2010; 64(4): 402-8.
[http://dx.doi.org/10.1007/s11418-010-0421-x] [PMID: 20473574]
[17]
Lee W, Bae J-S. Antithrombotic and antiplatelet activities of orientin in vitro and in vivo. J Funct Foods 2015; 17: 388-98.
[http://dx.doi.org/10.1016/j.jff.2015.05.037]
[18]
Koeppen BH, Roux D. C-Glycosylflavonoids. The chemistry of orientin and iso-orientin. Biochem J 1965; 97(2): 444-8.
[http://dx.doi.org/10.1042/bj0970444] [PMID: 16749149]
[19]
Satyamitra M, Mantena S, Nair C, Chandna S, Dwarakanath B. The antioxidant flavonoids, orientin and vicenin enhance repair of radiation-induced damage. SAJ Pharmacy and Pharmacology 2014; 1(1): 1.
[20]
Nair AR, Gunasegaran R, Joshi B. Chemical investigation of certain south Indian plants. NEW DELHI: Council scientific industrial research publ & info directorate 1982; pp. 979-80.
[21]
Uma Devi P, Ganasoundari A, Rao BS, Srinivasan KK. In vivo radioprotection by ocimum flavonoids: Survival of mice. Radiat Res 1999; 151(1): 74-8.
[http://dx.doi.org/10.2307/3579750] [PMID: 9973087]
[22]
Zhang Y-x, He C-h. Process for extracting and separating total flavonoids from leaves of phyllostachys pubescens. J Chem Eng Chinese Uni 2006; 20(5): 691.
[23]
Lu B, Wu X, Shi J, Dong Y, Zhang Y. Toxicology and safety of antioxidant of bamboo leaves. Part 2: Developmental toxicity test in rats with antioxidant of bamboo leaves. Food Chem Toxicol 2006; 44(10): 1739-43.
[http://dx.doi.org/10.1016/j.fct.2006.05.012] [PMID: 16822604]
[24]
SUN W-x, LI X, LI N, MENG D-l. Chemical constituents of the extraction of bamboo leaves from phyllostachys nigra (loddex lindl) munro varhenonis (mitf) stepfex rendle. J Shenyang Pharm Univ 2008; 25(1): 39-43.
[25]
Xie J, Zhou P, Zhu X, Liu X, Chen R, Wang P. Study on extraction of bamboo leaves flavonoids by homogenate extraction technique and its antioxidant activity. Food Sci Technol (Campinas) 2010; 2010(5): 194-8.
[26]
Jin Y-c, Liu H-l, Yuan K. Simultaneous determination of seven effective constituents in the leaves of bamboo by reversed phase high performance liquid chromatography (RP-HPLC). J Med Plants Res 2011; 5(23): 5630-5.
[27]
Zhang Y, Jiao J, Liu C, Wu X, Zhang Y. Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography. Food Chem 2008; 107(3): 1326-36.
[28]
Sun J, Yue Y, Tang F, Guo X. Simultaneous HPTLC analysis of flavonoids in the leaves of three different species of bamboo. JPC-Journal of Planar Chromatography-Modern TLC 2010; 23(1): 40-5.
[http://dx.doi.org/10.1556/JPC.23.2010.1.7]
[29]
Grundmann O, Wang J, McGregor G, Butterweck V. Anxiolytic activity of a phytochemically characterized Passiflora incarnata extract is mediated via the GABAergic system. Altern Med Rev 2009; 14(1): 85-6.
[30]
de-PARIS F, Petry RD, Reginatto FH, Gosmann G, Quevedo J, Salgueiro JB. Pharmacochemical study of aqueous extracts of passiflora alata dryander and passifiora edulis sims. Acta farmaceutica bonaerense 2002; 21(1): 5-8.
[31]
Liu Z, Wang L, Li W, Huang Y, Xu ZC. [Determination of orientin and vitexin in Trollius chinesis preparation by HPLC]. China J Chin Materia Medica 2004; 29(11): 1049-51.
[PMID: 15656135]
[32]
Wu L-Z, Wu H-F, Xu X-D, Yang J-S. Two new flavone C-glycosides from Trollius ledebourii. Chem Pharm Bull (Tokyo) 2011; 59(11): 1393-5.
[http://dx.doi.org/10.1248/cpb.59.1393] [PMID: 22041076]
[33]
Zhou X, Peng J, Fan G, Wu Y. Isolation and purification of flavonoid glycosides from Trollius ledebouri using high-speed counter-current chromatography by stepwise increasing the flow-rate of the mobile phase. J Chromatogr A 2005; 1092(2): 216-21.
[http://dx.doi.org/10.1016/j.chroma.2005.07.064] [PMID: 16199228]
[34]
Li X, Xiong Z, Ying X, Cui L, Zhu W, Li F. A rapid ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometric method for the qualitative and quantitative analysis of the constituents of the flower of Trollius ledibouri Reichb. Anal Chim Acta 2006; 580(2): 170-80.
[http://dx.doi.org/10.1016/j.aca.2006.07.069] [PMID: 17723770]
[35]
Félix-Silva J, Souza T, Menezes YA, et al. Aqueous leaf extract of Jatropha gossypiifolia L. (Euphorbiaceae) inhibits enzymatic and biological actions of Bothrops jararaca snake venom. PLoS One 2014; 9(8): e104952.
[http://dx.doi.org/10.1371/journal.pone.0104952] [PMID: 25126759]
[36]
Félix-Silva J, Souza T, Camara RBBG, et al. In vitro anticoagulant and antioxidant activities of Jatropha gossypiifolia L. (Euphorbiaceae) leaves aiming therapeutical applications. BMC Complement Altern Med 2014; 14(1): 405.
[http://dx.doi.org/10.1186/1472-6882-14-405] [PMID: 25328027]
[37]
Félix-Silva J, Gomes J, Barbosa L, Pinheiro I, Soares LAL, Silva-Júnior A, et al. Systemic and local anti-inflammatory activity of aqueous leaf extract from Jatropha gossypiifolia L.(Euphorbiaceae). Int J Pharm Pharm Sci 2014; 6(6): 142-5.
[38]
Pilon AC, Carneiro RL, Carnevale Neto F, da S Bolzani V, Castro-Gamboa I. Interval multivariate curve resolution in the dereplication of HPLC-DAD data from Jatropha gossypifolia. Phytochem Anal 2013; 24(4): 401-6.
[http://dx.doi.org/10.1002/pca.2423] [PMID: 23483597]
[39]
Dubois J, Mabry TJ. The C-glycosylflavonoids of flax, Linum usitatissimum. Phytochemistry 1971; 10(11): 2839-40.
[http://dx.doi.org/10.1016/S0031-9422(00)97303-5]
[40]
Shibano M, Kakutani K, Taniguchi M, Yasuda M, Baba K. Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity. J Nat Med 2008; 62(3): 349-53.
[http://dx.doi.org/10.1007/s11418-008-0244-1] [PMID: 18409066]
[41]
Gallori S, Bilia AR, Bergonzi MC, Barbosa WLR, Vincieri FF. Polyphenolic constituents of fruit pulp of Euterpe oleracea Mart.(açai palm). Chromatographia 2004; 59(11-12): 739-43.
[http://dx.doi.org/10.1365/s10337-004-0305-x]
[42]
Soltis DE, Bohm BA. Flavonoids of Ascarina lucida. J Nat Prod 1982; 45(4): 415-7.
[http://dx.doi.org/10.1021/np50022a009]
[43]
Perveen S, El-Shafae AM, Al-Taweel A, et al. Antioxidant and urease inhibitory C-glycosylflavonoids from Celtis africana. J Asian Nat Prod Res 2011; 13(9): 799-804.
[http://dx.doi.org/10.1080/10286020.2011.593171] [PMID: 21830883]
[44]
Wagner H, Horhammer L, Kiraly I. Flavone-C-glycosides in Croton zambezicus. Phytochemistry 1970; 9.
[45]
Pal D, Mishra P, Sachan N, Ghosh AK. Biological activities and medicinal properties of Cajanus cajan (L) Millsp. J Adv Pharm Technol Res 2011; 2(4): 207-14.
[http://dx.doi.org/10.4103/2231-4040.90874] [PMID: 22247887]
[46]
Pang S, Ge Y, Wang LS, Liu X, Lin CW, Yang H, Eds. Isolation and purification of orientin and isovitexin from Thlaspi arvense linn.Advanced materials research Trans Tech Publ. 2013.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.781-784.615]
[47]
Andersen JK. Oxidative stress in neurodegeneration: Cause or consequence? Nat Med 2004; 10(7)(Suppl.): S18-25.
[http://dx.doi.org/10.1038/nrn1434] [PMID: 15298006]
[48]
Kulkarni OP, Lichtnekert J, Anders H-J, Mulay SR. The immune system in tissue environments regaining homeostasis after injury: Is “inflammation” always inflammation? Mediators of inflammation 2016; 2016
[49]
Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G. Neuroinflammation pathways: a general review. Int J Neurosci 2017; 127(7): 624-33.
[http://dx.doi.org/10.1080/00207454.2016.1212854] [PMID: 27412492]
[50]
Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science 2016; 353(6301): 777-83.
[http://dx.doi.org/10.1126/science.aag2590] [PMID: 27540165]
[51]
Russo MV, McGavern DB. Inflammatory neuroprotection following traumatic brain injury. Science 2016; 353(6301): 783-5.
[http://dx.doi.org/10.1126/science.aaf6260] [PMID: 27540166]
[52]
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 2016; 13(4): 3391-6.
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[53]
Tufekci KU, Civi Bayin E, Genc S, Genc K. The Nrf2/ARE pathway: A promising target to counteract mitochondrial dysfunction in Parkinson's disease. Parkinson’s disease. 2011; 2011
[54]
Petri S, Körner S, Kiaei M. Nrf2/ARE signalling pathway: Key mediator in oxidative stress and potential therapeutic target in ALS. Neurology research international 2012; 2012
[55]
Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000; 407(6805): 802-9.
[http://dx.doi.org/10.1038/35037739] [PMID: 11048732]
[56]
Yang L, Wang H, Liu L, Xie A. The role of insulin/IGF-1/PI3K/Akt/GSK3β signalling in parkinson’s disease dementia. Front Neurosci 2018; 12: 73.
[http://dx.doi.org/10.3389/fnins.2018.00073] [PMID: 29515352]
[57]
Jha SK, Jha NK, Kar R, Ambasta RK, Kumar P. p38 MAPK and PI3K/AKT signalling cascades inParkinson’s disease. Int J Mol Cell Med 2015; 4(2): 67-86.
[PMID: 26261796]
[58]
Bohush A, Niewiadomska G, Filipek A. Role of mitogen activated protein kinase signalling in Parkinson’s disease. Int J Mol Sci 2018; 19(10): 2973.
[http://dx.doi.org/10.3390/ijms19102973] [PMID: 30274251]
[59]
Borsello T, Forloni G. JNK signalling: A possible target to prevent neurodegeneration. Curr Pharm Des 2007; 13(18): 1875-86.
[http://dx.doi.org/10.2174/138161207780858384] [PMID: 17584114]
[60]
Campolo M, Paterniti I, Siracusa R, Filippone A, Esposito E, Cuzzocrea S. TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson’s diseases in vivo model. Brain Behav Immun 2019; 76: 236-47.
[http://dx.doi.org/10.1016/j.bbi.2018.12.003] [PMID: 30550933]
[61]
Noelker C, Morel L, Lescot T, et al. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci Rep 2013; 3: 1393.
[http://dx.doi.org/10.1038/srep01393] [PMID: 23462811]
[62]
Ghosh A, Roy A, Liu X, et al. Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 2007; 104(47): 18754-9.
[http://dx.doi.org/10.1073/pnas.0704908104] [PMID: 18000063]
[63]
Flood PM, Qian L, Peterson LJ, Zhang F, Shi J-S, Gao H-M, et al. Transcriptional factor NF-κB as a target for therapy in Parkinson's disease. Parkinson's disease 2011.
[64]
Calkins MJ, Johnson DA, Townsend JA, et al. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal 2009; 11(3): 497-508.
[http://dx.doi.org/10.1089/ars.2008.2242] [PMID: 18717629]
[65]
Zhang H, Liu H, Davies KJ, et al. Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radic Biol Med 2012; 52(9): 2038-46.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.042] [PMID: 22401859]
[66]
van Muiswinkel FL, Kuiperij HB. The Nrf2-ARE Signalling pathway: Promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neurol Disord 2005; 4(3): 267-81.
[http://dx.doi.org/10.2174/1568007054038238] [PMID: 15975029]
[67]
Shih AY, Imbeault S, Barakauskas V, et al. Induction of the Nrf2- driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem 2005; 280(24): 22925-36.
[http://dx.doi.org/10.1074/jbc.M414635200] [PMID: 15840590]
[68]
Kotlo KU, Yehiely F, Efimova E, et al. Nrf2 is an inhibitor of the Fas pathway as identified by Achilles’ Heel Method, a new function-based approach to gene identification in human cells. Oncogene 2003; 22(6): 797-806.
[http://dx.doi.org/10.1038/sj.onc.1206077] [PMID: 12584558]
[69]
Yenki P, Khodagholi F, Shaerzadeh F. Inhibition of phosphorylation of JNK suppresses Aβ-induced ER stress and upregulates prosurvival mitochondrial proteins in rat hippocampus. J Mol Neurosci 2013; 49(2): 262-9.
[http://dx.doi.org/10.1007/s12031-012-9837-y] [PMID: 22706709]
[70]
Hardy J. Alzheimer’s disease: The amyloid cascade hypothesis: An update and reappraisal. J Alzheimers Dis 2006; 9(3)(Suppl.): 151-3.
[http://dx.doi.org/10.3233/JAD-2006-9S317] [PMID: 16914853]
[71]
Zhu X, Wang X, Su B, Perry G, Smith M. Impaired balance of mitochondrial fission and fusion in Alzheimer The Third ISN Special Neurochemistry Conference and 8th International Meeting on Brain Energy Metabolism" Neurodegeneration and Regeneration". 2008.
[72]
Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A, Bacskai BJ. Mitochondrial alterations near amyloid plaques in an Alzheimer’s disease mouse model. J Neurosci 2013; 33(43): 17042-51.
[http://dx.doi.org/10.1523/JNEUROSCI.1836-13.2013] [PMID: 24155308]
[73]
Takuma K, Yao J, Huang J, et al. ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J 2005; 19(6): 597-8.
[http://dx.doi.org/10.1096/fj.04-2582fje] [PMID: 15665036]
[74]
Abdi A, Sadraie H, Dargahi L, Khalaj L, Ahmadiani A. Apoptosis inhibition can be threatening in Aβ-induced neuroinflammation, through promoting cell proliferation. Neurochem Res 2011; 36(1): 39-48.
[http://dx.doi.org/10.1007/s11064-010-0259-3] [PMID: 20848191]
[75]
Eckert GP, Renner K, Eckert SH, et al. Mitochondrial dysfunction-a pharmacological target in Alzheimer’s disease. Mol Neurobiol 2012; 46(1): 136-50.
[http://dx.doi.org/10.1007/s12035-012-8271-z] [PMID: 22552779]
[76]
Barone E, Di Domenico F, Mancuso C, Butterfield DA. The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: It’s time for reconciliation. Neurobiol Dis 2014; 62: 144-59.
[http://dx.doi.org/10.1016/j.nbd.2013.09.018] [PMID: 24095978]
[77]
Huang T-C, Lu K-T, Wo Y-YP, Wu Y-J, Yang Y-L. Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 2011; 6(12): e29102.
[http://dx.doi.org/10.1371/journal.pone.0029102] [PMID: 22220203]
[78]
Zhong Y, Zheng QY, Sun CY, Zhang Z, Han K, Jia N. Orientin improves cognition by enhancing autophagosome clearance in an alzheimer’s mouse model. J Mol Neurosci 2019; 69(2): 246-53.
[http://dx.doi.org/10.1007/s12031-019-01353-5] [PMID: 31243684]
[79]
Philpott KL, McCarthy MJ, Klippel A, Rubin LL. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J Cell Biol 1997; 139(3): 809-15.
[http://dx.doi.org/10.1083/jcb.139.3.809] [PMID: 9348296]
[80]
Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80(2): 285-91.
[http://dx.doi.org/10.1016/0092-8674(95)90411-5] [PMID: 7834748]
[81]
Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of bad couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91(2): 231-41.
[http://dx.doi.org/10.1016/S0092-8674(00)80405-5] [PMID: 9346240]
[82]
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. cell 1999; 96(6): 857-68.
[83]
Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998; 273(49): 32377-9.
[http://dx.doi.org/10.1074/jbc.273.49.32377] [PMID: 9829964]
[84]
Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 1999; 286(5448): 2358-61.
[http://dx.doi.org/10.1126/science.286.5448.2358] [PMID: 10600750]
[85]
Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296(5573): 1655-7.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[86]
Ma R, Xiong N, Huang C, et al. Erythropoietin protects PC12 cells from β-amyloid(25-35)-induced apoptosis via PI3K/Akt signaling pathway. Neuropharmacology 2009; 56(6-7): 1027-34.
[http://dx.doi.org/10.1016/j.neuropharm.2009.02.006] [PMID: 19268480]
[87]
Hsu Y-Y, Liu C-M, Tsai H-H, Jong Y-J, Chen IJ, Lo Y-C. KMUP-1 attenuates serum deprivation-induced neurotoxicity in SH-SY5Y cells: Roles of PKG, PI3K/Akt and Bcl-2/Bax pathways. Toxicology 2010; 268(1-2): 46-54.
[http://dx.doi.org/10.1016/j.tox.2009.11.021] [PMID: 19962417]
[88]
Li L, Qu Y, Mao M, Xiong Y, Mu D. The involvement of phosphoinositid 3-kinase/Akt pathway in the activation of hypoxia-inducible factor-1α in the developing rat brain after hypoxia-ischemia. Brain Res 2008; 1197: 152-8.
[http://dx.doi.org/10.1016/j.brainres.2007.12.059] [PMID: 18241842]
[89]
Zhang L, Qu Y, Yang C, et al. Signaling pathway involved in hypoxia-inducible factor-1α regulation in hypoxic-ischemic cortical neurons in vitro. Neurosci Lett 2009; 461(1): 1-6.
[http://dx.doi.org/10.1016/j.neulet.2009.03.091] [PMID: 19553016]
[90]
Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 2001; 11(3): 297-305.
[http://dx.doi.org/10.1016/S0959-4388(00)00211-7] [PMID: 11399427]
[91]
Davis RJ. Signal transduction by the JNK group of MAP kinases. Inflammatory processes. Springer 2000; pp. 13-21.
[92]
Manning AM, Davis RJ. Targeting JNK for therapeutic benefit: From junk to gold? Nat Rev Drug Discov 2003; 2(7): 554-65.
[http://dx.doi.org/10.1038/nrd1132] [PMID: 12815381]
[93]
Pan J, Qian J, Zhang Y, et al. Small peptide inhibitor of JNKs protects against MPTP-induced nigral dopaminergic injury via inhibiting the JNK-signaling pathway. Lab Invest 2010; 90(2): 156-67.
[http://dx.doi.org/10.1038/labinvest.2009.124] [PMID: 20010851]
[94]
Zhang S, Gui X-H, Huang L-P, et al. Neuroprotective effects of β-asarone against 6-hydroxy dopamine-induced parkinsonism via JNK/Bcl-2/Beclin-1 pathway. Mol Neurobiol 2016; 53(1): 83-94.
[http://dx.doi.org/10.1007/s12035-014-8950-z] [PMID: 25404088]
[95]
Badshah H, Ali T, Shafiq-ur Rehman , et al. Protective effect of lupeol against lipopolysaccharide-induced neuroinflammation via the p38/c-Jun N-terminal kinase pathway in the adult mouse brain. J Neuroimmune Pharmacol 2016; 11(1): 48-60.
[http://dx.doi.org/10.1007/s11481-015-9623-z] [PMID: 26139594]
[96]
Tao L, Zhang F, Hao L, et al. 1-o-tigloyl-1-o-deacetylnimbolinin b inhibits lps-stimulated inflammatory responses by suppressing nf-κb and jnk activation in microglia cells. J Pharmacol Scis 2014; 14025FP.
[97]
Brecht S, Kirchhof R, Chromik A, et al. Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci 2005; 21(2): 363-77.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03857.x] [PMID: 15673436]
[98]
Lee Y, Chun HJ, Lee KM, Jung Y-S, Lee J. Silibinin suppresses astroglial activation in a mouse model of acute Parkinson’s disease by modulating the ERK and JNK signaling pathways. Brain Res 2015; 1627: 233-42.
[http://dx.doi.org/10.1016/j.brainres.2015.09.029] [PMID: 26434409]
[99]
Pan J, Xiao Q, Sheng C-Y, et al. Blockade of the translocation and activation of c-Jun N-terminal kinase 3 (JNK3) attenuates dopaminergic neuronal damage in mouse model of Parkinson’s disease. Neurochem Int 2009; 54(7): 418-25.
[http://dx.doi.org/10.1016/j.neuint.2009.01.013] [PMID: 19428783]
[100]
Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: Signalling components, nuclear roles and mechanisms of nuclear translocation. Biochimica et Biophysica Acta (BBA)-. Molecular Cell Research 2011; 1813(9): 1619-33.
[PMID: 21167873]
[101]
Chiri S, Bogliolo S, Ehrenfeld J, Ciapa B. Activation of extracellular signal-regulated kinase ERK after hypo-osmotic stress in renal epithelial A6 cells. Biochim Biophys Acta 2004; 1664(2): 224-9.
[http://dx.doi.org/10.1016/j.bbamem.2004.06.002] [PMID: 15328055]
[102]
Cheung EC, Slack RS. Emerging role for ERK as a key regulator of neuronal apoptosis. Sci STKE 2004; 2004(251): PE45.
[PMID: 15383672]
[103]
Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 1990; 54(3): 823-7.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb02325.x] [PMID: 2154550]
[104]
Zhu JH, Guo F, Shelburne J, Watkins S, Chu CT. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 2003; 13(4): 473-81.
[http://dx.doi.org/10.1111/j.1750-3639.2003.tb00478.x] [PMID: 14655753]
[105]
Béraud D, Maguire-Zeiss KA. Misfolded α-synuclein and Toll- like receptors: Therapeutic targets for Parkinson’s disease. Parkinsonism Relat Disord 2012; 18(Suppl. 1): S17-20.
[http://dx.doi.org/10.1016/S1353-8020(11)70008-6] [PMID: 22166424]
[106]
Aloisi F. Immune function of microglia. Glia 2001; 36(2): 165-79.
[http://dx.doi.org/10.1002/glia.1106] [PMID: 11596125]
[107]
Drouin-Ouellet J, St-Amour I, Saint-Pierre M, et al. Toll-like receptor expression in the blood and brain of patients and a mouse model of Parkinson’s disease. Int J Neuropsychopharmacol 2014; 18(6): pyu103.
[http://dx.doi.org/10.1093/ijnp/pyu103] [PMID: 25522431]
[108]
Chen Y, Zhang QS, Shao QH, et al. NLRP3 inflammasome pathway is involved in olfactory bulb pathological alteration induced by MPTP. Acta Pharmacol Sin 2019; 40(8): 991-8.
[http://dx.doi.org/10.1038/s41401-018-0209-1] [PMID: 30728466]
[109]
Zhang Q-S, Heng Y, Chen Y, et al. A novel bibenzyl compound (20c) protects mice from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid toxicity by regulating the α-synuclein-related inflammatory response. J Pharmacol Exp Ther 2017; 363(2): 284-92.
[http://dx.doi.org/10.1124/jpet.117.244020] [PMID: 28912345]
[110]
Tristão FS, Amar M, Latrous I, Del-Bel EA, Prediger RD, Raisman-Vozari R. Evaluation of nigrostriatal neurodegeneration and neuroinflammation following repeated intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in mice, an experimental model of Parkinson’s disease. Neurotox Res 2014; 25(1): 24-32.
[http://dx.doi.org/10.1007/s12640-013-9401-8] [PMID: 23690159]
[111]
Wu KC, Liou HH, Lee CY, Lin CJ. Down-regulation of natural resistance-associated macrophage protein-1 (Nramp1) is associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/1-methyl-4-phenylpyridinium (MPP+ )-induced α-synuclein accumulation and neurotoxicity. Neuropathol Appl Neurobiol 2019; 45(2): 157-73.
[http://dx.doi.org/10.1111/nan.12493] [PMID: 29679389]
[112]
Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2007; 2(1): 141-51.
[http://dx.doi.org/10.1038/nprot.2006.342] [PMID: 17401348]
[113]
Petroske E, Meredith GE, Callen S, Totterdell S, Lau Y-S. Mouse model of Parkinsonism: A comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 2001; 106(3): 589-601.
[http://dx.doi.org/10.1016/S0306-4522(01)00295-0] [PMID: 11591459]
[114]
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009; 1(6): a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[115]
Tsoulfas G, Geller DA. NF-kappaB in transplantation: Friend or foe? Transpl Infect Dis 2001; 3(4): 212-9.
[http://dx.doi.org/10.1034/j.1399-3062.2001.30405.x] [PMID: 11844153]
[116]
Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response. Oncogene 2006; 25(51): 6758-80.
[http://dx.doi.org/10.1038/sj.onc.1209943] [PMID: 17072327]
[117]
Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol 1999; 66(6): 876-88.
[http://dx.doi.org/10.1002/jlb.66.6.876] [PMID: 10614768]
[118]
Xia Y, Pauza ME, Feng L, Lo D. RelB regulation of chemokine expression modulates local inflammation. Am J Pathol 1997; 151(2): 375-87.
[PMID: 9250151]
[119]
Roebuck KA, Carpenter LR, Lakshminarayanan V, Page SM, Moy JN, Thomas LL. Stimulus-specific regulation of chemokine expression involves differential activation of the redox-responsive transcription factors AP-1 and NF-kappaB. J Leukoc Biol 1999; 65(3): 291-8.
[http://dx.doi.org/10.1002/jlb.65.3.291] [PMID: 10080530]
[120]
Gauss KA, Nelson-Overton LK, Siemsen DW, Gao Y, DeLeo FR, Quinn MT. Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-α. J Leukoc Biol 2007; 82(3): 729-41.
[http://dx.doi.org/10.1189/jlb.1206735] [PMID: 17537988]
[121]
Chen CC, Manning AM. Transcriptional regulation of endothelial cell adhesion molecules: A dominant role for NF-kappa B. Agents Actions Suppl 1995; 47: 135-41.
[http://dx.doi.org/10.1007/978-3-0348-7343-7_12] [PMID: 7540353]
[122]
Tak PP, Firestein GS. NF-kappaB: A key role in inflammatory diseases. J Clin Invest 2001; 107(1): 7-11.
[http://dx.doi.org/10.1172/JCI11830] [PMID: 11134171]
[123]
Van der Heiden K, Cuhlmann S, Luong A, Zakkar M, Evans PC. Role of nuclear factor kappaB in cardiovascular health and disease. Clin Sci (Lond) 2010; 118(10): 593-605.
[http://dx.doi.org/10.1042/CS20090557] [PMID: 20175746]
[124]
Latanich CA, Toledo-Pereyra LH. Searching for NF-kappaB-based treatments of ischemia reperfusion injury. J Invest Surg 2009; 22(4): 301-15.
[http://dx.doi.org/10.1080/08941930903040155] [PMID: 19842907]
[125]
Vandenbroeck K, Alloza I, Gadina M, Matthys P. Inhibiting cytokines of the interleukin-12 family: Recent advances and novel challenges. J Pharm Pharmacol 2004; 56(2): 145-60.
[http://dx.doi.org/10.1211/0022357022962] [PMID: 15005873]
[126]
Criswell LA. Gene discovery in rheumatoid arthritis highlights the CD40/NF-kappaB signaling pathway in disease pathogenesis. Immunol Rev 2010; 233(1): 55-61.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00862.x] [PMID: 20192992]
[127]
Lawrence T, Fong C. The resolution of inflammation: Anti-inflammatory roles for NF-kappaB. Int J Biochem Cell Biol 2010; 42(4): 519-23.
[http://dx.doi.org/10.1016/j.biocel.2009.12.016] [PMID: 20026420]
[128]
Pereira SG, Oakley F. Nuclear factor-kappaB1: Regulation and function. Int J Biochem Cell Biol 2008; 40(8): 1425-30.
[http://dx.doi.org/10.1016/j.biocel.2007.05.004] [PMID: 17693123]
[129]
Wang MS, Boddapati S, Emadi S, Sierks MR. Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci 2010; 11(1): 57.
[http://dx.doi.org/10.1186/1471-2202-11-57] [PMID: 20433710]
[130]
Wei W, Shurui C, Zipeng Z, et al. Aspirin suppresses neuronal apoptosis, reduces tissue inflammation, and restrains astrocyte activation by activating the Nrf2/HO-1 signaling pathway. Neuroreport 2018; 29(7): 524-31.
[http://dx.doi.org/10.1097/WNR.0000000000000969] [PMID: 29381509]
[131]
Amin FU, Shah SA, Kim MO. Vanillic acid attenuates Aβ 1-42-induced oxidative stress and cognitive impairment in mice. Sci Rep 2017; 7(1): 1-15.
[http://dx.doi.org/10.1038/srep40753] [PMID: 28127051]
[132]
Liu Y-W, Liu X-L, Kong L, et al. Neuroprotection of quercetin on central neurons against chronic high glucose through enhancement of Nrf2/ARE/glyoxalase-1 pathway mediated by phosphorylation regulation. Biomed Pharmacother 2019; 109: 2145-54.
[http://dx.doi.org/10.1016/j.biopha.2018.11.066] [PMID: 30551472]
[133]
Wu Y, Wang Y, Wu Y, Li T, Wang W. Salidroside shows anticonvulsant and neuroprotective effects by activating the Nrf2-ARE pathway in a pentylenetetrazol-kindling epileptic model. Brain Res Bull 2020; 164: 14-20.
[http://dx.doi.org/10.1016/j.brainresbull.2020.08.009] [PMID: 32800786]
[134]
Tian Z, Tang C, Wang Z. Neuroprotective effect of ginkgetin in experimental cerebral ischemia/reperfusion via apoptosis inhibition and PI3K/Akt/mTOR signaling pathway activation. J Cell Biochem 2019; 120(10): 18487-95.
[http://dx.doi.org/10.1002/jcb.29169] [PMID: 31265179]
[135]
Peng M, Ling X, Song R, et al. Upregulation of GLT-1 via PI3K/Akt pathway contributes to Neuroprotection induced by Dexmedetomidine. Front Neurol 2019; 10: 1041.
[http://dx.doi.org/10.3389/fneur.2019.01041] [PMID: 31611842]
[136]
Qu Y, Liu Y, Chen L, et al. Nobiletin prevents cadmium-induced neuronal apoptosis by inhibiting reactive oxygen species and modulating JNK/ERK1/2 and Akt/mTOR networks in rats. Neurol Res 2018; 40(3): 211-20.
[http://dx.doi.org/10.1080/01616412.2018.1424685] [PMID: 29334873]
[137]
Xu G, Huang YL, Li PL, Guo HM, Han XP. Neuroprotective effects of artemisinin against isoflurane-induced cognitive impairments and neuronal cell death involve JNK/ERK1/2 signalling and improved hippocampal histone acetylation in neonatal rats. J Pharm Pharmacol 2017; 69(6): 684-97.
[http://dx.doi.org/10.1111/jphp.12704] [PMID: 28294340]
[138]
Han L, Liu D-L, Zeng Q-K, et al. The neuroprotective effects and probable mechanisms of ligustilide and its degradative products on intracerebral hemorrhage in mice. Int Immunopharmacol 2018; 63: 43-57.
[http://dx.doi.org/10.1016/j.intimp.2018.06.045] [PMID: 30075428]
[139]
Ye Y, Jin T, Zhang X, et al. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signalling pathways. Front Cell Neurosci 2019; 13: 553.
[http://dx.doi.org/10.3389/fncel.2019.00553] [PMID: 31920554]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy