Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Susceptibility of Glutathione-S-Transferase Polymorphism to CVD Develo- pment in Type 2 Diabetes Mellitus - A Review

Author(s): Santhi Priya Sobha and Kumar Ebenezar*

Volume 22, Issue 2, 2022

Published on: 11 January, 2022

Page: [225 - 234] Pages: 10

DOI: 10.2174/1871530321666210908115222

Price: $65

Abstract

Metabolic disorder affects normal homeostasis and can lead to the development of diseases. Diabetes mellitus is the most common metabolic disorder, and a cluster of metabolic conditions can lead to cardiovascular disease (CVD) development. Diabetes mellitus and CVD are closely related, with oxidative stress, playing a major role in the pathophysiology. Glutathione-S-Transferases (GST) potentially play an important role by reducing oxidative stress and is found to be the underlying pathophysiology in the development of diabetes, cardiovascular diseases (CVD), etc

Background: In this review, the role of GST genetic variant in the development of diabetes mellitus, CVD and diabetic vascular complications has been focused.

Objectives: Based on the literature, it is evident that the GST can act as an important biochemical tool providing significant evidence regarding oxidative stress predominant in the development of diseases. Analysis of GST gene status, particularly detection of GSTM1 and GSTT1 null mutations and GSTP1 polymorphism, have clinical importance.

Results: The analysis of GST polymorphism may help identify the people at risk and provide proper medical management. Genotyping of GST gene would be a helpful biomarker for early diagnosis of CVD development in DM and also in CVD cases. More studies focusing on the association of GST polymorphism with CVD development in diabetic patients will help us determine the pathophysiology better.

Keywords: Glutathione-S-transferase, oxidative stress, gene polymorphism, cardiovascular diseases, diabetes, diabetic vascular complication.

Graphical Abstract
[1]
Gong, J.; Sun, Z.; Li, P. CIDE proteins and metabolic disorders. Curr. Opin. Lipidol., 2009, 20(2), 121-126.
[http://dx.doi.org/10.1097/MOL.0b013e328328d0bb] [PMID: 19276890]
[2]
Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2020. Diabetes Care, 2020, 43(Suppl. 1), S111-S134.
[http://dx.doi.org/10.2337/dc20-S010] [PMID: 31862753]
[3]
Freeman, M.W. Lipid Metabolism and Coronary Artery Disease In: Principles of Molecular Medicine; 2nd Ed.; M. S., Runge; C., Patterson, Eds.; Totowa: NJHumana Press, Inc. , 2006.
[http://dx.doi.org/10.1007/978-1-59259-963-9_15]
[4]
Tibaut, M.; Petrovič, D. Oxidative stress genes, antioxidants and coronary artery disease in type 2 diabetes mellitus. Cardiovasc. Hematol. Agents Med. Chem., 2016, 14(1), 23-38.
[http://dx.doi.org/10.2174/1871525714666160407143416] [PMID: 27052028]
[5]
Dos Anjos, L.R.B.; Rebelo, A.C,S; Pedrino, G.R; Da Silva Santos, R.; Da Silva Reis, A.A Impact of Oxidative Changes and Possible Effects of Genetics Polymorphisms of Glutathione S-Transferase in Diabetics Patients with Complications. In: Glutathione in Health and Disease; Erkekoglu, P; Kocer-Gumusel, B, Eds.; UK Intechopen, 2018; p. 47.
[6]
Yaribeygi, H; Sathyapalan, T; Atkin, S.L; Sahebkar, A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxid. Med. Cell. Longev, 2020.
[http://dx.doi.org/10.1155/2020/8609213]
[7]
Franco, R.; Schoneveld, O.J.; Pappa, A.; Panayiotidis, M.I. The central role of glutathione in the pathophysiology of human diseases. Arch. Physiol. Biochem., 2007, 113(4-5), 234-258.
[http://dx.doi.org/10.1080/13813450701661198] [PMID: 18158646]
[8]
Ebenezar, K.K.; Sathish, V.; Devaki, T. Protective role of arginine and lysine on tissue defence system during isoproterenol induced myocardial stress in rats. Biomedicine., 2002, 21(2/3), 71-76.
[9]
Sathish, V.; Vimal, V.; Ebenezar, K.K.; Devaki, T. Synergistic effect of nicorandil and amlodipine on mitochondrial function during isoproterenol-induced myocardial infarction in rats. J. Pharm. Pharmacol., 2002, 54(1), 133-137.
[http://dx.doi.org/10.1211/0022357021771841] [PMID: 11829124]
[10]
Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 51-88.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857] [PMID: 15822171]
[11]
Idowu, A.T.; Mujeeb, O.S. Polymorphic Human Glutathione S-transferase Genes may Predict Susceptibility to Type 2 Diabetes Mellitus: A Minireview. Int. J. Biomed. Res., 2015, 6(03), 139-143.
[http://dx.doi.org/10.7439/ijbr.v6i3.1584]
[12]
Noshin, T.F.; Ali, M.R.; Banik, S. Increased oxidative stress and altered serum macro-minerals and trace elements levels are associated with coronary artery disease. J. Trace Elem. Med. Biol., 2021, 64, 126707.
[http://dx.doi.org/10.1016/j.jtemb.2020.126707] [PMID: 33360647]
[13]
Allocati, N.; Masulli, M.; Di Ilio, C.; Federici, L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis, 2018, 7(1), 8.
[http://dx.doi.org/10.1038/s41389-017-0025-3] [PMID: 29362397]
[14]
Rybka, J.; Kupczyk, D.; Kędziora-Kornatowska, K.; Motyl, J.; Czuczejko, J.; Szewczyk-Golec, K.; Kozakiewicz, M.; Pawluk, H.; Carvalho, L.A.; Kędziora, J. Glutathione-related antioxidant defense system in elderly patients treated for hypertension. Cardiovasc. Toxicol., 2011, 11(1), 1-9.
[http://dx.doi.org/10.1007/s12012-010-9096-5] [PMID: 21140238]
[15]
Kapahtia, S.; Hazam, R.K.; Asim, M.; Karra, V.K.; Chowdhury, S.J.; Das, B.C.; Kar, P. Role of glutathione S transferase M1 and T1 gene polymorphism in hepatitis B related liver diseases and cryptogenic cirrhosis. J. Clin. Exp. Hepatol., 2018, 8(2), 169-172.
[http://dx.doi.org/10.1016/j.jceh.2017.05.208] [PMID: 29892180]
[16]
Garte, S.; Gaspari, L.; Alexandrie, A.K.; Ambrosone, C.; Autrup, H.; Autrup, J.L.; Baranova, H.; Bathum, L.; Benhamou, S.; Boffetta, P.; Bouchardy, C.; Breskvar, K.; Brockmoller, J.; Cascorbi, I.; Clapper, M.L.; Coutelle, C.; Daly, A.; Dell’Omo, M.; Dolzan, V.; Dresler, C.M.; Fryer, A.; Haugen, A.; Hein, D.W.; Hildesheim, A.; Hirvonen, A.; Hsieh, L.L.; Ingelman-Sundberg, M.; Kalina, I.; Kang, D.; Kihara, M.; Kiyohara, C.; Kremers, P.; Lazarus, P.; Le Marchand, L.; Lechner, M.C.; van Lieshout, E.M.; London, S.; Manni, J.J.; Maugard, C.M.; Morita, S.; Nazar-Stewart, V.; Noda, K.; Oda, Y.; Parl, F.F.; Pastorelli, R.; Persson, I.; Peters, W.H.; Rannug, A.; Rebbeck, T.; Risch, A.; Roelandt, L.; Romkes, M.; Ryberg, D.; Salagovic, J.; Schoket, B.; Seidegard, J.; Shields, P.G.; Sim, E.; Sinnet, D.; Strange, R.C.; Stücker, I.; Sugimura, H.; To-Figueras, J.; Vineis, P.; Yu, M.C.; Taioli, E. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol. Biomarkers Prev., 2001, 10(12), 1239-1248.
[PMID: 11751440]
[17]
Yan, C.; Duan, L.; Fu, C.; Tian, C.; Zhang, B.; Shao, X.; Zhu, G. Association Between Glutathione S-Transferase (GST) Polymorphisms and Schizophrenia in a Chinese Han Population. Neuropsychiatr. Dis. Treat., 2020, 16, 479-487.
[http://dx.doi.org/10.2147/NDT.S235043] [PMID: 32110022]
[18]
Bolt, H.M.; Thier, R. Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr. Drug Metab., 2006, 7(6), 613-628.
[http://dx.doi.org/10.2174/138920006778017786] [PMID: 16918316]
[19]
v, V.; K, V.; Paul, S.F.; P, V. Genetic variation of GSTM1, GSTT1 and GSTP1 genes in a South Indian population. Asian Pac. J. Cancer Prev., 2006, 7(2), 325-328.
[PMID: 16839232]
[20]
Drozdz-Afelt, J.M.; Koim-Puchowska, B.; Klosowski, G.; Kaminski, P. Polymorphism of glutathione S-transferase in the population of Polish patients with carcinoma of the prostate. Environ. Sci. Pollut. Res. Int., 2020, 27(16), 19375-19382.
[http://dx.doi.org/10.1007/s11356-020-08435-7] [PMID: 32212077]
[21]
Sharma, A.; Pandey, A.; Sardana, S.; Sehgal, A.; Sharma, J.K. Genetic polymorphisms of GSTM1 and GSTT1 genes in Delhi and comparison with other Indian and global populations. Asian Pac. J. Cancer Prev., 2012, 13(11), 5647-5652.
[http://dx.doi.org/10.7314/APJCP.2012.13.11.5647] [PMID: 23317232]
[22]
Akbari, A.; Salehi, Z.; Koohmanai, S. Significant difference between the frequency of glutathione-S-transferase M1, glutathione-S-transferase T1 and glutathione-S-transferase P1 polymorphisms in type 1 diabetes patients and controls. Ann. Trop. Med. Public Health, 2017, 10, 1479-1484.
[http://dx.doi.org/10.4103/ATMPH.ATMPH_359_17]
[23]
Klusek, J.; Błońska-Sikora, E.; Witczak, B.; Orlewska, K.; Klusek, J.; Głuszek, S.; Orlewska, E. Glutathione S-transferases gene polymorphism influence on the age of diabetes type 2 onset. BMJ Open Diabetes Res. Care, 2020, 8(2), e001773.
[http://dx.doi.org/10.1136/bmjdrc-2020-001773] [PMID: 33203728]
[24]
Mastana, S.S.; Kaur, A.; Hale, R.; Lindley, M.R. Influence of glutathione S-transferase polymorphisms (GSTT1, GSTM1, GSTP1) on type-2 diabetes mellitus (T2D) risk in an endogamous population from north India. Mol. Biol. Rep., 2013, 40(12), 7103-7110.
[http://dx.doi.org/10.1007/s11033-013-2833-7] [PMID: 24203463]
[25]
Azarova, I.; Bushueva, O.; Konoplya, A.; Polonikov, A. Glutathione S-transferase genes and the risk of type 2 diabetes mellitus: Role of sexual dimorphism, gene-gene and gene-smoking interactions in disease susceptibility. J. Diabetes, 2018, 10(5), 398-407.
[http://dx.doi.org/10.1111/1753-0407.12623] [PMID: 29111615]
[26]
Bid, H.K.; Konwar, R.; Saxena, M.; Chaudhari, P.; Agrawal, C.G.; Banerjee, M. Association of glutathione S-transferase (GSTM1, T1 and P1) gene polymorphisms with type 2 diabetes mellitus in north Indian population. J. Postgrad. Med., 2010, 56(3), 176-181.
[http://dx.doi.org/10.4103/0022-3859.68633] [PMID: 20739761]
[27]
Al-Badran, A.I.; Al-Mayah, M.K. Association between GSTT1 and GSTM1 genes polymorphisms Type II diabetes miletus patients in Basra Iraq. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(11), 288-299.
[28]
Hayek, T.; Stephens, J.W.; Hubbart, C.S.; Acharya, J.; Caslake, M.J.; Hawe, E.; Miller, G.J.; Hurel, S.J.; Humphries, S.E. A common variant in the glutathione S transferase gene is associated with elevated markers of inflammation and lipid peroxidation in subjects with diabetes mellitus. Atherosclerosis, 2006, 184(2), 404-412.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.05.017] [PMID: 16002077]
[29]
Moasser, E.; Kazemi-Nezhad, S.R.; Saadat, M.; Azarpira, N. Study of the association between glutathione S-transferase (GSTM1, GSTT1, GSTP1) polymorphisms with type II diabetes mellitus in southern of Iran. Mol. Biol. Rep., 2012, 39(12), 10187-10192.
[http://dx.doi.org/10.1007/s11033-012-1893-4] [PMID: 23014993]
[30]
Porojan, M.D.; Bala, C.; Ilies, R.; Catana, A.; Popp, R.A.; Dumitrascu, D.L. Combined glutathione S transferase M1/T1 null genotypes is associated with type 2 diabetes mellitus. Clujul Med., 2015, 88(2), 159-163.
[PMID: 26528065]
[31]
Yalin, S.; Hatungil, R.; Tamer, L.; Ates, N.A.; Dogruer, N.; Yildirim, H.; Karakas, S.; Atik, U. Glutathione S-transferase gene polymorphisms in Turkish patients with diabetes mellitus. Cell Biochem. Funct., 2007, 25(5), 509-513.
[http://dx.doi.org/10.1002/cbf.1339] [PMID: 16927413]
[32]
Hori, M.; Oniki, K.; Ueda, K.; Goto, S.; Mihara, S.; Marubayashi, T.; Nakagawa, K. Combined glutathione S-transferase T1 and M1 positive genotypes afford protection against type 2 diabetes in Japanese. Future Med., 2007, 8(10), 1307-1314.
[http://dx.doi.org/10.2217/14622416.8.10.1307] [PMID: 17979505]
[33]
Pinheiro, D.S.; Rocha Filho, C.R.; Mundim, C.A.; Júnior, Pde.M.; Ulhoa, C.J.; Reis, A.A.; Ghedini, P.C. Evaluation of glutathione S-transferase GSTM1 and GSTT1 deletion polymorphisms on type-2 diabetes mellitus risk. PLoS One, 2013, 8(10), e76262.
[http://dx.doi.org/10.1371/journal.pone.0076262] [PMID: 24098457]
[34]
Wang, G.; Zhang, L.; Li, Q. Genetic polymorphisms of GSTT1, GSTM1, and NQO1 genes and diabetes mellitus risk in Chinese population. Biochem. Biophys. Res. Commun., 2006, 341(2), 310-313.
[http://dx.doi.org/10.1016/j.bbrc.2005.12.195] [PMID: 16413497]
[35]
Hossaini, A.M.; Zamrroni, I.M.; Kashem, R.A.; Khan, Z.F. Polymorphism of glutathione S-transferases as genetic risk factors for the development of complications in type 2 diabetes mellitus. J. Crit. Care, 2008, 23(3), 444-448.
[http://dx.doi.org/10.1016/j.jcrc.2008.06.008] [PMID: 18725054]
[36]
Rao, D.K.; Shaik, N.A.; Imran, A.; Murthy, D.K.; Ganti, E.; Chinta, C.; Rao, H.; Shaik, N.S.; Al-Aama, J.Y. Variations in the GST activity are associated with single and combinations of GST genotypes in both male and female diabetic patients. Mol. Biol. Rep., 2014, 41(2), 841-848.
[http://dx.doi.org/10.1007/s11033-013-2924-5] [PMID: 24381101]
[37]
Zhang, J.; Liu, H.; Yan, H.; Huang, G.; Wang, B. Null genotypes of GSTM1 and GSTT1 contribute to increased risk of diabetes mellitus: a meta-analysis. Gene, 2013, 518(2), 405-411.
[http://dx.doi.org/10.1016/j.gene.2012.12.086] [PMID: 23296061]
[38]
Nath, S.; Das, S.; Bhowmik, A.; Ghosh, S.K.; Choudhury, Y. The GSTM1 and GSTT1 null genotypes increase the risk for type 2 diabetes mellitus and the subsequent development of diabetic complications: a meta-analysis. Curr. Diabetes Rev., 2019, 15(1), 31-43.
[http://dx.doi.org/10.2174/1573399814666171215120228] [PMID: 29243583]
[39]
Mergani, A.; Mansour, A.A.; Askar, T.; Zahran, R.N.; Mustafa, A.M.; Mohammed, M.A.; Saleh, O.M. Glutathione S-transferase Pi-Ile 105 Val polymorphism and susceptibility to T2DM in population from Turabamh region of Saudi Arabia. Biochem. Genet., 2016, 54(4), 544-551.
[http://dx.doi.org/10.1007/s10528-016-9740-2] [PMID: 27368697]
[40]
Amer, M.A.; Ghattas, M.H.; Abo-Elmatty, D.M.; Abou-El-Ela, S.H. Evaluation of glutathione S-transferase P1 genetic variants affecting type-2 diabetes susceptibility and glycemic control. Arch. Med. Sci., 2012, 8(4), 631-636.
[http://dx.doi.org/10.5114/aoms.2012.30286] [PMID: 23056073]
[41]
Khrunin, A.V.; Khokhrin, D.V.; Limborska, S.A. Glutathione-S-transferase gene polymorphism in Russian populations of European part of Russia. Russ. J. Genet., 2008, 44, 1241-1245.
[http://dx.doi.org/10.1134/S1022795408100153]
[42]
Wannamethee, S.G.; Shaper, A.G.; Perry, I.J. British Regional Heart Study. Smoking as a modifiable risk factor for type 2 diabetes in middle-aged men. Diabetes Care, 2001, 24(9), 1590-1595.
[http://dx.doi.org/10.2337/diacare.24.9.1590] [PMID: 11522704]
[43]
Cervantes Gracia, K.; Llanas-Cornejo, D.; Husi, H. CVD and oxidative stress. J. Clin. Med., 2017, 6(2), 22.
[http://dx.doi.org/10.3390/jcm6020022] [PMID: 28230726]
[44]
Su, H.; Cao, Y.; Li, J.; Zhu, Y.; Ma, X. GST null polymorphisms may affect the risk of coronary artery disease: evidence from a meta-analysis. Thromb. J., 2020, 18(1), 20.
[http://dx.doi.org/10.1186/s12959-020-00234-x] [PMID: 32905149]
[45]
Mir, R.; Bhat, M.A.; Javaid, J.; Shah, N.; Kumar, P.; Sharma, E.; Jhu, C.; Basak, S.; Amle, D.; Ray, P.C.; Saxena, A.; Banu, S. Glutathione S-transferase M1 and T1 (rs4025935 and rs71748309) null genotypes are associated with increased susceptibility to coronary artery disease in Indian populations. Acta Cardiol., 2016, 71(6), 678-684.
[http://dx.doi.org/10.1080/AC.71.6.3178186] [PMID: 27920455]
[46]
Abu-Amero, K.K.; Al-Boudari, O.M.; Mohamed, G.H.; Dzimiri, N. T null and M null genotypes of the glutathione S-transferase gene are risk factor for CAD independent of smoking. BMC Med. Genet., 2006, 7(1), 38.
[http://dx.doi.org/10.1186/1471-2350-7-38] [PMID: 16620396]
[47]
Wang, L.S.; Tang, J.J.; Tang, N.P.; Wang, M.W.; Yan, J.J.; Wang, Q.M.; Yang, Z.J.; Wang, B. Association of GSTM1 and GSTT1 gene polymorphisms with coronary artery disease in relation to tobacco smoking. Clin. Chem. Lab. Med., 2008, 46(12), 1720-1725.
[http://dx.doi.org/10.1515/CCLM.2008.353] [PMID: 19055448]
[48]
Phulukdaree, A.; Khan, S.; Moodley, D.; Chuturgoon, A.A. GST polymorphisms and early-onset coronary artery disease in young South African Indians. S. Afr. Med. J., 2012, 102(7), 627-630.
[http://dx.doi.org/10.7196/SAMJ.5520] [PMID: 22748443]
[49]
Wilson, M.H.; Grant, P.J.; Kain, K.; Warner, D.P.; Wild, C.P. Association between the risk of coronary artery disease in South Asians and a deletion polymorphism in glutathione S-transferase M1. Biomarkers, 2003, 8(1), 43-50.
[http://dx.doi.org/10.1080/1354750021000042439] [PMID: 12519635]
[50]
Girisha, K.M.; Gilmour, A.; Mastana, S.; Singh, V.P.; Sinha, N.; Tewari, S.; Ramesh, V.; Sankar, V.H.; Agrawal, S. T1 and M1 polymorphism in glutathione S-transferase gene and coronary artery disease in North Indian population. Indian J. Med. Sci., 2004, 58(12), 520-526.
[PMID: 15627678]
[51]
Bhat, M.A.; Gandhi, G. Association of GSTT1 and GSTM1 gene polymorphisms with coronary artery disease in North Indian Punjabi population: a case-control study. Postgrad. Med. J., 2016, 92(1094), 701-706.
[http://dx.doi.org/10.1136/postgradmedj-2015-133836] [PMID: 27215231]
[52]
Pourkeramati, A.; Zare Mehrjardi, E.; Dehghan Tezerjani, M.; Seifati, S.M. Association of GSTP1, GSTT1 and GSTM1 Gene Variants with Coronary Artery Disease in Iranian Population: A Case-Control Study. Int. J. Gen. Med., 2020, 13, 249-259.
[http://dx.doi.org/10.2147/IJGM.S252552] [PMID: 32547167]
[53]
Bhatti, J.S.; Vijayvergiya, R.; Singh, B.; Bhatti, G.K. Genetic susceptibility of glutathione S-transferase genes (GSTM1/T1 and P1) to coronary artery disease in Asian Indians. Ann. Hum. Genet., 2018, 82(6), 448-456.
[http://dx.doi.org/10.1111/ahg.12274] [PMID: 30039864]
[54]
Yeh, H.L.; Kuo, L.T.; Sung, F.C.; Chiang, C.W.; Yeh, C.C. GSTM1, GSTT1, GSTP1, and GSTA1 genetic variants are not associated with coronary artery disease in Taiwan. Gene, 2013, 523(1), 64-69.
[http://dx.doi.org/10.1016/j.gene.2013.02.052] [PMID: 23570881]
[55]
Bhat, M.A.; Gandhi, G. Glutathione S-transferase P1 gene polymorphisms and susceptibility to coronary artery disease in a subgroup of north Indian population. J. Genet., 2017, 96(6), 927-932.
[http://dx.doi.org/10.1007/s12041-017-0863-y] [PMID: 29321351]
[56]
Kariž, S.; Nikolajević Starčević, J.; Petrovič, D. Association of manganese superoxide dismutase and glutathione S-transferases genotypes with myocardial infarction in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract., 2012, 98(1), 144-150.
[http://dx.doi.org/10.1016/j.diabres.2012.07.003] [PMID: 22858312]
[57]
Singh, N.; Sinha, N.; Kumar, S.; Pandey, C.M.; Agrawal, S. Glutathione S-transferase gene polymorphism as a susceptibility factor for acute myocardial infarction and smoking in the North Indian population. Cardiology, 2011, 118(1), 16-21.
[http://dx.doi.org/10.1159/000324066] [PMID: 21389716]
[58]
Cora, T.; Tokac, M.; Acar, H.; Soylu, A.; Inan, Z. Glutathione S-transferase M1 and T1 genotypes and myocardial infarction. Mol. Biol. Rep., 2013, 40(4), 3263-3267.
[http://dx.doi.org/10.1007/s11033-012-2401-6] [PMID: 23275234]
[59]
Wilson, M.H.; Grant, P.J.; Hardie, L.J.; Wild, C.P. Glutathione S-transferase M1 null genotype is associated with a decreased risk of myocardial infarction. FASEB J., 2000, 14(5), 791-796.
[http://dx.doi.org/10.1096/fasebj.14.5.791] [PMID: 10744635]
[60]
Abbas, S.; Raza, S.T.; Chandra, A.; Rizvi, S.; Ahmed, F.; Eba, A.; Mahdi, F. Association of ACE, FABP2 and GST genes polymorphism with essential hypertension risk among a North Indian population. Ann. Hum. Biol., 2015, 42(5), 461-469.
[http://dx.doi.org/10.3109/03014460.2014.968206] [PMID: 25357227]
[61]
Banks, E.; Joshy, G.; Korda, R.J.; Stavreski, B.; Soga, K.; Egger, S.; Day, C.; Clarke, N.E.; Lewington, S.; Lopez, A.D. Tobacco smoking and risk of 36 cardiovascular disease subtypes: fatal and non-fatal outcomes in a large prospective Australian study. BMC Med., 2019, 17(1), 128.
[http://dx.doi.org/10.1186/s12916-019-1351-4] [PMID: 31266500]
[62]
Li, R.; Boerwinkle, E.; Olshan, A.F.; Chambless, L.E.; Pankow, J.S.; Tyroler, H.A.; Bray, M.; Pittman, G.S.; Bell, D.A.; Heiss, G. Glutathione S-transferase genotype as a susceptibility factor in smoking-related coronary heart disease. Atherosclerosis, 2000, 149(2), 451-462.
[http://dx.doi.org/10.1016/S0021-9150(99)00483-9] [PMID: 10729397]
[63]
Kim, S.J.; Kim, M.G.; Kim, K.S.; Song, J.S.; Yim, S.V.; Chung, J.H. Impact of glutathione S-transferase M1 and T1 gene polymorphisms on the smoking-related coronary artery disease. J. Korean Med. Sci., 2008, 23(3), 365-372.
[http://dx.doi.org/10.3346/jkms.2008.23.3.365] [PMID: 18583868]
[64]
Martin, N.J.; Collier, A.C.; Bowen, L.D.; Pritsos, K.L.; Goodrich, G.G.; Arger, K.; Cutter, G.; Pritsos, C.A. Polymorphisms in the NQO1, GSTT and GSTM genes are associated with coronary heart disease and biomarkers of oxidative stress. Mutat. Res., 2009, 674(1-2), 93-100.
[http://dx.doi.org/10.1016/j.mrgentox.2008.09.009] [PMID: 18950733]
[65]
Chait, A.; Eckel, R.H. Lipids, lipoproteins, and cardiovascular disease: clinical pharmacology now and in the future. J. Clin. Endocrinol. Metab., 2016, 101(3), 804-814.
[http://dx.doi.org/10.1210/jc.2015-3940] [PMID: 26908111]
[66]
IDF Diabetes Atlas. 9th Edt. 2019.
[67]
De Rosa, S.; Arcidiacono, B.; Chiefari, E.; Brunetti, A.; Indolfi, C.; Foti, D.P. Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front. Endocrinol. (Lausanne), 2018, 9, 2.
[http://dx.doi.org/10.3389/fendo.2018.00002] [PMID: 29387042]
[68]
Lapenna, D.; Ciofani, G.; Calafiore, A.M.; Cipollone, F.; Porreca, E. Impaired glutathione-related antioxidant defenses in the arterial tissue of diabetic patients. Free Radic. Biol. Med., 2018, 124, 525-531.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.033] [PMID: 29964170]
[69]
Hashemi-Soteh, M.B.; Amiri, A.A.; Rezaee, M.R.S.; Amiri, A.A.; Ahrari, R.; Daneshvar, F. Evaluation of glutathione S-transferase polymorphism in Iranian patients with type 2 diabetic microangiopathy. Egypt. J. Med. Hum. Genet., 2020, 21(1), 1-8.
[70]
Etemad, A.; Vasudevan, R.; Aziz, A.F.; Yusof, A.K.; Khazaei, S.; Fawzi, N.; Jamalpour, S.; Arkani, M.; Mohammad, N.A.; Ismail, P. Analysis of selected glutathione S-transferase gene polymorphisms in Malaysian type 2 diabetes mellitus patients with and without cardiovascular disease. Genet. Mol. Res., 2016, 15(2), 1-9.
[http://dx.doi.org/10.4238/gmr.15025845] [PMID: 27173202]
[71]
Manfredi, S.; Calvi, D.; del Fiandra, M.; Botto, N.; Biagini, A.; Andreassi, M.G. Glutathione S-transferase T1- and M1-null genotypes and coronary artery disease risk in patients with Type 2 diabetes mellitus. Pharmacogenomics, 2009, 10(1), 29-34.
[http://dx.doi.org/10.2217/14622416.10.1.29] [PMID: 19102712]
[72]
Zaki, M.A.; Moghazy, T.F.; El-Deeb, M.M.; Mohamed, A.H.; Mohamed, N.A. Glutathione S-transferase M1, T1 and P1 gene polymorphisms and the risk of developing type 2 diabetes mellitus in Egyptian diabetic patients with and without diabetic vascular complications. Alex. J. Med., 2015, 51(1), 73-82.
[http://dx.doi.org/10.1016/j.ajme.2014.03.003]
[73]
Ramprasath, T.; Senthil Murugan, P.; Prabakaran, A.D.; Gomathi, P.; Rathinavel, A.; Selvam, G.S. Potential risk modifications of GSTT1, GSTM1 and GSTP1 (glutathione-S-transferases) variants and their association to CAD in patients with type-2 diabetes. Biochem. Biophys. Res. Commun., 2011, 407(1), 49-53.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.097] [PMID: 21352813]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy