Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Cepharanthine Regulates Autophagy via Activating the p38 Signaling Pathway in Lung Adenocarcinoma Cells

Author(s): Gang Li, Kesen Qiao, Xiaodan Xu and Chao Wang*

Volume 22, Issue 8, 2022

Published on: 03 September, 2021

Page: [1523 - 1529] Pages: 7

DOI: 10.2174/1871520621666210903163407

Price: $65

Abstract

Background: Cepharanthine (CEP) is an alkaloid extracted from Stephania cepharantha Hayata. This compound has been reported as a promising anti-tumor drug, although its potential molecular mechanism is not fully understood. Here, we studied the anti-tumor effect of CEP on human lung cancer cells and evaluated its molecular mechanism.

Methods: The A549 cells were treated with CEP, the cell viability was measured by 3-(4, 5-dimethylthiazolyl-2)-2, 5- diphenyltetrazolium bromide (MTT) assay, and formation of autophagosome was observed by acridine orange staining under a fluorescence microscope. The cell migration and invasion were determined by wound healing and transwell assay. The protein levels of autophagy-associated molecules, light chain 3 (LC3)p38and phospho-p38 in A549 cells, were determined by western blot analysis.

Result: The results showed that CEP inhibited cell proliferation, migration and invasion in A549 cells. Moreover, we found that CEP resulted in significant increases in levels of the autophagy marker protein LC3 in A549 cells. The number of intracellular acid dye follicular bright red fluorescence in A549 cells was significantly increased after CEP treatment. At the molecular levels, CEP markedly increased the phosphorylation of p38 in A549 cells. The knockdown of p38 expression by siRNA-p38 impaired the autophagy-regulating effect of CEP. Our results indicated that CEPregulated autophagy was an anti-tumor effect and not a protective response to CEP.

Conclusion: Taken together, these results demonstrated that CEP regulated autophagy by activating the p38 signaling pathway, which could be provided a potential application for preventing lung cancer.

Keywords: Cepharanthine, autophagy, lung adenocarcinoma, A549, LC3, p38.

Graphical Abstract
[1]
Li, Y.; Zang, H.; Qian, G.; Owonikoko, T.K.; Ramalingam, S.R.; Sun, S.Y. ERK inhibition effectively overcomes acquired resistance of epidermal growth factor receptor-mutant non-small cell lung cancer cells to osimertinib. Cancer, 2020, 126(6), 1339-1350.
[http://dx.doi.org/10.1002/cncr.32655] [PMID: 31821539]
[2]
Inno, A.; Di Noia, V.; D’Argento, E.; Modena, A.; Gori, S. State of the art of chemotherapy for the treatment of central nervous system metastases from non-small cell lung cancer. Transl. Lung Cancer Res., 2016, 5(6), 599-609.
[http://dx.doi.org/10.21037/tlcr.2016.11.01] [PMID: 28149755]
[3]
Liang, S.Q.; Marti, T.M.; Dorn, P.; Froment, L.; Hall, S.R.R.; Berezowska, S.; Kocher, G.; Schmid, R.A.; Peng, R.W. Blocking the epithelial-to-mesenchymal transition pathway abrogates resistance to anti-folate chemotherapy in lung cancer. Cell Death Dis., 2015, 6(7)e1824
[http://dx.doi.org/10.1038/cddis.2015.195] [PMID: 26181204]
[4]
Chang, Y.K.; Huang, S.C.; Kao, M.C.; Huang, C.J. Cepharanthine alleviates liver injury in a rodent model of limb ischemia-reperfusion. Acta Anaesthesiol. Taiwan., 2016, 54(1), 11-15.
[http://dx.doi.org/10.1016/j.aat.2015.11.004] [PMID: 26711228]
[5]
Paudel, K.R.; Karki, R.; Kim, D.W. Cepharanthine inhibits in vitro VSMC proliferation and migration and vascular inflammatory responses mediated by RAW264.7. Toxicol. In Vitro, 2016, 34, 16-25.
[http://dx.doi.org/10.1016/j.tiv.2016.03.010] [PMID: 27021874]
[6]
Unson, S.; Kongsaden, C.; Wonganan, P. Cepharanthine combined with 5-fluorouracil inhibits the growth of p53-mutant human colorectal cancer cells. J. Asian Nat. Prod. Res., 2020, 22(4), 370-385.
[http://dx.doi.org/10.1080/10286020.2018.1564136] [PMID: 30693808]
[7]
Huang, C.Z.; Wang, Y.F.; Zhang, Y.; Peng, Y.M.; Liu, Y.X.; Ma, F.; Jiang, J.H.; Wang, Q.D. Cepharanthine hydrochloride reverses P glycoprotein-mediated multidrug resistance in human ovarian carcinoma A2780/Taxol cells by inhibiting the PI3K/Akt signaling pathway. Oncol. Rep., 2017, 38(4), 2558-2564.
[http://dx.doi.org/10.3892/or.2017.5879] [PMID: 28791369]
[8]
Tang, Z.H.; Cao, W.X.; Guo, X.; Dai, X.Y.; Lu, J.H.; Chen, X.; Zhu, H.; Lu, J.J. Identification of a novel autophagic inhibitor cepharanthine to enhance the anti-cancer property of dacomitinib in non-small cell lung cancer. Cancer Lett., 2018, 412, 1-9.
[http://dx.doi.org/10.1016/j.canlet.2017.10.001] [PMID: 29024815]
[9]
Guo, X.L.; Hu, F.; Wang, H.; Fang, J.M.; Zhu, Z.Z.; Wei, L.X.; Xu, Q. Inhibition of autophagy in hepatocarcinoma cells promotes chemotherapeutic agent-induced apoptosis during nutrient deprivation. Oncol. Rep., 2018, 39(2), 773-783.
[PMID: 29207161]
[10]
Singh, N.; Kansal, P.; Ahmad, Z.; Baid, N.; Kushwaha, H.; Khatri, N.; Kumar, A. Antimycobacterial effect of IFNG (interferon gamma)-induced autophagy depends on HMOX1 (heme oxygenase 1)-mediated increase in intracellular calcium levels and modulation of PPP3/calcineurin-TFEB (transcription factor EB) axis. Autophagy, 2018, 14(6), 972-991.
[http://dx.doi.org/10.1080/15548627.2018.1436936] [PMID: 29457983]
[11]
Xu, Y.; Sun, Q.; Yuan, F.; Dong, H.; Zhang, H.; Geng, R.; Qi, Y.; Xiong, X.; Chen, Q.; Liu, B. RND2 attenuates apoptosis and autophagy in glioblastoma cells by targeting the p38 MAPK signalling pathway. J. Exp. Clin. Cancer Res., 2020, 39(1), 174.
[http://dx.doi.org/10.1186/s13046-020-01671-2] [PMID: 32867814]
[12]
Yang, X.; Wang, J.; Dai, J.; Shao, J.; Ma, J.; Chen, C.; Ma, S.; He, Q.; Luo, P.; Yang, B. Autophagy protects against dasatinib-induced hepatotoxicity via p38 signaling. Oncotarget, 2015, 6(8), 6203-6217.
[http://dx.doi.org/10.18632/oncotarget.3357] [PMID: 25749037]
[13]
Zhou, W.; Zhou, L.; Wang, M.; Chen, D.Y.; Liu, Z.M.; Ye, L.; Guo, L. Molecular mechanism for P38 signaling pathway in autophagy of skin cancer cell line HS-1. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(21), 7343-7347.
[PMID: 30468479]
[14]
Kim, S.H.; Kim, K.Y.; Park, S.G.; Yu, S.N.; Kim, Y.W.; Nam, H.W.; An, H.H.; Kim, Y.W.; Ahn, S.C. Mitochondrial ROS activates ERK/autophagy pathway as a protected mechanism against deoxypodophyllotoxin-induced apoptosis. Oncotarget, 2017, 8(67), 111581-111596.
[http://dx.doi.org/10.18632/oncotarget.22875] [PMID: 29340076]
[15]
Chen, X.; Wu, L.; Li, D.; Xu, Y.; Zhang, L.; Niu, K.; Kong, R.; Gu, J.; Xu, Z.; Chen, Z.; Sun, J. Radiosensitizing effects of miR-18a-5p on lung cancer stem-like cells via downregulating both ATM and HIF-1α. Cancer Med., 2018, 7(8), 3834-3847.
[http://dx.doi.org/10.1002/cam4.1527] [PMID: 29860718]
[16]
Chen, Y.; Chen, C.; Zhang, X.; He, C.; Zhao, P.; Li, M.; Fan, T.; Yan, R.; Lu, Y.; Lee, R.J.; Khan, M.W.; Sarfraz, M.; Ma, X.; Yang, T.; Xiang, G. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm. Sin. B, 2020, 10(6), 1106-1121.
[http://dx.doi.org/10.1016/j.apsb.2019.10.011] [PMID: 32642416]
[17]
Chen, Q.Y.; Zheng, Y.; Jiao, D.M.; Chen, F.Y.; Hu, H.Z.; Wu, Y.Q.; Song, J.; Yan, J.; Wu, L.J.; Lv, G.Y. Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway. J. Nutr. Biochem., 2014, 25(2), 177-185.
[http://dx.doi.org/10.1016/j.jnutbio.2013.10.004] [PMID: 24445042]
[18]
Kim, D.H.; Suh, J.; Surh, Y.J.; Na, H.K. Regulation of the tumor suppressor PTEN by natural anticancer compounds. Ann. N. Y. Acad. Sci., 2017, 1401(1), 136-149.
[http://dx.doi.org/10.1111/nyas.13422] [PMID: 28891094]
[19]
Samra, Y.A.; Said, H.S.; Elsherbiny, N.M.; Liou, G.I.; El-Shishtawy, M.M.; Eissa, L.A. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome. Life Sci., 2016, 157, 187-199.
[http://dx.doi.org/10.1016/j.lfs.2016.06.002] [PMID: 27266851]
[20]
Bory, S.; Bun, S.S.; Baghdikian, B.; Dumètre, A.; Hutter, S.; Mabrouki, F.; Bun, H.; Elias, R.; Azas, N.; Ollivier, E. HPLC analysis of Stephania rotunda extracts and correlation with antiplasmodial activity. Phytother. Res., 2013, 27(2), 278-284.
[http://dx.doi.org/10.1002/ptr.4710] [PMID: 22566106]
[21]
Kudo, K.; Hagiwara, S.; Hasegawa, A.; Kusaka, J.; Koga, H.; Noguchi, T. Cepharanthine exerts anti-inflammatory effects via NF-κB inhibition in a LPS-induced rat model of systemic inflammation. J. Surg. Res., 2011, 171(1), 199-204.
[http://dx.doi.org/10.1016/j.jss.2010.01.007] [PMID: 20334881]
[22]
Zhu, Q.; Guo, B.; Chen, L.; Ji, Q.; Liang, H.; Wen, N.; Zhang, L. Cepharanthine exerts antitumor activity on choroidal melanoma by reactive oxygen species production and c-Jun N-terminal kinase activation. Oncol. Lett., 2017, 13(5), 3760-3766.
[http://dx.doi.org/10.3892/ol.2017.5945] [PMID: 28529590]
[23]
Hua, P.; Sun, M.; Zhang, G.; Zhang, Y.; Tian, X.; Li, X.; Cui, R.; Zhang, X.; Zhang, X.Y. Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells. Biochem. Biophys. Res. Commun., 2015, 460(2), 136-142.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.131] [PMID: 25747710]
[24]
Chen, Z.; Huang, C.; Yang, Y.L.; Ding, Y.; Ou-Yang, H.Q.; Zhang, Y.Y.; Xu, M. Inhibition of the STAT3 signaling pathway is involved in the antitumor activity of cepharanthine in SaOS2 cells. Acta Pharmacol. Sin., 2012, 33(1), 101-108.
[http://dx.doi.org/10.1038/aps.2011.164] [PMID: 22212432]
[25]
Zhou, P.; Zhang, R.; Wang, Y.; Xu, D.; Zhang, L.; Qin, J.; Su, G.; Feng, Y.; Chen, H.; You, S.; Rui, W.; Liu, H.; Chen, S.; Chen, H.; Wang, Y. Cepharanthine hydrochloride reverses the mdr1 (P-glycoprotein)-mediated esophageal squamous cell carcinoma cell cisplatin resistance through JNK and p53 signals. Oncotarget, 2017, 8(67), 111144-111160.
[http://dx.doi.org/10.18632/oncotarget.22676] [PMID: 29340044]
[26]
Rattanawong, A.; Payon, V.; Limpanasittikul, W.; Boonkrai, C.; Mutirangura, A.; Wonganan, P. Cepharanthine exhibits a potent anticancer activity in p53-mutated colorectal cancer cells through upregulation of p21Waf1/Cip1. Oncol. Rep., 2018, 39(1), 227-238.
[PMID: 29138869]
[27]
Shen, F.; Ge, C.; Yuan, P. Aloe-emodin induces autophagy and apoptotic cell death in non-small cell lung cancer cells via Akt/mTOR and MAPK signaling. Eur. J. Pharmacol., 2020, 886173550
[http://dx.doi.org/10.1016/j.ejphar.2020.173550] [PMID: 32926915]
[28]
Viola, G.; Bortolozzi, R.; Hamel, E.; Moro, S.; Brun, P.; Castagliuolo, I.; Ferlin, M.G.; Basso, G. MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochem. Pharmacol., 2012, 83(1), 16-26.
[http://dx.doi.org/10.1016/j.bcp.2011.09.017] [PMID: 21964343]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy