Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Breaking the Silence of Tumor Response: Future Prospects of Targeted Radionuclide Therapy

Author(s): Aanchal Udaynath Pareri, Arunkumar Singh Koijam and Chandan Kumar*

Volume 22, Issue 10, 2022

Published on: 11 January, 2022

Page: [1845 - 1858] Pages: 14

DOI: 10.2174/1871520621666210903152354

Price: $65

conference banner
Abstract

Therapy-induced tumor resistance has always been a paramount hurdle in the clinical triumph of cancer therapy. Resistance acquired by tumor through interventions of chemotherapeutic drugs, ionizing radiation, and immunotherapy in the patients is a severe drawback and major cause of recurrence of tumor and failure of therapeutic responses. To counter acquired resistance in tumor cells, several strategies are practiced such as chemotherapy regimens, immunotherapy and immunoconjugates, but the outcome is very disappointing for the patients as well as clinicians.

Radionuclide therapy using alpha or beta-emitting radionuclide as payload becoming a popular practice for cancer therapy. With the improvement in dosimetric studies, development of high-affinity target molecules and design of several novel chelating agents which provide thermodynamically stable complexes in vivo, the scope of radionuclide therapy has increased by leaps and bounds. Additionally, radionuclide therapy along with the combination of chemotherapy is gaining importance in pre-clinics, which is quite encouraging. Thus, it opens an avenue for newer cancer therapy modalities where chemotherapy, radiation therapy, and immunotherapy are unable to break the silence of tumor response. This article describes, in brief, the causes of tumor resistance and discusses the potential of radionuclide therapy to enhance tumor response.

Keywords: Cancer therapy, nuclear medicine, radiation therapy, radiopharmaceuticals, targeted radionuclide therapy, combination therapy.

Graphical Abstract
[1]
Prasad, N.R.; Muthusamy, G.; Shanmugam, M.; Ambudkar, S.V. South Asian medicinal compounds as modulators of resistance to chemotherapy and radiotherapy. Cancers (Basel), 2016, 8(3), 32.
[http://dx.doi.org/10.3390/cancers8030032] [PMID: 26959063]
[2]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[3]
Hertz, S.; Roberts, A. Radioactive iodine as an indicator in thyroid physiology. Am. J. Physiol., 1940, 128, 565-576.
[http://dx.doi.org/10.1152/ajplegacy.1940.128.3.565]
[4]
Kohler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975, 256(5517), 495-497.
[http://dx.doi.org/10.1038/256495a0] [PMID: 1172191]
[5]
Ehrlich, P. The collected papers of Paul Ehrlich; Pergamon: London, 1960, Vol. 3, .
[6]
Chamarthy, M.R.; Williams, S.C.; Moadel, R.M. Radioimmunotherapy of non-Hodgkin’s lymphoma: from the ‘magic bullets’ to ‘radioactive magic bullets’. Yale J. Biol. Med., 2011, 84(4), 391-407.
[PMID: 22180677]
[7]
Mach, J.P.; Carrel, S.; Merenda, C.; Sordat, B.; Cerottini, J.C. In vivo localisation of radiolabelled antibodies to carcinoembryonic antigen in human colon carcinoma grafted into nude mice. Nature, 1974, 248(5450), 704-706.
[http://dx.doi.org/10.1038/248704a0] [PMID: 4833275]
[8]
Nicolas, G.P.; Morgenstern, A.; Schottelius, M.; Fani, M. New developments in peptide receptor radionuclide therapy. J. Nucl. Med., 2019, 60(2), 167-171.jnumed,118.213496.
[9]
Chaturvedi, S.; Mishra, A.K. Small molecule radiopharmaceuticals-A review of current approaches. Front. Med. (Lausanne), 2016, 3, 5.
[http://dx.doi.org/10.3389/fmed.2016.00005] [PMID: 26942181]
[10]
Sgouros, G. Radiopharmaceutical Therapy. Health Phys., 2019, 116(2), 175-178.
[http://dx.doi.org/10.1097/HP.0000000000001000] [PMID: 30585960]
[11]
Khalid, U.; Vi, C.; Henri, J.; Macdonald, J.; Eu, P.; Mandarano, G.; Shigdar, S. Radiolabelled aptamers for theranostic treatment of cancer. Pharmaceuticals (Basel), 2018, 12(1), 2.
[http://dx.doi.org/10.3390/ph12010002] [PMID: 30586898]
[12]
Frejd, F.Y.; Kim, K.T. Affibody molecules as engineered protein drugs. Exp. Mol. Med., 2017, 49(3)e306
[http://dx.doi.org/10.1038/emm.2017.35] [PMID: 28336959]
[14]
Ling, V. Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother. Pharmacol., 1997, 40(1)(Suppl.), S3-S8.
[http://dx.doi.org/10.1007/s002800051053] [PMID: 9272126]
[15]
Vasconcelos, M.H. Special issue: New approaches to counteract drug resistance in cancer. Molecules, 2016, 22(1), 6.
[http://dx.doi.org/10.3390/molecules22010006] [PMID: 28025535]
[16]
Sivak, L.; Subr, V.; Tomala, J.; Rihova, B.; Strohalm, J.; Etrych, T.; Kovar, M. Overcoming multidrug resistance via simultaneous delivery of cytostatic drug and P-glycoprotein inhibitor to cancer cells by HPMA copolymer conjugate. Biomaterials, 2017, 115, 65-80.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.013] [PMID: 27886555]
[17]
Munoz, M.; Henderson, M.; Haber, M.; Norris, M. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life, 2007, 59(12), 752-757.
[http://dx.doi.org/10.1080/15216540701736285] [PMID: 18085475]
[18]
Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget, 2017, 8(35), 59950-59964.
[http://dx.doi.org/10.18632/oncotarget.19048] [PMID: 28938696]
[19]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53, 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[20]
Kars, M.D.; Iseri, O.D.; Gunduz, U.; Ural, A.U.; Arpaci, F.; Molnár, J. Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds. Anticancer Res., 2006, 26(6B), 4559-4568.
[PMID: 17201178]
[21]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[22]
Sui, H.; Fan, Z.Z.; Li, Q. Signal transduction pathways and transcriptional mechanisms of ABCB1/Pgp-mediated multiple drug resistance in human cancer cells. J. Int. Med. Res., 2012, 40(2), 426-435.
[http://dx.doi.org/10.1177/147323001204000204] [PMID: 22613403]
[23]
Breier, A.; Gibalova, L.; Seres, M.; Barancik, M.; Sulova, Z. New insight into p-glycoprotein as a drug target. Anticancer. Agents Med. Chem., 2013, 13(1), 159-170.
[http://dx.doi.org/10.2174/187152013804487380] [PMID: 22931413]
[24]
Eid, S.Y.; El-Readi, M.Z.; Fatani, S.H.; Eldin, E.E.M.N.; Wink, M. Natural products modulate the multifactorial multidrug resistance of cancer. Pharmacol. Pharm., 2015, 6, 146-176.
[http://dx.doi.org/10.4236/pp.2015.63017]
[25]
Buckley, A.M.; Lynam-Lennon, N.; O’Neill, H.; O’Sullivan, J. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(5), 298-313.
[http://dx.doi.org/10.1038/s41575-019-0247-2] [PMID: 32005946]
[26]
Reilly, R.M. Radioimmunotherapy of malignancies. Clin. Pharm., 1991, 10(5), 359-375.
[PMID: 2049898]
[27]
Arina, A.; Beckett, M.; Fernandez, C.; Zheng, W.; Pitroda, S.; Chmura, S.J.; Luke, J.J.; Forde, M.; Hou, Y.; Burnette, B.; Mauceri, H.; Lowy, I.; Sims, T.; Khodarev, N.; Fu, Y.X.; Weichselbaum, R.R. Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat. Commun., 2019, 10(1), 3959.
[http://dx.doi.org/10.1038/s41467-019-11906-2] [PMID: 31477729]
[28]
Dunn, P.L.; North, R.J. Selective radiation resistance of immunologically induced T cells as the basis for irradiation-induced T-cell-mediated regression of immunogenic tumor. J. Leukoc. Biol., 1991, 49(4), 388-396.
[http://dx.doi.org/10.1002/jlb.49.4.388] [PMID: 1900523]
[29]
Asanuma, K.; Moriai, R.; Yajima, T.; Yagihashi, A.; Yamada, M.; Kobayashi, D.; Watanabe, N. Survivin as a radioresistance factor in pancreatic cancer. Jpn. J. Cancer Res., 2000, 91(11), 1204-1209.
[http://dx.doi.org/10.1111/j.1349-7006.2000.tb00906.x] [PMID: 11092988]
[30]
Chakravarti, A.; Zhai, G.G.; Zhang, M.; Malhotra, R.; Latham, D.E.; Delaney, M.A.; Robe, P.; Nestler, U.; Song, Q.; Loeffler, J. Survivin enhances radiation resistance in primary human glioblastoma cells via caspase-independent mechanisms. Oncogéné, 2004, 23(45), 7494-7506.
[http://dx.doi.org/10.1038/sj.onc.1208049] [PMID: 15326475]
[31]
Rodel, F.; Hoffmann, J.; Distel, L.; Herrmann, M.; Noisternig, T.; Papadopoulos, T.; Sauer, R.; Rodel, C. Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res., 2005, 65(11), 4881-4887.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3028] [PMID: 15930309]
[32]
Wei, M.C.; Zong, W.X.; Cheng, E.H.; Lindsten, T.; Panoutsakopoulou, V.; Ross, A.J.; Roth, K.A.; MacGregor, G.R.; Thompson, C.B.; Korsmeyer, S.J. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Sci., 2001, 292(5517), 727-730.
[http://dx.doi.org/10.1126/science.1059108] [PMID: 11326099]
[33]
Pollack, A.; Wu, C.S.; Czerniak, B.; Zagars, G.K.; Bénédict, W.F.; McDonnell, T.J. Abnormal bcl-2 and pRb expression are independent correlates of radiation response in muscle-invasive bladder cancer. Clin. Cancer Res., 1997, 3(10), 1823-1829.
[PMID: 9815569]
[34]
Hwang, J.H.; Lim, S.C.; Kim, Y.C.; Park, K.O.; Ahn, S.J.; Chung, W.K. Apoptosis and bcl-2 expression as predictors of survival in radiation-treated non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 2001, 50(1), 13-18.
[http://dx.doi.org/10.1016/S0360-3016(00)01558-3] [PMID: 11316541]
[35]
Nix, P.; Cawkwell, L.; Patmore, H.; Greenman, J.; Stafford, N. Bcl-2 expression predicts radiotherapy failure in laryngeal cancer. Br. J. Cancer, 2005, 92(12), 2185-2189.
[http://dx.doi.org/10.1038/sj.bjc.6602647] [PMID: 15928664]
[36]
Levine, A.J.; Momand, J.; Finlay, C.A. The p53 tumour suppressor géné. Nature, 1991, 351(6326), 453-456.
[http://dx.doi.org/10.1038/351453a0] [PMID: 2046748]
[37]
Kuerbitz, S.J.; Plunkett, B.S.; Walsh, W.V.; Kastan, M.B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA, 1992, 89(16), 7491-7495.
[http://dx.doi.org/10.1073/pnas.89.16.7491] [PMID: 1323840]
[38]
Lee, J.M.; Bernstein, A. p53 mutations increase resistance to ionizing radiation. Proc. Natl. Acad. Sci. USA, 1993, 90(12), 5742-5746.
[http://dx.doi.org/10.1073/pnas.90.12.5742] [PMID: 8516323]
[39]
Jung, M.; Notario, V.; Dritschilo, A. Mutations in the p53 géné in radiation-sensitive and -resistant human squamous carcinoma cells. Cancer Res., 1992, 52(22), 6390-6393.
[PMID: 1423286]
[40]
Brown, J.M.; Wouters, B.G. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res., 1999, 59(7), 1391-1399.
[PMID: 10197600]
[41]
Schuurbiers, O.C.; Kaanders, J.H.; van der Heijden, H.F.; Dekhuijzen, R.P.; Oyen, W.J.; Bussink, J. The PI3-K/AKT-pathway and radiation resistance mechanisms in non-small cell lung cancer. J. Thorac. Oncol., 2009, 4(6), 761-767.
[http://dx.doi.org/10.1097/JTO.0b013e3181a1084f] [PMID: 19404218]
[42]
Maloney, D.G.; Grillo-Lopez, A.J.; White, C.A.; Bodkin, D.; Schilder, R.J.; Neidhart, J.A.; Janakiraman, N.; Foon, K.A.; Liles, T.M.; Dallaire, B.K.; Wey, K.; Royston, I.; Davis, T.; Levy, R. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood, 1997, 90(6), 2188-2195.
[http://dx.doi.org/10.1182/blood.V90.6.2188] [PMID: 9310469]
[43]
Reslan, L.; Dalle, S.; Dumontet, C. Understanding and circumventing resistance to anticancer monoclonal antibodies. MAbs, 2009, 1(3), 222-229.
[http://dx.doi.org/10.4161/mabs.1.3.8292] [PMID: 20065642]
[44]
Redman, J.M.; Hill, E.M.; AlDeghaither, D.; Weiner, L.M. Mechanisms of action of therapeutic antibodies for cancer. Mol. Immunol., 2015, 67(2 Pt A), 28-45.
[http://dx.doi.org/10.1016/j.molimm.2015.04.002] [PMID: 25911943]
[45]
Pierpont, T.M.; Limper, C.B.; Richards, K.L. Past, present, and future of Rituximab-The world’s first oncology monoclonal antibody therapy. Front. Oncol., 2018, 8, 163.
[http://dx.doi.org/10.3389/fonc.2018.00163] [PMID: 29915719]
[46]
Rezvani, A.R.; Maloney, D.G. Rituximab resistance. Best Pract. Res. Clin. Haematol., 2011, 24(2), 203-216.
[http://dx.doi.org/10.1016/j.beha.2011.02.009] [PMID: 21658619]
[47]
McLaughlin, P.; Grillo-Lopez, A.J.; Link, B.K.; Levy, R.; Czuczman, M.S.; Williams, M.E.; Heyman, M.R.; Bence-Bruckler, I.; White, C.A.; Cabanillas, F.; Jain, V.; Ho, A.D.; Lister, J.; Wey, K.; Shen, D.; Dallaire, B.K. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol., 1998, 16(8), 2825-2833.
[http://dx.doi.org/10.1200/JCO.1998.16.8.2825] [PMID: 9704735]
[48]
Khambata-Ford, S.; Garrett, C.R.; Meropol, N.J.; Basik, M.; Harbison, C.T.; Wu, S.; Wong, T.W.; Huang, X.; Takimoto, C.H.; Godwin, A.K.; Tan, B.R.; Krishnamurthi, S.S.; Burris, H.A., III; Poplin, E.A.; Hidalgo, M.; Baselga, J.; Clark, E.A.; Mauro, D.J. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol., 2007, 25(22), 3230-3237.
[http://dx.doi.org/10.1200/JCO.2006.10.5437] [PMID: 17664471]
[49]
Zhao, B.; Wang, L.; Qiu, H.; Zhang, M.; Sun, L.; Peng, P.; Yu, Q.; Yuan, X. Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget, 2017, 8(3), 3980-4000.
[http://dx.doi.org/10.18632/oncotarget.14012] [PMID: 28002810]
[50]
Bardelli, A.; Corso, S.; Bertotti, A.; Hobor, S.; Valtorta, E.; Siravegna, G.; Sartore-Bianchi, A.; Scala, E.; Cassingena, A.; Zecchin, D.; Apicella, M.; Migliardi, G.; Galimi, F.; Lauricella, C.; Zanon, C.; Perera, T.; Veronese, S.; Corti, G.; Amatu, A.; Gambacorta, M.; Diaz, L.A., Jr; Sausen, M.; Velculescu, V.E.; Comoglio, P.; Trusolino, L.; Di Nicolantonio, F.; Giordano, S.; Siena, S. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov., 2013, 3(6), 658-673.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0558] [PMID: 23729478]
[51]
Bray, S.M.; Lee, J.; Kim, S.T.; Hur, J.Y.; Ebert, P.J.; Calley, J.N.; Wulur, I.H.; Gopalappa, T.; Wong, S.S.; Qian, H.R.; Ting, J.C.; Liu, J.; Willard, M.D.; Novosiadly, R.D.; Park, Y.S.; Park, J.O.; Lim, H.Y.; Kang, W.K.; Aggarwal, A.; Kim, H.C.; Reinhard, C. Genomic characterization of intrinsic and acquired resistance to cetuximab in colorectal cancer patients. Sci. Rep., 2019, 9(1), 15365.
[http://dx.doi.org/10.1038/s41598-019-51981-5] [PMID: 31653970]
[52]
Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; Baselga, J.; Norton, L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med., 2001, 344(11), 783-792.
[http://dx.doi.org/10.1056/NEJM200103153441101] [PMID: 11248153]
[53]
Vogel, C.L.; Cobleigh, M.A.; Tripathy, D.; Gutheil, J.C.; Harris, L.N.; Fehrenbacher, L.; Slamon, D.J.; Murphy, M.; Novotny, W.F.; Burchmore, M.; Shak, S.; Stewart, S.J.; Press, M. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol., 2002, 20(3), 719-726.
[http://dx.doi.org/10.1200/JCO.2002.20.3.719] [PMID: 11821453]
[54]
Romond, E.H.; Perez, E.A.; Bryant, J.; Suman, V.J.; Geyer, C.E., Jr; Davidson, N.E.; Tan-Chiu, E.; Martino, S.; Paik, S.; Kaufman, P.A.; Swain, S.M.; Pisansky, T.M.; Fehrenbacher, L.; Kutteh, L.A.; Vogel, V.G.; Visscher, D.W.; Yothers, G.; Jenkins, R.B.; Brown, A.M.; Dakhil, S.R.; Mamounas, E.P.; Lingle, W.L.; Klein, P.M.; Ingle, J.N.; Wolmark, N. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med., 2005, 353(16), 1673-1684.
[http://dx.doi.org/10.1056/NEJMoa052122] [PMID: 16236738]
[55]
Saal, L.H.; Holm, K.; Maurer, M.; Memeo, L.; Su, T.; Wang, X.; Yu, J.S.; MalmstRom, P.O.; Mansukhani, M.; Enoksson, J.; Hibshoosh, H.; Borg, A.; Parsons, R. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res., 2005, 65(7), 2554-2559.
[http://dx.doi.org/10.1158/0008-5472-CAN-04-3913] [PMID: 15805248]
[56]
Pandolfi, P.P. Breast cancer-loss of PTEN predicts resistance to treatment. N. Engl. J. Med., 2004, 351(22), 2337-2338.
[http://dx.doi.org/10.1056/NEJMcibr043143] [PMID: 15564551]
[57]
Shattuck, D.L.; Miller, J.K.; Carraway, K.L., III; Sweénéy, C. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res., 2008, 68(5), 1471-1477.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5962] [PMID: 18316611]
[58]
Yang, W.; Klos, K.; Yang, Y.; Smith, T.L.; Shi, D.; Yu, D. ErbB2 overexpression correlates with increased expression of vascular endothelial growth factors A, C, and D in human breast carcinoma. Cancer, 2002, 94(11), 2855-2861.
[http://dx.doi.org/10.1002/cncr.10553] [PMID: 12115372]
[59]
Mukhopadhyay, P.; Chakraborty, S.; Ponnusamy, M.P.; Lakshmanan, I.; Jain, M.; Batra, S.K. Mucins in the pathogénésis of breast cancer: implications in diagnosis, prognosis and therapy. Biochim. Biophys. Acta, 2011, 1815(2), 224-240.
[PMID: 21277939]
[60]
Mukohara, T. Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer. Cancer Sci., 2011, 102(1), 1-8.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01711.x] [PMID: 20825420]
[61]
Gajria, D.; Chandarlapaty, S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev. Anticancer Ther., 2011, 11(2), 263-275.
[http://dx.doi.org/10.1586/era.10.226] [PMID: 21342044]
[62]
Rexer, B.N.; Arteaga, C.L. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 géné-amplified breast cancer: mechanisms and clinical implications. Crit. Rev. Oncog., 2012, 17(1), 1-16.
[http://dx.doi.org/10.1615/CritRevOncog.v17.i1.20] [PMID: 22471661]
[63]
Garrett, J.T.; Arteaga, C.L. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: mechanisms and clinical implications. Cancer Biol. Ther., 2011, 11(9), 793-800.
[http://dx.doi.org/10.4161/cbt.11.9.15045] [PMID: 21307659]
[64]
Nahta, R. Pharmacological strategies to overcome HER2 cross-talk and Trastuzumab resistance. Curr. Med. Chem., 2012, 19(7), 1065-1075.
[http://dx.doi.org/10.2174/092986712799320691] [PMID: 22229414]
[65]
Liu, B.; Fan, Z.; Edgerton, S.M.; Yang, X.; Lind, S.E.; Thor, A.D. Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle, 2011, 10(17), 2959-2966.
[http://dx.doi.org/10.4161/cc.10.17.16359] [PMID: 21862872]
[66]
Nahta, R.; Yuan, L.X.H.; Zhang, B.; Kobayashi, R.; Esteva, F.J. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res., 2005, 65(23), 11118-11128.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3841] [PMID: 16322262]
[67]
Tural, D.; Serdengecti, S.; Demirelli, F.; Ozturk, T.; lvan, S.; Turna, H.; Ozguroglu, M.; Buyukunal, E. Clinical significance of p95HER2 overexpression, PTEN loss and PI3K expression in p185HER2-positive metastatic breast cancer patients treated with trastuzumab-based therapies. Br. J. Cancer, 2014, 110(8), 1968-1976.
[http://dx.doi.org/10.1038/bjc.2014.72] [PMID: 24595002]
[68]
Gallardo, A.; Lerma, E.; Escuin, D.; Tibau, A.; Muñoz, J.; Ojeda, B.; Barnadas, A.; Adrover, E.; Sánchez-Tejada, L.; Giner, D.; Ortiz-Martínez, F.; Peiro, G. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br. J. Cancer, 2012, 106(8), 1367-1373.
[http://dx.doi.org/10.1038/bjc.2012.85] [PMID: 22454081]
[69]
Nelson, B.J.B.; Andersson, J.D.; Wuest, F. Targeted alpha therapy: Progress in radionuclide production, radiochemistry, and applications. Pharmaceutics, 2020, 13(1), 49.
[http://dx.doi.org/10.3390/pharmaceutics13010049] [PMID: 33396374]
[70]
Ku, A.; Facca, V.J.; Cai, Z.; Reilly, R.M. Auger electrons for cancer therapy-A review. EJNMMI Radiopharm. Chem., 2019, 4(1), 27.
[http://dx.doi.org/10.1186/s41181-019-0075-2] [PMID: 31659527]
[71]
National Research Council (US) and Institute of Medicine.(US) Committee on State of the Science of Nuclear Medicine. Advancing Nuclear Medicine Through Innovation. Washington (DC); National Academies Press: US, 2007, pp. 59-74.
[72]
Marín, A.; Martín, M.; Liñán, O.; Alvarenga, F.; Lopez, M.; Fernández, L.; Buchser, D.; Cerezo, L. Bystander effects and radiotherapy. Rep. Pract. Oncol. Radiother., 2014, 20(1), 12-21.
[http://dx.doi.org/10.1016/j.rpor.2014.08.004] [PMID: 25535579]
[73]
Enger, S.A.; Hartman, T.; Carlsson, J.; Lundqvist, H. Cross-fire doses from β-emitting radionuclides in targeted radiotherapy. A theoretical study based on experimentally measured tumor characteristics. Phys. Med. Biol., 2008, 53(7), 1909-1920.
[http://dx.doi.org/10.1088/0031-9155/53/7/007] [PMID: 18364546]
[74]
Zukotynski, K.; Jadvar, H.; Capala, J.; Fahey, F. Targeted radionuclide therapy: Practical applications and future prospects. Biomark. Cancer, 2016, 8(Suppl. 2), 35-38.
[http://dx.doi.org/10.4137/BIC.S31804] [PMID: 27226737]
[75]
Yasuda, H. Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide, 2008, 19(2), 205-216.
[http://dx.doi.org/10.1016/j.niox.2008.04.026] [PMID: 18503779]
[76]
Bodet-Milin, C.; Ferrer, L.; Pallardy, A.; Eugène, T.; Rauscher, A. Alain Faivre-Chauvet; Barbet, J.; Kraeber-Bodéré, F. Radioimmunotherapy of B-Cell Non-Hodgkin’s Lymphoma. Front. Oncol., 2013, 3, 177.
[http://dx.doi.org/10.3389/fonc.2013.00177] [PMID: 23875170]
[77]
Loke, K.S.; Padhy, A.K.; Ng, D.C.E.; Goh, A.S.W.; Divgi, C. Dosimetric considerations in radioimmunotherapy and systemic radionuclide therapies: A review. World J. Nucl. Med., 2011, 10(2), 122-138.
[http://dx.doi.org/10.4103/1450-1147.89780] [PMID: 22144871]
[78]
Kumar, C.; Jayakumar, S.; Pandey, B.N.; Samuel, G.; Venkatesh, M. Cellular and molecular effects of beta radiation from I-131 on human tumor cells: A comparison with gamma radiation. Curr. Radiopharm., 2014, 7(2), 138-143.
[http://dx.doi.org/10.2174/1874471007666140716115938] [PMID: 25030623]
[79]
Bodei, L.; SchOder, H.; Baum, R.P.; Herrmann, K.; Strosberg, J.; Caplin, M.; Oberg, K.; Modlin, I.M. Molecular profiling of neuroendocrine tumours to predict response and toxicity to peptide receptor radionuclide therapy. Lancet Oncol., 2020, 21(9), e431-e443.
[http://dx.doi.org/10.1016/S1470-2045(20)30323-5] [PMID: 32888472]
[80]
Krisnawan, V.E.; Stanley, J.A.; Schwarz, J.K.; DeNardo, D.G. Tumor microenvironment as a regulator of radiation therapy: New insights into stromal-mediated radioresistance. Cancers (Basel), 2020, 12(10), 2916.
[http://dx.doi.org/10.3390/cancers12102916] [PMID: 33050580]
[81]
Friesen, C.; Roscher, M.; Hormann, I.; Leib, O.; Marx, S.; Moreno, J.; Miltner, E. Anti-CD33-antibodies labelled with the alpha-emitter Bismuth-213 kill CD33-positive acute myeloid leukaemia cells specifically by activation of caspases and break radio- and chemoresistance by inhibition of the anti-apoptotic proteins X-linked inhibitor of apoptosis protein and B-cell lymphoma-extra large. Eur. J. Cancer, 2013, 49(11), 2542-2554.
[http://dx.doi.org/10.1016/j.ejca.2013.04.008] [PMID: 23684782]
[82]
Pouget, J.P.; Navarro-Teulon, I.; Bardiès, M.; Chouin, N.; Cartron, G.; Pèlegrin, A.; Azria, D. Clinical radioimmunotherapy--the role of radiobiology. Nat. Rev. Clin. Oncol., 2011, 8(12), 720-734.
[http://dx.doi.org/10.1038/nrclinonc.2011.160] [PMID: 22064461]
[83]
Boyd, M.; Ross, S.C.; Dorrens, J.; Fullerton, N.E.; Tan, K.W.; Zalutsky, M.R.; Mairs, R.J. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides. J. Nucl. Med., 2006, 47(6), 1007-1015.
[PMID: 16741311]
[84]
Dash, A.; Knapp, F.F., Jr; Pillai, M.R.A. Targeted radionuclide therapy-An overview. Curr. Radiopharm., 2013, 6(3), 152-180.
[http://dx.doi.org/10.2174/18744710113066660023] [PMID: 24059327]
[85]
Chacko, A.M.; Li, C.; Pryma, D.A.; Brem, S.; Coukos, G.; Muzykantov, V. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: crossing the blood-brain barrier divide. Expert Opin. Drug Deliv., 2013, 10(7), 907-926.
[http://dx.doi.org/10.1517/17425247.2013.808184] [PMID: 23751126]
[86]
Kumar, C.; Pandey, B.N.; Samuel, G.; Venkatesh, M. Cellular internalization and mechanism of cytotoxicity of 131I-rituximab in Raji cells. J. Environ. Pathol. Toxicol. Oncol., 2013, 32(2), 91-99.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2013006843] [PMID: 24099423]
[87]
Jang, B.S.; Lee, S.M.; Kim, H.S.; Shin, I.S.; Razjouyan, F.; Wang, S.; Yao, Z.; Pastan, I.; Dreher, M.R.; Paik, C.H. Combined-modality radioimmunotherapy: synergistic effect of paclitaxel and additive effect of bevacizumab. Nucl. Med. Biol., 2012, 39(4), 472-483.
[http://dx.doi.org/10.1016/j.nucmedbio.2011.10.020] [PMID: 22172384]
[88]
Starr, J.S.; Sonbol, M.B.; Hobday, T.J.; Sharma, A.; Kendi, A.T.; Halfdanarson, T.R. Peptide receptor radionuclide therapy for the treatment of pancreatic neuroendocrine tumors: Recent insights. OncoTargets Ther., 2020, 13, 3545-3555.
[http://dx.doi.org/10.2147/OTT.S202867] [PMID: 32431509]
[89]
Larson, S.M.; Carrasquillo, J.A.; Cheung, N.K.; Press, O.W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer, 2015, 15(6), 347-360.
[http://dx.doi.org/10.1038/nrc3925] [PMID: 25998714]
[90]
Filippi, L.; Bagni, O.; Nervi, C. Aptamer-based technology for radionuclide targeted imaging and therapy: A promising weapon against cancer. Expert Rev. Med. Devices, 2020, 17(8), 751-758.
[http://dx.doi.org/10.1080/17434440.2020.1796633] [PMID: 32669004]
[91]
Kotzerke, J.; Bunjes, D.; Scheinberg, D.A. Radioimmunoconjugates in acute leukemia treatment: the future is radiant. Bone Marrow Transplant., 2005, 36(12), 1021-1026.
[http://dx.doi.org/10.1038/sj.bmt.1705182] [PMID: 16247432]
[92]
Forrer, F.; Waldherr, C.; Maecke, H.R.; Mueller-Brand, J. Targeted radionuclide therapy with 90Y-DOTATOC in patients with neuroendocrine tumors. Anticancer Res., 2006, 26(1B), 703-707.
[PMID: 16739341]
[93]
Waldherr, C.; Pless, M.; Maecke, H.R.; Haldemann, A.; Mueller-Brand, J. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: A clinical phase II study. Ann. Oncol., 2001, 12(7), 941-945.
[http://dx.doi.org/10.1023/A:1011160913619] [PMID: 11521799]
[94]
Kunikowska, J.; Krolicki, L.; Hubalewska-Dydejczyk, A.; Mikołajczak, R.; Sowa-Staszczak, A.; Pawlak, D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(10), 1788-1797.
[http://dx.doi.org/10.1007/s00259-011-1833-x] [PMID: 21553086]
[95]
Danthala, M.; Kallur, K.G.; Prashant, G.R.; Rajkumar, K.; Raghavendra Rao, M. (177)Lu-DOTATATE therapy in patients with neuroendocrine tumours: 5 years’ experience from a tertiary cancer care centre in India. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(7), 1319-1326.
[http://dx.doi.org/10.1007/s00259-014-2710-1] [PMID: 24570096]
[96]
Kunikowska, J.; Zemczak, A.; Kołodziej, M.; Gut, P.; ,Łoń, I.; Pawlak, D.; Mikołajczak, R.; Kaminski, G.; Ruchała, M.; Kos-Kudła, B.; Królicki, L. Tandem peptide receptor radionuclide therapy using 90Y/177Lu-DOTATATE for neuroendocrine tumors efficacy and side-effects - polish multicenter experience. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(4), 922-933.
[http://dx.doi.org/10.1007/s00259-020-04690-5] [PMID: 31980909]
[97]
Bodei, L.; Kwekkeboom, D.J.; Kidd, M.; Modlin, I.M.; Krenning, E.P. Radiolabeled somatostatin analogue therapy of gastroenteropancreatic cancer. Semin. Nucl. Med., 2016, 46(3), 225-238.
[http://dx.doi.org/10.1053/j.semnuclmed.2015.12.003] [PMID: 27067503]
[98]
Strosberg, J.; Wolin, E.; Chasen, B.; Kulke, M.; Bushnell, D.; Caplin, M.; Baum, R.P.; Kunz, P.; Hobday, T.; Hendifar, A.; Oberg, K.; Sierra, M.L.; Thevénét, T.; Margalet, I.; Ruszniewski, P.; Krenning, E. Health- related quality of life in patients with progressive midgut neuroendocrine tumors treated with 177Lu- Dotatate in the phase III NETTER-1 trial. J. Clin. Oncol., 2018, 36(25), 2578-2584.
[http://dx.doi.org/10.1200/JCO.2018.78.5865] [PMID: 29878866]
[99]
Hofman, M.S.; Violet, J.; Hicks, R.J.; Ferdinandus, J.; Thang, S.P.; Akhurst, T.; Iravani, A.; Kong, G.; Ravi Kumar, A.; Murphy, D.G.; Eu, P.; Jackson, P.; Scalzo, M.; Williams, S.G.; Sandhu, S. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): A single-centre, single-arm, phase 2 study. Lancet Oncol., 2018, 19(6), 825-833.
[http://dx.doi.org/10.1016/S1470-2045(18)30198-0] [PMID: 29752180]
[100]
Biederman, D.M.; Titano, J.J.; Tabori, N.E.; Pierobon, E.S.; Alshebeeb, K.; Schwartz, M.; Facciuto, M.E.; Gunasekaran, G.; Florman, S.; Fischman, A.M.; Patel, R.S.; Nowakowski, F.S.; Kim, E. Outcomes of radioembolization in the treatment of hepatocellular carcinoma with portal vein invasion: resin versus glass microspheres. J. Vasc. Interv. Radiol., 2016, 27(6), 812-821.e2.
[http://dx.doi.org/10.1016/j.jvir.2016.01.147] [PMID: 27062356]
[101]
Van Der Gucht, A.; Jreige, M.; Denys, A.; Blanc-Durand, P.; Boubaker, A.; Pomoni, A.; Mitsakis, P.; Silva-Monteiro, M.; Gnesin, S.; Lalonde, M.N.; Duran, R.; Prior, J.O.; Schaefer, N. Resin versus glass microspheres for 90Y transarterial radioembolization: comparing survival in unresectable hepatocellular carcinoma using pretreatment partition model dosimetry. J. Nucl. Med., 2017, 58(8), 1334-1340.
[http://dx.doi.org/10.2967/jnumed.116.184713] [PMID: 28082436]
[102]
Soundararajan, A.; Dodd, G.D., III; Bao, A.; Phillips, W.T.; McManus, L.M.; Prihoda, T.J.; Goins, B.A. Chemoradionuclide therapy with 186Re-labeled liposomal doxorubicin in combination with radiofrequency ablation for effective treatment of head and neck cancer in a nude rat tumor xenograft model. Radiology, 2011, 261(3), 813-823.
[http://dx.doi.org/10.1148/radiol.11110361] [PMID: 22025735]
[103]
Grillo-Lopez, A.J. Zevalin: the first radioimmunotherapy approved for the treatment of lymphoma. Expert Rev. Anticancer Ther., 2002, 2(5), 485-493.
[http://dx.doi.org/10.1586/14737140.2.5.485] [PMID: 12382517]
[104]
Fisher, R.I.; Kaminski, M.S.; Wahl, R.L.; Knox, S.J.; Zelénétz, A.D.; Vose, J.M.; Leonard, J.P.; Kroll, S.; Goldsmith, S.J.; Coleman, M. Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin’s lymphomas. J. Clin. Oncol., 2005, 23(30), 7565-7573.
[http://dx.doi.org/10.1200/JCO.2004.00.9217] [PMID: 16186600]
[105]
Dietrich, A.; Andreeff, M.; Koi, L.; Bergmann, R.; Schubert, M.; Schreiner, L.; LOck, S.; Sihver, W.; Freudenberg, R.; Hering, S.; Pietzsch, H.J.; Steinbach, J.; Kotzerke, J.; Baumann, M.; Krause, M. Radiotherapy enhances uptake and efficacy of 90Y-cetuximab: A preclinical trial. Radiother. Oncol., 2021, 155, 285-292.
[http://dx.doi.org/10.1016/j.radonc.2020.11.013] [PMID: 33227356]
[106]
Bridgewater, J.A.; Pugh, S.A.; Maishman, T.; Eminton, Z.; Mellor, J.; Whitehead, A.; Stanton, L.; Radford, M.; Corkhill, A.; Griffiths, G.O.; Falk, S.; Valle, J.W.; O’Reilly, D.; Siriwardena, A.K.; Hornbuckle, J.; Rees, M.; Iveson, T.J.; Hickish, T.; Garden, O.J.; Cunningham, D.; Maughan, T.S.; Primrose, J.N. Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis (New EPOC): long-term results of a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol., 2020, 21(3), 398-411.
[http://dx.doi.org/10.1016/S1470-2045(19)30798-3] [PMID: 32014119]
[107]
Bhusari, P.; Vatsa, R.; Singh, G.; Parmar, M.; Bal, A.; Dhawan, D.K.; Mittal, B.R.; Shukla, J. Development of Lu-177-trastuzumab for radioimmunotherapy of HER2 expressing breast cancer and its feasibility assessment in breast cancer patients. Int. J. Cancer, 2017, 140(4), 938-947.
[http://dx.doi.org/10.1002/ijc.30500] [PMID: 27813061]
[108]
Borchardt, P.E.; Yuan, R.R.; Miederer, M.; McDevitt, M.R.; Scheinberg, D.A. Targeted actinium-225 in vivo générators for therapy of ovarian cancer. Cancer Res., 2003, 63(16), 5084-5090.
[PMID: 12941838]
[109]
Krasniqi, A.; D’Huyvetter, M.; Xavier, C.; Van der Jeught, K.; Muyldermans, S.; Van Der Heyden, J.; Lahoutte, T.; Tavernier, J.; Devoogdt, N. Theranostic radiolabeled anti-CD20 sdAb for targeted radionuclide therapy of non-hodgkin lymphoma. Mol. Cancer Ther., 2017, 16(12), 2828-2839.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0554] [PMID: 29054987]
[110]
Forrer, F.; Oechslin-Oberholzer, C.; Campana, B.; Herrmann, R.; Maecke, H.R.; Mueller-Brand, J.; Lohri, A. Radioimmunotherapy with 177Lu-DOTA-rituximab: final results of a phase I/II Study in 31 patients with relapsing follicular, mantle cell, and other indolent B-cell lymphomas. J. Nucl. Med., 2013, 54(7), 1045-1052.
[http://dx.doi.org/10.2967/jnumed.112.115170] [PMID: 23572496]
[111]
Morschhauser, F.; Kraeber-Bodere, F.; Wegénér, W.A.; Harousseau, J.L.; Petillon, M.O.; Huglo, D.; Trumper, L.H.; Meller, J.; Pfreundschuh, M.; Kirsch, C.M.; Naumann, R.; Kropp, J.; Horne, H.; Teoh, N.; Le Gouill, S.; Bodet-Milin, C.; Chatal, J.F.; Goldenberg, D.M. High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin’s lymphoma. J. Clin. Oncol., 2010, 28(23), 3709-3716.
[http://dx.doi.org/10.1200/JCO.2009.27.7863] [PMID: 20625137]
[112]
Wakabayashi, H.; Inaki, A.; Yoshimura, K.; Murayama, T.; Imai, Y.; Higuchi, T.; Jinguji, M.; Shiga, T.; Kinuya, S. A phase I clinical trial for [131I]meta-iodobenzylguanidine therapy in patients with refractory pheochromocytoma and paraganglioma. Sci. Rep., 2019, 9(1), 7625.
[http://dx.doi.org/10.1038/s41598-019-43880-6] [PMID: 31110198]
[113]
Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; Widmark, A.; Johannessen, D.C.; Hoskin, P.; Bottomley, D.; James, N.D.; Solberg, A.; Syndikus, I.; Kliment, J.; Wedel, S.; Boehmer, S.; Dall’Oglio, M.; Franzén, L.; Coleman, R.; Vogelzang, N.J.; O’Bryan-Tear, C.G.; Staudacher, K.; Garcia-Vargas, J.; Shan, M.; Bruland, Ø.S.; Sartor, O. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med., 2013, 369(3), 213-223.
[http://dx.doi.org/10.1056/NEJMoa1213755] [PMID: 23863050]
[114]
Iodine 1-31 with or without selumetimib in treating patients with recurrent or metastatic thyroid cancer, v.s Nat Lib med, 2021. Available from:. https://clinicaltrials.gov/ct2/show/NCT02393690
[115]
Serafini, A.N.; Houston, S.J.; Resche, I.; Quick, D.P.; Grund, F.M.; Ell, P.J.; Bertrand, A.; Ahmann, F.R.; Orihuela, E.; Reid, R.H.; Lerski, R.A.; Collier, B.D.; McKillop, J.H.; Purnell, G.L.; Pecking, A.P.; Thomas, F.D.; Harrison, K.A. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: A double-blind placebo-controlled clinical trial. J. Clin. Oncol., 1998, 16(4), 1574-1581.
[http://dx.doi.org/10.1200/JCO.1998.16.4.1574] [PMID: 9552068]
[116]
Longo, J.; Lutz, S.; Johnstone, C. Samarium-153-ethyléné diamine tetramethyléné phosphonate, a beta-emitting bone-targeted radiopharmaceutical, useful for patients with osteoblastic bone metastases. Cancer Manag. Res., 2013, 5, 235-242.
[PMID: 23976864]
[117]
Cutler, C.S.; Hennkens, H.M.; Sisay, N.; Huclier-Markai, S.; Jurisson, S.S. Radiometals for combined imaging and therapy. Chem. Rev., 2013, 113(2), 858-883.
[http://dx.doi.org/10.1021/cr3003104] [PMID: 23198879]
[118]
Jeong, S.Y.; Hwang, M.H.; Kim, J.E.; Kang, S.; Park, J.C.; Yoo, J.; Ha, J.H.; Lee, S.W.; Ahn, B.C.; Lee, J. Combined Cerenkov luminescence and nuclear imaging of radioiodine in the thyroid gland and thyroid cancer cells expressing sodium iodide symporter: initial feasibility study. Endocr. J., 2011, 58(7), 575-583.
[http://dx.doi.org/10.1507/endocrj.K11E-051] [PMID: 21551958]
[119]
Pinto, C.I.G.; Bucar, S.; Alves, V.; Fonseca, A.; Abrunhosa, A.J.; da Silva, C.L.; Guerreiro, J.F.; Mendes, F. Copper-64 Chloride Exhibits Therapeutic Potential in Three-Dimensional Cellular Models of Prostate Cancer. Front. Mol. Biosci., 2020, 7609172
[http://dx.doi.org/10.3389/fmolb.2020.609172] [PMID: 33335914]
[120]
Wang, F.; Jiao, P.; Qi, M.; Frezza, M.; Dou, Q.P.; Yan, B. Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry. Curr. Med. Chem., 2010, 17(25), 2685-2698.
[http://dx.doi.org/10.2174/092986710791859315] [PMID: 20586723]
[121]
Friesen, C.; Glatting, G.; Koop, B.; Schwarz, K.; Morgenstern, A.; Apostolidis, C.; Debatin, K.M.; Reske, S.N. Breaking chemoresistance and radioresistance with [213Bi]anti-CD45 antibodies in leukemia cells. Cancer Res., 2007, 67(5), 1950-1958.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3569] [PMID: 17332322]
[122]
Roscher, M.; Hormann, I.; Leib, O.; Marx, S.; Moreno, J.; Miltner, E.; Friesen, C. Targeted alpha-therapy using [Bi-213]anti-CD20 as novel treatment option for radio- and chemoresistant non-Hodgkin lymphoma cells. Oncotarget, 2013, 4(2), 218-230.
[http://dx.doi.org/10.18632/oncotarget.817] [PMID: 23474846]
[123]
Zalutsky, M.R.; Pozzi, O.R. Radioimmunotherapy with alpha-particle emitting radionuclides. Q. J. Nucl. Med. Mol. Imaging, 2004, 48(4), 289-296.
[PMID: 15640792]
[124]
Boyd, R.S.; Jukes-Jones, R.; Walewska, R.; Brown, D.; Dyer, M.J.; Cain, K. Protein profiling of plasma membranes defines aberrant signaling pathways in mantle cell lymphoma. Mol. Cell. Proteomics, 2009, 8(7), 1501-1515.
[http://dx.doi.org/10.1074/mcp.M800515-MCP200] [PMID: 19346216]
[125]
Kennedy, A.D.; Beum, P.V.; Solga, M.D.; DiLillo, D.J.; Lindorfer, M.A.; Hess, C.E.; Densmore, J.J.; Williams, M.E.; Taylor, R.P. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J. Immunol., 2004, 172(5), 3280-3288.
[http://dx.doi.org/10.4049/jimmunol.172.5.3280] [PMID: 14978136]
[126]
Salem, R.; Padia, S.A.; Lam, M.; Bell, J.; Chiesa, C.; Fowers, K.; Hamilton, B.; Herman, J.; Kappadath, S.C.; Leung, T.; Portelance, L.; Sze, D.; Garin, E. Clinical and dosimetric considerations for Y90: recommendations from an international multidisciplinary working group. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(8), 1695-1704.
[http://dx.doi.org/10.1007/s00259-019-04340-5] [PMID: 31098749]
[127]
Taylor, D.M.; Leggett, R.W. A généric biokinetic model for predicting the behaviour of the lanthanide elements in the human body. Radiat. Prot. Dosimetry, 2003, 105(1-4), 193-198.
[http://dx.doi.org/10.1093/oxfordjournals.rpd.a006222] [PMID: 14526955]
[128]
Taylor, D.M.; Stradling, G.N.; Ménétrier, F. Biokinetics of radionuclides and treatment of accidental intakes. Radiat. Prot. Dosimetry, 2003, 105(1-4), 637-640.
[http://dx.doi.org/10.1093/oxfordjournals.rpd.a006318] [PMID: 14527040]
[129]
Terui, Y.; Mishima, Y.; Sugimura, N.; Kojima, K.; Sakurai, T.; Mishima, Y.; Kuniyoshi, R.; Taniyama, A.; Yokoyama, M.; Sakajiri, S.; Takeuchi, K.; Watanabe, C.; Takahashi, S.; Ito, Y.; Hatake, K. Identification of CD20 C-terminal deletion mutations associated with loss of CD20 expression in non-Hodgkin’s lymphoma. Clin. Cancer Res., 2009, 15(7), 2523-2530.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1403] [PMID: 19276251]
[130]
Tomita, A. Génétic and epigénétic modulation of CD20 expression in B-cell malignancies: Molecular mechanisms and significance to rituximab resistance. J. Clin. Exp. Hematop., 2016, 56(2), 89-99.
[http://dx.doi.org/10.3960/jslrt.56.89] [PMID: 27980307]
[131]
Kal, H.B.; Struikmans, H. Radiotherapy during pregnancy: fact and fiction. Lancet Oncol., 2005, 6(5), 328-333.
[http://dx.doi.org/10.1016/S1470-2045(05)70169-8] [PMID: 15863381]
[132]
International Atomic énérgy Agency. Radiation protection of pregnant women in nuclear medicine. Available from:, https://www.iaea.org/resources/rpop/health-professionals/nuclear-medicine/pregnant-women Accessed: February 22, 2021.
[133]
Kumar, C.; Shetake, N.; Desai, S.; Kumar, A.; Samuel, G.; Pandey, B.N. Relevance of radiobiological concepts in radionuclide therapy of cancer. Int. J. Radiat. Biol., 2016, 92(4), 173-186.
[http://dx.doi.org/10.3109/09553002.2016.1144944] [PMID: 26917443]
[134]
Ansoborlo, E.; Prat, O.; Moisy, P.; Den Auwer, C.; Guilbaud, P.; Carriere, M.; Gouget, B.; Duffield, J.; Doizi, D.; Vercouter, T.; Moulin, C.; Moulin, V. Actinide speciation in relation to biological processes. Biochimie, 2006, 88(11), 1605-1618.
[http://dx.doi.org/10.1016/j.biochi.2006.06.011] [PMID: 16996675]
[135]
Culp, W.C.; Huskison, W.T. Changing normal values for thyroid uptake of radioactive iodine. South. Med. J., 1978, 71(6), 674-676.
[http://dx.doi.org/10.1097/00007611-197806000-00021] [PMID: 663699]
[136]
Leung, C.N.; Canter, B.S.; Rajon, D.; Bäck, T.A.; Fritton, J.C.; Azzam, E.I.; Howell, R.W. Dose-dependent growth delay of breast cancer xenografts in the bone marrow of mice treated with 223Ra: the role of bystander effects and their potential for therapy. J. Nucl. Med., 2020, 61(1), 89-95.
[http://dx.doi.org/10.2967/jnumed.119.227835] [PMID: 31519805]
[137]
Obrador, E.; Salvador, R.; Villaescusa, J.I.; Soriano, J.M.; Estrela, J.M.; Montoro, A. Radioprotection and radiomitigation: from the bench to clinical practice. Biomed., 2020, 8(11), 461.
[http://dx.doi.org/10.3390/biomedicines8110461] [PMID: 33142986]
[138]
Citrin, D.; Cotrim, A.P.; Hyodo, F.; Baum, B.J.; Krishna, M.C.; Mitchell, J.B. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist, 2010, 15(4), 360-371.
[http://dx.doi.org/10.1634/theoncologist.2009-S104] [PMID: 20413641]
[139]
Yamini, K.; Gopal, V. Natural radioprotective agents against ionizing radiation-An overview. Int. J. Pharm. Tech. Res., 2010, 2, 1421-1426.
[140]
Kemertelidze, E.P.; Tsitsishvili, V.G.; Alaniya, M.D.; Sagareishvili, T.G. Structure-function analysis of the radioprotective and antioxidant activity of flavonoids. Chem. Nat. Compd., 2000, 36, 54-59.
[http://dx.doi.org/10.1007/BF02234904]
[141]
Srinivasan, M.; Rajendra Prasad, N.; Menon, V.P. Protective effect of curcumin on gamma-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat. Res., 2006, 611(1-2), 96-103.
[http://dx.doi.org/10.1016/j.mrgentox.2006.07.002] [PMID: 16973408]
[142]
Srinivasan, M.; Sudheer, A.R.; Pillai, K.R.; Kumar, P.R.; Sudhakaran, P.R.; Menon, V.P. Influence of ferulic acid on gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes. Toxicol., 2006, 228(2-3), 249-258.
[http://dx.doi.org/10.1016/j.tox.2006.09.004] [PMID: 17049709]
[143]
Devipriya, N.; Sudheer, A.R.; Menon, V.P. Caffeic acid protects human peripheral blood lymphocytes against gamma radiation-induced cellular damage. J. Biochem. Mol. Toxicol., 2008, 22(3), 175-186.
[http://dx.doi.org/10.1002/jbt.20228] [PMID: 18561333]
[144]
Maurya, D.K.; Salvi, V.P.; Nair, C.K.K. Radiation protection of DNA by ferulic acid under in vitro and in vivo conditions. Mol. Cell. Biochem., 2005, 280(1-2), 209-217.
[http://dx.doi.org/10.1007/s11010-005-0170-4] [PMID: 16311925]
[145]
Prasad, N.R.; Srinivasan, M.; Pugalendi, K.V.; Menon, V.P. Protective effect of ferulic acid on gamma-radiation-induced micronuclei, dicentric aberration and lipid peroxidation in human lymphocytes. Mutat. Res., 2006, 603(2), 129-134.
[http://dx.doi.org/10.1016/j.mrgentox.2005.11.002] [PMID: 16406783]
[146]
Wang, H.; Khor, T.O.; Shu, L.; Su, Z.Y.; Fuentes, F.; Lee, J.H.; Kong, A.N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem., 2012, 12(10), 1281-1305.
[http://dx.doi.org/10.2174/187152012803833026] [PMID: 22583408]
[147]
Goel, A.; Aggarwal, B.B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr. Cancer, 2010, 62(7), 919-930.
[http://dx.doi.org/10.1080/01635581.2010.509835] [PMID: 20924967]
[148]
Limtrakul, P. Curcumin as chemosensitizer.The molecular targets and therapeutic uses of curcumin in health and disease. Advances in experimental medicine and biology; Aggarwal, B.B.; Surh, Y.J; Shishodia, S., Ed.; Springer: Boston, MA, 2007, Vol. 595, pp. 269-300.
[149]
Kumar, C.; Subramanian, S.; Samuel, G. Evaluation of radioiodinated curcumin for its potential as a tumor-targeting radiopharmaceutical. J. Radiat. Cancer Res., 2016, 7, 112-116.
[http://dx.doi.org/10.4103/0973-0168.199309]
[150]
Rokka, J.; Snellman, A.; Zona, C.; La Ferla, B.; Nicotra, F.; Salmona, M.; Forloni, G.; Haaparanta-Solin, M.; Rinne, J.O.; Solin, O. Synthesis and evaluation of a (18)F-curcumin derivate for β-amyloid plaque imaging. Bioorg. Med. Chem., 2014, 22(9), 2753-2762.
[http://dx.doi.org/10.1016/j.bmc.2014.03.010] [PMID: 24702859]
[151]
Shin, S.; Koo, H.J.; Lee, I.; Choe, Y.S.; Choi, J.Y.; Lee, K.H.; Kim, B.T. Synthesis and characterization of 18F-labeled hydrazinocurcumin derivatives for tumor imaging. RSC Advances, 2015, 5(117), 96733-96745.
[http://dx.doi.org/10.1039/C5RA15380H]
[152]
Hall, S.; Desbrow, B.; Anoopkumar-Dukie, S.; Davey, A.K.; Arora, D.; McDermott, C.; Schubert, M.M.; Perkins, A.V.; Kiefel, M.J.; Grant, G.D. A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responses linked to depression. Food Res. Int., 2015, 76(Pt 3), 626-636.
[http://dx.doi.org/10.1016/j.foodres.2015.07.027] [PMID: 28455046]
[153]
Yildiz, O.G.; Soyuer, S.; Saraymen, R.; Eroglu, C. Protective effects of caffeic acid phénéthyl ester on radiation induced lung injury in rats. Clin. Invest. Med., 2008, 31(5), E242-E247.
[http://dx.doi.org/10.25011/cim.v31i5.4870] [PMID: 18980713]
[154]
Mansour, H.H.; Tawfik, S.S. Early treatment of radiation-induced heart damage in rats by caffeic acid phénéthyl ester. Eur. J. Pharmacol., 2012, 692(1-3), 46-51.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.037] [PMID: 22771294]
[155]
Palozza, P.; Simone, R.; Catalano, A.; Boninsegna, A.; Böhm, V.; Fröhlich, K.; Mele, M.C.; Monego, G.; Ranelletti, F.O. Lycopéné prevents 7-ketocholesterol-induced oxidative stress, cell cycle arrest and apoptosis in human macrophages. J. Nutr. Biochem., 2010, 21(1), 34-46.
[http://dx.doi.org/10.1016/j.jnutbio.2008.10.002] [PMID: 19157829]
[156]
Srinivasan, M.; Devipriya, N.; Kalpana, K.B.; Menon, V.P. Lycopéné: An antioxidant and radioprotector against gamma-radiation-induced cellular damages in cultured human lymphocytes. Toxicology, 2009, 262(1), 43-49.
[http://dx.doi.org/10.1016/j.tox.2009.05.004] [PMID: 19450652]
[157]
Srinivasan, M.; Sudheer, A.R.; Pillai, K.R.; Kumar, P.R.; Sudhakaran, P.R.; Menon, V.P. Lycopéné as a natural protector against gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes in vitro. Biochim. Biophys. Acta, 2007, 1770(4), 659-665.
[http://dx.doi.org/10.1016/j.bbagen.2006.11.008] [PMID: 17189673]
[158]
Dobrzynska, M.M.; Gajowik, A.; Radzikowska, J. The effect of lycopéné supplementation on radiation-induced micronuclei in mice reticulocytes in vivo. Radiat. Environ. Biophys., 2019, 58(3), 425-432.
[http://dx.doi.org/10.1007/s00411-019-00795-0] [PMID: 31123854]
[159]
Meydan, D.; Gursel, B.; Bilgici, B.; Can, B.; Ozbek, N. Protective effect of lycopéné against radiation-induced hepatic toxicity in rats. J. Int. Med. Res., 2011, 39(4), 1239-1252.
[http://dx.doi.org/10.1177/147323001103900412] [PMID: 21986126]
[160]
Saada, H.N.; Rezk, R.G.; Eltahawy, N.A. Lycopéné protects the structure of the small intestine against gamma-radiation-induced oxidative stress. Phytother. Res., 2010, 24(Suppl. 2), S204-S208.
[http://dx.doi.org/10.1002/ptr.3091] [PMID: 20041432]
[161]
Andic, F.; Garipagaoglu, M.; Yurdakonar, E.; Tuncel, N.; Kucuk, O. Lycopéné in the prevention of gastrointestinal toxicity of radiotherapy. Nutr. Cancer, 2009, 61(6), 784-788.
[http://dx.doi.org/10.1080/01635580903285171] [PMID: 20155616]
[162]
Gatouillat, G.; Balasse, E.; Joseph-Pietras, D.; Morjani, H.; Madoulet, C. Resveratrol induces cell-cycle disruption and apoptosis in chemoresistant B16 melanoma. J. Cell. Biochem., 2010, 110(4), 893-902.
[http://dx.doi.org/10.1002/jcb.22601] [PMID: 20564188]
[163]
Hwang, J.T.; Kwak, D.W.; Lin, S.K.; Kim, H.M.; Kim, Y.M.; Park, O.J. Resveratrol induces apoptosis in chemoresistant cancer cells via modulation of AMPK signaling pathway. Ann. N. Y. Acad. Sci., 2007, 1095, 441-448.
[http://dx.doi.org/10.1196/annals.1397.047] [PMID: 17404056]
[164]
Nabekura, T.; Kamiyama, S.; Kitagawa, S. Effects of dietary chemopreventive phytochemicals on P-glycoprotein function. Biochem. Biophys. Res. Commun., 2005, 327(3), 866-870.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.081] [PMID: 15649425]
[165]
Mohammed, S.; Harikumar, K.B. Role of Resveratrol in Chemosensitization of Cancer.Cancer sensitizing agents for chemotherapy; Bharti, A.C; Aggarwal, B.B., Ed.; Academic Press: US, 2018, Vol. 2, pp. 61-76.
[http://dx.doi.org/10.1016/B978-0-12-812373-7.00003-6]
[166]
Gupta, S.C.; Kannappan, R.; Reuter, S.; Kim, J.H.; Aggarwal, B.B. Chemosensitization of tumors by resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215, 150-160.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05852.x] [PMID: 21261654]
[167]
Khanna, K.K.; Jackson, S.P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Génét., 2001, 27(3), 247-254.
[http://dx.doi.org/10.1038/85798] [PMID: 11242102]
[168]
Hu, Y.; Hellweg, C.E.; Baumstark-Khan, C.; Reitz, G.; Lau, P. Cell cycle delay in murine pre-osteoblasts is more pronounced after exposure to high-LET compared to low-LET radiation. Radiat. Environ. Biophys., 2014, 53(1), 73-81.
[http://dx.doi.org/10.1007/s00411-013-0499-0] [PMID: 24240273]
[169]
Khosravian, P.; Heidari-Soureshjani, S.; Yang, Q. Effects of medicinal plants onradiolabeling and biodistribution of diagnostic radiopharmaceuticals: A systematic review. Plant Sci. Today, 2019, 6(2), 123-131.
[http://dx.doi.org/10.14719/pst.2019.6.2.513]
[170]
Kilcar, A.Y.; Yildiz, O.; Dogan, T.; Sulu, E.; Takan, G.; Muftuler, F.Z.B. The effect of bitter melon (momordica charantia) extract on the uptake of 99mTc labeled paclitaxel: In vitro monitoring in breast cancer cells. Anticancer. Agents Med. Chem., 2020, 20(12), 1497-1503.
[http://dx.doi.org/10.2174/1871520620666200424124746] [PMID: 32329694]
[171]
Berti, A.P.; Dusman, E.; Mariucci, R.G.; Lopes, N.B.; Vicentini, V.E. Antimutagenic and radioprotective activities of beta-caroténé against the biological effects of iodine-131 radiopharmaceutical in Wistar rats. Génét. Mol. Res., 2014, 13(1), 2248-2258.
[http://dx.doi.org/10.4238/2014.March.31.5] [PMID: 24737473]
[172]
Kumar, C.; Pandey, B.N.; Samuel, G.; Venkatesh, M. Doxorubicin enhances 131I-rituximab induced cell death in Raji cells. J. Can. Res. Ther., 2015, 1, 823-829.
[173]
Kumar, C.; Korde, A.; Kumari, K.V.; Das, T.; Samuel, G. Cellular toxicity and apoptosis studies in osteocarcinoma cells, a comparison of 177Lu-EDTMP and Lu-EDTMP. Curr. Radiopharm., 2013, 6(3), 146-151.
[http://dx.doi.org/10.2174/18744710113069990021] [PMID: 23895775]
[174]
Kumar, C.; Vats, K.; Lohar, S.P.; Korde, A.; Samuel, G. Camptothecin enhances cell death induced by 177Lu- EDTMP in osteosarcoma cells. Cancer Biother. Radiopharm., 2014, 29(8), 317-322.
[http://dx.doi.org/10.1089/cbr.2014.1663] [PMID: 25226352]
[175]
Chan, T.G.; O’Neill, E.; Habjan, C.; Cornelissen, B. Combination strategies to improve targeted radionuclide therapy. J. Nucl. Med., 2020, 61(11), 1544-1552.
[http://dx.doi.org/10.2967/jnumed.120.248062] [PMID: 33037092]
[176]
Gill, M.R.; Falzone, N.; Du, Y.; Vallis, K.A. Targeted radionuclide therapy in combined-modality regimens. Lancet Oncol., 2017, 18(7), e414-e423.
[http://dx.doi.org/10.1016/S1470-2045(17)30379-0] [PMID: 28677577]
[177]
Chen, H.; Zhao, L.; Fu, K.; Lin, Q.; Wen, X.; Jacobson, O.; Sun, L.; Wu, H.; Zhang, X.; Guo, Z.; Lin, Q.; Chen, X. Integrin αvβ3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy. Theranostics, 2019, 9(25), 7948-7960.
[http://dx.doi.org/10.7150/thno.39203] [PMID: 31695808]
[178]
Hobbs, R.F.; Wahl, R.L.; Frey, E.C.; Kasamon, Y.; Song, H.; Huang, P.; Jones, R.J.; Sgouros, G. Radiobiologic optimization of combination radiopharmaceutical therapy applied to myeloablative treatment of non-Hodgkin lymphoma. J. Nucl. Med., 2013, 54(9), 1535-1542.
[http://dx.doi.org/10.2967/jnumed.112.117952] [PMID: 23918734]
[179]
Gouard, S.; Maurel, C.; Marionneau-Lambot, S.; Dansette, D.; Bailly, C.; Guerard, F.; Chouin, N.; Haddad, F.; Alliot, C.; Gaschet, J.; Eychenne, R.; Kraeber-Bodere, F.; Cherel, M. Targeted-alpha-therapy combining Astatine-211 and anti-CD138 antibody in a preclinical syngénéic mouse model of multiple myeloma minimal residual disease. Cancers (Basel), 2020, 12(9), 2721.
[http://dx.doi.org/10.3390/cancers12092721] [PMID: 32971984]
[180]
Alavi, M.; Khajeh-Rahimi, F.; Yousefnia, H.; Mohammadianpanah, M.; Zolghadri, S.; Bahrami-Samani, A.; Ghannadi- Maragheh, M. 177Lu/153Sm-ethylénédiamine tetramethyléné phosphonic acid cocktail: A novel palliative treatment for patients with bone metastases. Cancer Biother. Radiopharm., 2019, 34(5), 280- 287..
[http://dx.doi.org/10.1089/cbr.2018.2683] [PMID: 30977670]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy