Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

A Comprehensive Review of the Use of Antioxidants and Natural Products in Cancer Patients Receiving Anticancer Therapy

Author(s): Daniel Sur*, Alecsandra Gorzo, Shanthi Sabarimurugan, Saravana Murali Krishnan , Cristian Virgil Lungulescu, Simona Ruxandra Volovat and Claudia Burz

Volume 22, Issue 8, 2022

Published on: 01 September, 2021

Page: [1511 - 1522] Pages: 12

DOI: 10.2174/1871520621666210901100827

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer is the leading cause of mortality and morbidity worldwide. The side effects of cancer treatment affect the quality of life. Cancer patients search for antioxidant dietary supplements and natural products during or after conventional cancer treatment for the alleviation of side effects, improvement of the benefits of treatment, and promotion of well-being. However, the efficacy and safety of these products remain controversial; moreover, previous data do not support the standardized use of those alternative treatments in clinics. The current study reviewed the manuscripts reporting the administration of antioxidants and natural products during cancer treatment and revised preclinical and clinical studies on various types of cancer. Most of the positive results were obtained from experimental animal models; however, human clinical studies are discouraging in this regard. Therefore, further precise and distinguishable studies are required regarding antioxidant dietary supplementation. Future studies are also needed to clarify dietary supplements’ mechanism of action and pharmacokinetics in a suitable cancer patient population that will benefit the therapeutic regimens. Despite the popularity of dietary supplements, clinicians and patients should always consider their potential benefits and risks. Patients should discuss with their physician before taking any dietary antioxidant supplements or natural products.

Keywords: Antioxidants, natural products, cancer, chemotherapy, side effects, toxicity.

Graphical Abstract
[1]
Berretta, M.; Della Pepa, C.; Tralongo, P.; Fulvi, A.; Martellotta, F.; Lleshi, A.; Nasti, G.; Fisichella, R.; Romano, C.; De Divitiis, C.; Taibi, R.; Fiorica, F.; Di Francia, R.; Di Mari, A.; Del Pup, L.; Crispo, A.; De Paoli, P.; Santorelli, A.; Quagliariello, V.; Iaffaioli, R.V.; Tirelli, U.; Facchini, G. Use of Complementary and Alternative Medicine (CAM) in cancer patients: An Italian multicenter survey. Oncotarget, 2017, 8(15), 24401-24414.
[http://dx.doi.org/10.18632/oncotarget.14224] [PMID: 28212560]
[2]
Calcagni, N.; Gana, K.; Quintard, B. A systematic review of complementary and alternative medicine in oncology: Psychological and physical effects of manipulative and body-based practices. PLoS One, 2019, 14(10)e0223564
[http://dx.doi.org/10.1371/journal.pone.0223564] [PMID: 31622362]
[3]
Lopez, G.; McQuade, J.; Cohen, L.; Williams, J.T.; Spelman, A.R.; Fellman, B.; Li, Y.; Bruera, E.; Lee, R.T. Integrative oncology physician consultations at a comprehensive cancer center: Analysis of demographic, clinical and patient reported outcomes. J. Cancer, 2017, 8(3), 395-402.
[http://dx.doi.org/10.7150/jca.17506] [PMID: 28261340]
[4]
Dennis, T.; Fanous, M.; Mousa, S. Natural products for chemopreventive and adjunctive therapy in oncologic disease. Nutr. Cancer, 2009, 61(5), 587-597.
[http://dx.doi.org/10.1080/01635580902825530] [PMID: 19838932]
[5]
Bonner, M.Y.; Arbiser, J.L. The antioxidant paradox: what are antioxidants and how should they be used in a therapeutic context for cancer. Future Med. Chem., 2014, 6(12), 1413-1422.
[http://dx.doi.org/10.4155/fmc.14.86] [PMID: 25329197]
[6]
Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci., 2017, 18(1), 20-31.
[http://dx.doi.org/10.3390/ijms18010096] [PMID: 28067795]
[7]
Reczek, C.R.; Chandel, N.S. The two faces of reactive oxygen species in cancer. Annu. Rev. Cancer Biol., 2017, 1, 79-98.
[http://dx.doi.org/10.1146/annurev-cancerbio-041916-065808]
[8]
Tong, L.; Chuang, C.C.; Wu, S.; Zuo, L. Reactive oxygen species in redox cancer therapy. Cancer Lett., 2015, 367(1), 18-25.
[http://dx.doi.org/10.1016/j.canlet.2015.07.008] [PMID: 26187782]
[9]
Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol., 2015, 71, 40-56.
[http://dx.doi.org/10.1016/j.vph.2015.03.005] [PMID: 25869516]
[10]
Akbas, H.S.; Timur, M.; Ozben, T. Concurrent use of antioxidants in cancer therapy: an update. Expert Rev. Clin. Immunol., 2006, 2(6), 931-939.
[http://dx.doi.org/10.1586/1744666X.2.6.931] [PMID: 20476980]
[11]
Herb-Drug Interactions in Cancer Care [Internet]. [cited 2020 sep 15] https://www.cancernetwork.com/view/herb-drug-interactions-cancer-care
[12]
D’Andrea, G.M. Use of antioxidants during chemotherapy and radiotherapy should be avoided. CA Cancer J. Clin., 2005, 55(5), 319-321.
[http://dx.doi.org/10.3322/canjclin.55.5.319] [PMID: 16166076]
[13]
Deng, G.; Lin, H.; Seidman, A.; Fornier, M.; D’Andrea, G.; Wesa, K.; Yeung, S.; Cunningham-Rundles, S.; Vickers, A.J.; Cassileth, B. A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J. Cancer Res. Clin. Oncol., 2009, 135(9), 1215-1221.
[http://dx.doi.org/10.1007/s00432-009-0562-z] [PMID: 19253021]
[14]
Grace, P.B.; Taylor, J.I.; Low, Y.L.; Luben, R.N.; Mulligan, A.A.; Botting, N.P.; Dowsett, M.; Welch, A.A.; Khaw, K.T.; Wareham, N.J.; Day, N.E.; Bingham, S.A. Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European prospective investigation of cancer and nutrition-norfolk. Cancer Epidemiol. Biomarkers Prev., 2004, 13(5), 698-708.
[PMID: 15159299]
[15]
Lawenda, B.D.; Blumberg, J.B. Response: Re: Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? Vol. 101. J. Natl. Cancer Inst., 2009, 125-126.
[http://dx.doi.org/10.1093/jnci/djn447]
[16]
Conklin, K.A. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr. Cancer Ther., 2004, 3(4), 294-300.
[http://dx.doi.org/10.1177/1534735404270335] [PMID: 15523100]
[17]
Yasueda, A.; Urushima, H.; Ito, T. Efficacy and Interaction of Antioxidant Supplements as Adjuvant Therapy in Cancer Treatment: A Systematic Review. Integr. Cancer Ther., 2016, 15(1), 17-39.
[http://dx.doi.org/10.1177/1534735415610427] [PMID: 26503419]
[18]
Block, K.I.; Koch, A.C.; Mead, M.N.; Tothy, P.K.; Newman, R.A.; Gyllenhaal, C. Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int. J. Cancer, 2008, 123(6), 1227-1239.
[http://dx.doi.org/10.1002/ijc.23754] [PMID: 18623084]
[19]
Klimant, E.; Wright, H.; Rubin, D.; Seely, D.; Markman, M. Intravenous vitamin C in the supportive care of cancer patients: a review and rational approach. Curr. Oncol., 2018, 25(2), 139-148.
[http://dx.doi.org/10.3747/co.25.3790] [PMID: 29719430]
[20]
Fritz, H.; Flower, G.; Weeks, L.; Cooley, K.; Callachan, M.; McGowan, J.; Skidmore, B.; Kirchner, L.; Seely, D. Intravenous vitamin C and cancer: A systematic review. Integr. Cancer Ther., 2014, 13(4), 280-300.
[http://dx.doi.org/10.1177/1534735414534463] [PMID: 24867961]
[21]
Singh, K.; Bhori, M.; Kasu, Y.A.; Bhat, G.; Marar, T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity - Exploring the armoury of obscurity. Saudi Pharm. J., 2018, 26(2), 177-190.
[http://dx.doi.org/10.1016/j.jsps.2017.12.013] [PMID: 30166914]
[22]
Ladas, E.J.; Jacobson, J.S.; Kennedy, D.D.; Teel, K.; Fleischauer, A.; Kelly, K.M. Antioxidants and cancer therapy: a systematic review. J. Clin. Oncol., 2004, 22(3), 517-528.
[http://dx.doi.org/10.1200/JCO.2004.03.086] [PMID: 14752075]
[23]
Arbiser, J.L.; Petros, J.; Klafter, R.; Govindajaran, B.; McLaughlin, E.R.; Brown, L.F.; Cohen, C.; Moses, M.; Kilroy, S.; Arnold, R.S.; Lambeth, J.D. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl. Acad. Sci. USA, 2002, 99(2), 715-720.
[http://dx.doi.org/10.1073/pnas.022630199] [PMID: 11805326]
[24]
Chang, K.L.; Cheng, H.L.; Huang, L.W.; Hsieh, B.S.; Hu, Y.C.; Chih, T.T.; Shyu, H.W.; Su, S.J. Combined effects of terazosin and genistein on a metastatic, hormone-independent human prostate cancer cell line. Cancer Lett., 2009, 276(1), 14-20.
[http://dx.doi.org/10.1016/j.canlet.2008.10.033] [PMID: 19091461]
[25]
Chen, Q.; Espey, M.G.; Krishna, M.C.; Mitchell, J.B.; Corpe, C.P.; Buettner, G.R.; Shacter, E.; Levine, M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc. Natl. Acad. Sci. USA, 2005, 102(38), 13604-13609.
[http://dx.doi.org/10.1073/pnas.0506390102] [PMID: 16157892]
[26]
Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.; Johnson, T.M.; DeBerardinis, R.J.; Morrison, S.J. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 2015, 527(7577), 186-191.
[http://dx.doi.org/10.1038/nature15726] [PMID: 26466563]
[27]
Le Gal, K.; Ibrahim, M.X.; Wiel, C.; Sayin, V.I.; Akula, M.K.; Karlsson, C.; Dalin, M.G.; Akyürek, L.M.; Lindahl, P.; Nilsson, J.; Bergo, M.O. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med., 2015, 7(308)308re8
[http://dx.doi.org/10.1126/scitranslmed.aad3740] [PMID: 26446958]
[28]
Sayin, V.I.; Ibrahim, M.X.; Larsson, E.; Nilsson, J.A.; Lindahl, P.; Bergo, M.O. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med., 2014, 6(221)221ra15
[http://dx.doi.org/10.1126/scitranslmed.3007653] [PMID: 24477002]
[29]
Cameron, E.; Campbell, A. The orthomolecular treatment of cancer. II. Clinical trial of high-dose ascorbic acid supplements in advanced human cancer. Chem. Biol. Interact., 1974, 9(4), 285-315.
[http://dx.doi.org/10.1016/0009-2797(74)90019-2] [PMID: 4430016]
[30]
Moertel, C.G.; Fleming, T.R.; Creagan, E.T.; Rubin, J.; O’Connell, M.J.; Ames, M.M. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N. Engl. J. Med., 1985, 312(3), 137-141.
[http://dx.doi.org/10.1056/NEJM198501173120301] [PMID: 3880867]
[31]
Vollbracht, C.; Schneider, B.; Leendert, V.; Weiss, G.; Auerbach, L.; Beuth, J. Intravenous vitamin C administration improves quality of life in breast cancer patients during chemo-/radiotherapy and aftercare: results of a retrospective, multicentre, epidemiological cohort study in Germany. In Vivo, 2011, 25(6), 983-990.
[PMID: 22021693]
[32]
Carr, A.C.; Vissers, M.C.M.; Cook, J.S. The effect of intravenous vitamin C on cancer- and chemotherapy-related fatigue and quality of life. Front. Oncol., 2014, 4(4), 283.
[http://dx.doi.org/10.3389/fonc.2014.00283] [PMID: 25360419]
[33]
Verrax, J.; Stockis, J.; Tison, A.; Taper, H.S.; Calderon, P.B. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice. Biochem. Pharmacol., 2006, 72(6), 671-680.
[http://dx.doi.org/10.1016/j.bcp.2006.05.025] [PMID: 16828058]
[34]
Pires, A.S.; Marques, C.R.; Encarnação, J.C.; Abrantes, A.M.; Marques, I.A.; Laranjo, M.; Oliveira, R.; Casalta-Lopes, J.E.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Botelho, M.F. Ascorbic acid chemosensitizes colorectal cancer cells and synergistically inhibits tumor growth. Front. Physiol., 2018, 9(JUL), 911.
[http://dx.doi.org/10.3389/fphys.2018.00911] [PMID: 30083105]
[35]
Roomi, M.W.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Antitumor effect of ascorbic acid, lysine, proline, arginine, and green tea extract on bladder cancer cell line T-24. Int. J. Urol., 2006, 13(4), 415-419.
[http://dx.doi.org/10.1111/j.1442-2042.2006.01309.x] [PMID: 16734861]
[36]
Freilich, D.; Moskowitz, E.; Feuer, N.; Choudhury, M.; Phillips, J.; Konno, S. Possible Chemosensitizing and Potent Anticancer Effects of D-Fraction in Combination with Vitamin C on Three Prevalent Urologic Cancer Cells. J. Cancer Ther., 2014, 05(14), 1402-1411.
[http://dx.doi.org/10.4236/jct.2014.514142]
[37]
Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta, 2012, 1826(2), 443-457.
[PMID: 22728050]
[38]
Cameron, E.; Pauling, L. Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc. Natl. Acad. Sci. USA, 1978, 75(9), 4538-4542.
[http://dx.doi.org/10.1073/pnas.75.9.4538] [PMID: 279931]
[39]
Creagan, E.T.; Moertel, C.G.; O’Fallon, J.R.; Schutt, A.J.; O’Connell, M.J.; Rubin, J.; Frytak, S. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N. Engl. J. Med., 1979, 301(13), 687-690.
[http://dx.doi.org/10.1056/NEJM197909273011303] [PMID: 384241]
[40]
Padayatty, S.J.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Hoffer, L.J.; Levine, M. Intravenously administered vitamin C as cancer therapy: three cases. CMAJ, 2006, 174(7), 937-942.
[http://dx.doi.org/10.1503/cmaj.050346] [PMID: 16567755]
[41]
Ma, Y.; Chapman, J.; Levine, M.; Polireddy, K.; Drisko, J.; Chen, Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci. Transl. Med., 2014, 6(222)222ra18
[http://dx.doi.org/10.1126/scitranslmed.3007154] [PMID: 24500406]
[42]
Bazzan, A.J.; Zabrecky, G.; Wintering, N.; Newberg, A.B.; Monti, D.A. Retrospective Evaluation of Clinical Experience With Intravenous Ascorbic Acid in Patients With Cancer. Integr. Cancer Ther., 2018, 17(3), 912-920.
[http://dx.doi.org/10.1177/1534735418775809] [PMID: 29771164]
[43]
Wilson, M.K.; Baguley, B.C.; Wall, C.; Jameson, M.B.; Findlay, M.P. Review of high-dose intravenous vitamin C as an anticancer agent. Asia Pac. J. Clin. Oncol., 2014, 10(1), 22-37.
[http://dx.doi.org/10.1111/ajco.12173] [PMID: 24571058]
[44]
Botelho, A.F.M.; Lempek, M.R.; Branco, S.E.M.T.; Nogueira, M.M.; de Almeida, M.E.; Costa, A.G.; Freitas, T.G.; Rocha, M.C.R.C.; Moreira, M.V.L.; Barreto, T.O.; Santos, J.C.; Lavalle, G.; Melo, M.M. Coenzyme Q10 Cardioprotective Effects Against Doxorubicin-Induced Cardiotoxicity in Wistar Rat. Cardiovasc. Toxicol., 2020, 20(3), 222-234.
[http://dx.doi.org/10.1007/s12012-019-09547-4] [PMID: 31435888]
[45]
Mustafa, H.N.; Hegazy, G.A.; Awdan, S.A.E.; AbdelBaset, M. Protective role of CoQ10 or L-carnitine on the integrity of the myocardium in doxorubicin induced toxicity. Tissue Cell, 2017, 49(3), 410-426.
[http://dx.doi.org/10.1016/j.tice.2017.03.007] [PMID: 28410798]
[46]
Akihama, T.; Nakamoto, Y.; Shindo, T.; Nakayama, Y.; Miura, A. [Protective effects of coenzyme Q10 on the adverse reactions of anthracycline antibiotics: using double blind method--with special reference to hair loss Gan To Kagaku Ryoho, 1983, 10(10), 2125-2129.
[PMID: 6354099]
[47]
Rusciani, L.; Proietti, I.; Paradisi, A.; Rusciani, A.; Guerriero, G.; Mammone, A.; De Gaetano, A.; Lippa, S. Recombinant interferon α-2b and coenzyme Q10 as a postsurgical adjuvant therapy for melanoma: a 3-year trial with recombinant interferon-α and 5-year follow-up. Melanoma Res., 2007, 17(3), 177-183.
[http://dx.doi.org/10.1097/CMR.0b013e32818867a0] [PMID: 17505263]
[48]
Fritz, H.; Kennedy, D.; Fergusson, D.; Fernandes, R.; Doucette, S.; Cooley, K.; Seely, A.; Sagar, S.; Wong, R.; Seely, D. Vitamin A and retinoid derivatives for lung cancer: a systematic review and meta analysis. PLoS One, 2011, 6(6)e21107
[http://dx.doi.org/10.1371/journal.pone.0021107] [PMID: 21738614]
[49]
Doldo, E; Costanza, G; Agostinelli, S; Tarquini, C; Ferlosio, A; Arcuri, G Vitamin A, cancer treatment and prevention: The new role of cellular retinol binding proteins. Biomed Res Int., 2015 2015.
[50]
Wilkoff, L.J.; Dulmadge, E.A.; Chopra, D.P. Viability of cultured Lewis lung cell populations exposed to β-retinoic acid. Proc. Soc. Exp. Biol. Med., 1980, 163(2), 233-236.
[http://dx.doi.org/10.3181/00379727-163-40753] [PMID: 7360752]
[51]
Altucci, L.; Gronemeyer, H. The promise of retinoids to fight against cancer. Nat. Rev. Cancer, 2001, 1(3), 181-193.
[http://dx.doi.org/10.1038/35106036] [PMID: 11902573]
[52]
Oliveira, S.; Costa, J.; Faria, I.; Guerreiro, S.G.; Fernandes, R. Vitamin A enhances macrophages activity against B16-F10 malignant melanocytes: A new player for cancer immunotherapy? Medicina (Kaunas), 2019, 55(9), 1-9.
[http://dx.doi.org/10.3390/medicina55090604] [PMID: 31540438]
[53]
Sha, J.; Pan, J.; Ping, P.; Xuan, H.; Li, D.; Bo, J.; Liu, D.; Huang, Y. Synergistic effect and mechanism of vitamin A and vitamin D on inducing apoptosis of prostate cancer cells. Mol. Biol. Rep., 2013, 40(4), 2763-2768.
[http://dx.doi.org/10.1007/s11033-012-1925-0] [PMID: 23436065]
[54]
Abu, J.; Batuwangala, M.; Herbert, K.; Symonds, P. Retinoic acid and retinoid receptors: potential chemopreventive and therapeutic role in cervical cancer. Lancet Oncol., 2005, 6(9), 712-720.
[http://dx.doi.org/10.1016/S1470-2045(05)70319-3] [PMID: 16129372]
[55]
Siddikuzzaman, G.C.; Guruvayoorappan, C.; Berlin Grace, V.M. All trans retinoic acid and cancer. Immunopharmacol. Immunotoxicol., 2011, 33(2), 241-249.
[http://dx.doi.org/10.3109/08923973.2010.521507] [PMID: 20929432]
[56]
Yang, C.S.; Suh, N.; Kong, A.N.T. Does vitamin E prevent or promote cancer? Cancer Prev. Res. (Phila.), 2012, 5(5), 701-705.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0045] [PMID: 22490437]
[57]
Peh, H.Y.; Tan, W.S.D.; Liao, W.; Wong, W.S.F. Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol. Pharmacol. Ther., 2016, 162, 152-169.
[http://dx.doi.org/10.1016/j.pharmthera.2015.12.003] [PMID: 26706242]
[58]
Montagnani Marelli, M.; Marzagalli, M.; Fontana, F.; Raimondi, M.; Moretti, R.M.; Limonta, P. Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets. J. Cell. Physiol., 2019, 234(2), 1147-1164.
[http://dx.doi.org/10.1002/jcp.27075] [PMID: 30066964]
[59]
Shanmugam, M.K.; Warrier, S.; Kumar, A.P.; Sethi, G.; Arfuso, F. Potential Role of Natural Compounds as Anti-Angiogenic Agents in Cancer. Curr. Vasc. Pharmacol., 2017, 15(6), 503-519.
[http://dx.doi.org/10.2174/1570161115666170713094319] [PMID: 28707601]
[60]
Parajuli, P.; Tiwari, R.V.; Sylvester, P.W. Anti-proliferative effects of γ-tocotrienol are associated with suppression of c-Myc expression in mammary tumour cells. Cell Prolif., 2015, 48(4), 421-435.
[http://dx.doi.org/10.1111/cpr.12196] [PMID: 26096843]
[61]
Klein, E.A.; Thompson, I.M., Jr; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; Karp, D.D.; Lieber, M.M.; Walther, P.J.; Klotz, L.; Parsons, J.K.; Chin, J.L.; Darke, A.K.; Lippman, S.M.; Goodman, G.E.; Meyskens, F.L., Jr; Baker, L.H. Vitamin E and the risk of prostate cancer: The selenium and vitamin E cancer prevention trial (SELECT). JAMA -. JAMA, 2011, 306(14), 1549-1556.
[http://dx.doi.org/10.1001/jama.2011.1437] [PMID: 21990298]
[62]
Luk, S.U.; Yap, W.N.; Chiu, Y.T.; Lee, D.T.W.; Ma, S.; Lee, T.K.W.; Vasireddy, R.S.; Wong, Y.C.; Ching, Y.P.; Nelson, C.; Yap, Y.L.; Ling, M.T. Gamma-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population. Int. J. Cancer, 2011, 128(9), 2182-2191.
[http://dx.doi.org/10.1002/ijc.25546] [PMID: 20617516]
[68]
Ascorbic Acid and Combination Chemotherapy in Treating Patients With Locally Advanced or Recurrent Pancreatic Cancer That Cannot Be Removed by Surgery; , 2019.
[72]
Russo, G.I.; Solinas, T.; Urzì, D.; Privitera, S.; Campisi, D.; Cocci, A.; Carini, M.; Madonia, M.; Cimino, S.; Morgia, G. Adherence to Mediterranean diet and prostate cancer risk in Sicily: population-based case-control study. Int. J. Impot. Res., 2019, 31(4), 269-275.
[http://dx.doi.org/10.1038/s41443-018-0088-5] [PMID: 30337696]
[73]
Li, J.W.H.; Vederas, J.C. [Drug discovery and natural products: end of era or an endless frontier? Biomed. Khim., 2011, 57(2), 148-160.
[http://dx.doi.org/10.18097/pbmc20115702148] [PMID: 21870600]
[74]
Qurishi, Y.; Hamid, A.; Majeed, R.; Hussain, A.; Qazi, A.K.; Ahmed, M.; Zargar, M.A.; Singh, S.K.; Saxena, A.K. Interaction of natural products with cell survival and signaling pathways in the biochemical elucidation of drug targets in cancer. Future Oncol., 2011, 7(8), 1007-1021.
[http://dx.doi.org/10.2217/fon.11.69] [PMID: 21823895]
[75]
Ulbricht, C.; Chao, W.; Costa, D.; Rusie-Seamon, E.; Weissner, W.; Woods, J. Clinical evidence of herb-drug interactions: a systematic review by the natural standard research collaboration. Curr. Drug Metab., 2008, 9(10), 1063-1120.
[http://dx.doi.org/10.2174/138920008786927785] [PMID: 19075623]
[76]
Zhou, S.; Chan, E.; Pan, S.Q.; Huang, M.; Lee, E.J.D. Pharmacokinetic interactions of drugs with St John’s wort. J. Psychopharmacol., 2004, 18(2), 262-276.
[http://dx.doi.org/10.1177/0269881104042632] [PMID: 15260917]
[77]
Kodama, N.; Murata, Y.; Asakawa, A.; Inui, A.; Hayashi, M.; Sakai, N.; Nanba, H. Maitake D-Fraction enhances antitumor effects and reduces immunosuppression by mitomycin-C in tumor-bearing mice. Nutrition, 2005, 21(5), 624-629.
[http://dx.doi.org/10.1016/j.nut.2004.09.021] [PMID: 15850970]
[78]
Beck, V.; Unterrieder, E.; Krenn, L.; Kubelka, W.; Jungbauer, A. Comparison of hormonal activity (estrogen, androgen and progestin) of standardized plant extracts for large scale use in hormone replacement therapy. J. Steroid Biochem. Mol. Biol., 2003, 84(2-3), 259-268.
[http://dx.doi.org/10.1016/S0960-0760(03)00034-7] [PMID: 12711012]
[79]
Soleymani, S.; Bahramsoltani, R.; Rahimi, R.; Abdollahi, M. Clinical risks of St John’s Wort (Hypericum perforatum) co-administration. Expert Opin. Drug Metab. Toxicol., 2017, 13(10), 1047-1062.
[http://dx.doi.org/10.1080/17425255.2017.1378342] [PMID: 28885074]
[80]
Smith, P.; Bullock, J.M.; Booker, B.M.; Haas, C.E.; Berenson, C.S.; Jusko, W.J. The influence of St. John’s wort on the pharmacokinetics and protein binding of imatinib mesylate. Pharmacotherapy, 2004, 24(11), 1508-1514.
[http://dx.doi.org/10.1592/phco.24.16.1508.50958] [PMID: 15537555]
[81]
de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin. Pharmacokinet., 2018, 57(10), 1229-1254.
[http://dx.doi.org/10.1007/s40262-018-0644-7] [PMID: 29520731]
[82]
Hu, Z.P.; Yang, X.X.; Chan, S.Y.; Xu, A.L.; Duan, W.; Zhu, Y.Z.; Sheu, F.S.; Boelsterli, U.A.; Chan, E.; Zhang, Q.; Wang, J.C.; Ee, P.L.; Koh, H.L.; Huang, M.; Zhou, S.F.St. John’s wort attenuates irinotecan-induced diarrhea via down-regulation of intestinal pro-inflammatory cytokines and inhibition of intestinal epithelial apoptosis. Toxicol. Appl. Pharmacol., 2006, 216(2), 225-237.
[http://dx.doi.org/10.1016/j.taap.2006.05.020] [PMID: 17015070]
[83]
Frye, R.F.; Fitzgerald, S.M.; Lagattuta, T.F.; Hruska, M.W.; Egorin, M.J. Effect of St John’s wort on imatinib mesylate pharmacokinetics. Clin. Pharmacol. Ther., 2004, 76(4), 323-329.
[http://dx.doi.org/10.1016/j.clpt.2004.06.007] [PMID: 15470331]
[84]
Mathijssen, R.H.J.; Verweij, J.; de Bruijn, P.; Loos, W.J.; Sparreboom, A. Effects of St. John’s wort on irinotecan metabolism. J. Natl. Cancer Inst., 2002, 94(16), 1247-1249.
[http://dx.doi.org/10.1093/jnci/94.16.1247] [PMID: 12189228]
[85]
Goey, A.K.L.; Meijerman, I.; Rosing, H.; Marchetti, S.; Mergui-Roelvink, M.; Keessen, M.; Burgers, J.A.; Beijnen, J.H.; Schellens, J.H. The effect of St John’s wort on the pharmacokinetics of docetaxel. Clin. Pharmacokinet., 2014, 53(1), 103-110.
[http://dx.doi.org/10.1007/s40262-013-0102-5] [PMID: 24068654]
[86]
Rashidi, B.; Malekzadeh, M.; Goodarzi, M.; Masoudifar, A.; Mirzaei, H. Green tea and its anti-angiogenesis effects. Biomed. Pharmacother., 2017, 89, 949-956.
[http://dx.doi.org/10.1016/j.biopha.2017.01.161] [PMID: 28292023]
[87]
Trudel, D.; Labbé, D.P.; Araya-Farias, M.; Doyen, A.; Bazinet, L.; Duchesne, T.; Plante, M.; Grégoire, J.; Renaud, M.C.; Bachvarov, D.; Têtu, B.; Bairati, I. A two-stage, single-arm, phase II study of EGCG-enriched green tea drink as a maintenance therapy in women with advanced stage ovarian cancer. Gynecol. Oncol., 2013, 131(2), 357-361.
[http://dx.doi.org/10.1016/j.ygyno.2013.08.019] [PMID: 23988418]
[88]
Yiannakopoulou, E.C. Interaction of green tea catechins with breast cancer endocrine treatment: a systematic review. Pharmacology, 2014, 94(5-6), 245-248.
[http://dx.doi.org/10.1159/000369170] [PMID: 25471334]
[89]
Modernelli, A.; Naponelli, V.; Giovanna Troglio, M.; Bonacini, M.; Ramazzina, I.; Bettuzzi, S.; Rizzi, F. EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism. Sci. Rep., 2015, 5, 15270.
[http://dx.doi.org/10.1038/srep15270] [PMID: 26471237]
[90]
Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Vol. 9. Nutrients, 2017, 9(10)E1063
[http://dx.doi.org/10.3390/nu9101063] [PMID: 28954418]
[91]
Grosso, G.; Bella, F.; Godos, J.; Sciacca, S.; Del Rio, D.; Ray, S.; Galvano, F.; Giovannucci, E.L. Possible role of diet in cancer: systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr. Rev., 2017, 75(6), 405-419.
[http://dx.doi.org/10.1093/nutrit/nux012] [PMID: 28969358]
[92]
Key, T.J.; Bradbury, K.E.; Perez-Cornago, A.; Sinha, R.; Tsilidis, K.K.; Tsugane, S. Diet, nutrition, and cancer risk: what do we know and what is the way forward? BMJ, 2020, 368, m511.
[http://dx.doi.org/10.1136/bmj.m511] [PMID: 32139373]
[93]
Pietta, P.; Minoggio, M.; Bramati, L. Plant polyphenols: Structure, occurrence and bioactivity.Studies in Natural Products Chemistry; Elsevier, 2003, pp. 257-312.
[94]
Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Vol. 10. Nutrients, 2018, 10(11)E1618
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[95]
Moreira, H.; Ślȩzak, A.; Szyjka, A.; Oszmiański, J.; Gasiorowski, K. Antioxidant and cancer chemopreventive activities of cistus and pomegranate polyphenols. Acta Pol Pharm -. Acta Pol. Pharm., 2017, 74(2), 688-698.
[PMID: 29624275]
[96]
Mileo, A.M.; Nisticò, P.; Miccadei, S. Polyphenols: Immunomodulatory and therapeutic implication in colorectal cancer. Vol. 10. Front. Immunol., 2019, 10, 729.
[http://dx.doi.org/10.3389/fimmu.2019.00729] [PMID: 31031748]
[97]
Alam, MN; Almoyad, M; Huq, F Polyphenols in colorectal cancer: current state of knowledge including clinical trials and molecular mechanism of action. Biomed Res Int., 2018, 2018.
[98]
Athar, M.; Back, J.H.; Tang, X.; Kim, K.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol., 2007, 224(3), 274-283.
[http://dx.doi.org/10.1016/j.taap.2006.12.025] [PMID: 17306316]
[99]
Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Vol. 10. Front. Pharmacol., 2020, 10, 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[100]
Emma, M.R.; Augello, G.; Di Stefano, V.; Azzolina, A.; Giannitrapani, L.; Montalto, G.; Cervello, M.; Cusimano, A. Potential uses of olive oil secoiridoids for the prevention and treatment of cancer: A narrative review of preclinical studies. Vol. 22. Int. J. Mol. Sci., 2021, 22(3), 1-22.
[http://dx.doi.org/10.3390/ijms22031234] [PMID: 33513799]
[101]
Cucciolla, V.; Borriello, A.; Oliva, A.; Galletti, P.; Zappia, V.; Della Ragione, F. Resveratrol: from basic science to the clinic. Cell Cycle, 2007, 6(20), 2495-2510.
[http://dx.doi.org/10.4161/cc.6.20.4815] [PMID: 17726376]
[102]
Stagos, D.; Amoutzias, G.D.; Matakos, A.; Spyrou, A.; Tsatsakis, A.M.; Kouretas, D. Chemoprevention of liver cancer by plant polyphenols. Food Chem. Toxicol., 2012, 50(6), 2155-2170.
[http://dx.doi.org/10.1016/j.fct.2012.04.002] [PMID: 22521445]
[103]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[104]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 1-36.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[105]
Tomé-Carneiro, J.; Larrosa, M.; González-Sarrías, A.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Espín, J.C. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr. Pharm. Des., 2013, 19(34), 6064-6093.
[http://dx.doi.org/10.2174/13816128113199990407] [PMID: 23448440]
[106]
Kundu, J.K.; Surh, Y.J. Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett., 2008, 269(2), 243-261.
[http://dx.doi.org/10.1016/j.canlet.2008.03.057] [PMID: 18550275]
[107]
Harikumar, K.B.; Kunnumakkara, A.B.; Sethi, G.; Diagaradjane, P.; Anand, P.; Pandey, M.K.; Gelovani, J.; Krishnan, S.; Guha, S.; Aggarwal, B.B. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int. J. Cancer, 2010, 127(2), 257-268.
[PMID: 19908231]
[108]
Nguyen, A.V.; Martinez, M.; Stamos, M.J.; Moyer, M.P.; Planutis, K.; Hope, C.; Holcombe, R.F. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag. Res., 2009, 1, 25-37.
[http://dx.doi.org/10.2147/CMAR.S4544] [PMID: 21188121]
[109]
Zhu, W.; Qin, W.; Zhang, K.; Rottinghaus, G.E.; Chen, Y.C.; Kliethermes, B.; Sauter, E.R. Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr. Cancer, 2012, 64(3), 393-400.
[http://dx.doi.org/10.1080/01635581.2012.654926] [PMID: 22332908]
[110]
Patel, K.R.; Scott, E.; Brown, V.A.; Gescher, A.J.; Steward, W.P.; Brown, K. Clinical trials of resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215(1), 161-169.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05853.x] [PMID: 21261655]
[111]
Dun, J.; Chen, X.; Gao, H.; Zhang, Y.; Zhang, H.; Zhang, Y. Resveratrol synergistically augments anti-tumor effect of 5-FU in vitro and in vivo by increasing S-phase arrest and tumor apoptosis. Exp. Biol. Med. (Maywood), 2015, 240(12), 1672-1681.
[http://dx.doi.org/10.1177/1535370215573396] [PMID: 25736303]
[112]
Casanova, F.; Quarti, J.; da Costa, D.C.; Ramos, C.A.; da Silva, J.L.; Fialho, E. Resveratrol chemosensitizes breast cancer cells to melphalan by cell cycle arrest. J. Cell. Biochem., 2012, 113(8), 2586-2596.
[http://dx.doi.org/10.1002/jcb.24134] [PMID: 22415970]
[113]
Elshaer, M.; Chen, Y.; Wang, X.J.; Tang, X. Resveratrol: An overview of its anti-cancer mechanisms. Life Sci., 2018, 207(June), 340-349.
[http://dx.doi.org/10.1016/j.lfs.2018.06.028] [PMID: 29959028]
[114]
Faggio, C.; Sureda, A.; Morabito, S.; Sanches-Silva, A.; Mocan, A.; Nabavi, S.F.; Nabavi, S.M. Flavonoids and platelet aggregation: A brief review. Eur. J. Pharmacol., 2017, 807, 91-101.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.009] [PMID: 28412372]
[115]
Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proceedings of the Nutrition Society, 2010, pp. 273-8.
[116]
Lee, S.G.; Kim, B.; Yang, Y.; Pham, T.X.; Park, Y.K.; Manatou, J.; Koo, S.I.; Chun, O.K.; Lee, J.Y. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-κB independent of NRF2-mediated mechanism. J. Nutr. Biochem., 2014, 25(4), 404-411.
[http://dx.doi.org/10.1016/j.jnutbio.2013.12.001] [PMID: 24565673]
[117]
Tian, S.S.; Jiang, F.S.; Zhang, K.; Zhu, X.X.; Jin, B.; Lu, J.J.; Ding, Z.S. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis. Fitoterapia, 2014, 92(1), 34-40.
[http://dx.doi.org/10.1016/j.fitote.2013.09.016] [PMID: 24096161]
[118]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients, 2020, 12(2) [Internet] E457.www.mdpi.com/journal/nutrients
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[119]
Wu, D.; Zhang, J.; Wang, J.; Li, J.; Liao, F.; Dong, W. Hesperetin induces apoptosis of esophageal cancer cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species. Tumour Biol., 2016, 37(3), 3451-3459.
[http://dx.doi.org/10.1007/s13277-015-4176-6] [PMID: 26449828]
[120]
Pandey, P.; Sayyed, U.; Tiwari, R.K.; Siddiqui, M.H.; Pathak, N.; Bajpai, P. Hesperidin Induces ROS-Mediated Apoptosis along with Cell Cycle Arrest at G2/M Phase in Human Gall Bladder Carcinoma. Nutr. Cancer, 2019, 71(4), 676-687.
[http://dx.doi.org/10.1080/01635581.2018.1508732] [PMID: 30265812]
[121]
Zhang, J.; Song, J.; Wu, D.; Wang, J.; Dong, W. Hesperetin induces the apoptosis of hepatocellular carcinoma cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species, ATP and calcium. Med. Oncol., 2015, 32(4), 101.
[http://dx.doi.org/10.1007/s12032-015-0516-z] [PMID: 25737432]
[122]
Tavsan, Z.; Kayali, H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother., 2019, 116109004
[http://dx.doi.org/10.1016/j.biopha.2019.109004] [PMID: 31128404]
[123]
Souza, RP; Bonfim-Mendonça, PDS; Gimenes, F; Ratti, BA; Kaplum, V; Bruschi, ML Oxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines. Oxid Med Cell Longev., 2017, , 2017.
[http://dx.doi.org/10.1155/2017/1512745]
[124]
Kaushik, S.; Shyam, H.; Agarwal, S.; Sharma, R.; Nag, T.C.; Dwivedi, A.K.; Balapure, A.K. Genistein potentiates Centchroman induced antineoplasticity in breast cancer via PI3K/Akt deactivation and ROS dependent induction of apoptosis. Life Sci., 2019, 239117073
[http://dx.doi.org/10.1016/j.lfs.2019.117073] [PMID: 31751581]
[125]
Martin, M.A.; Goya, L.; Ramos, S. Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food Chem. Toxicol., 2013, 56, 336-351.
[http://dx.doi.org/10.1016/j.fct.2013.02.020] [PMID: 23439478]
[126]
Rather, R.A.; Bhagat, M. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health. Cancer Med., 2020, 9(24), 9181-9192.
[http://dx.doi.org/10.1002/cam4.1411] [PMID: 31568659]
[127]
Ye, Q.; Liu, K.; Shen, Q.; Li, Q.; Hao, J.; Han, F.; Jiang, R.W. Reversal of multidrug resistance in cancer by multi-functional flavonoids. Vol. 9. Front. Oncol., 2019, 9, 487.
[http://dx.doi.org/10.3389/fonc.2019.00487] [PMID: 31245292]
[128]
Maggioni, D.; Biffi, L.; Nicolini, G.; Garavello, W. Flavonoids in oral cancer prevention and therapy. Eur. J. Cancer Prev., 2015, 24(6), 517-528.
[http://dx.doi.org/10.1097/CEJ.0000000000000109] [PMID: 25521342]
[129]
Amawi, H.; Ashby, C.R., Jr; Tiwari, A.K. Cancer chemoprevention through dietary flavonoids: what’s limiting? Chin. J. Cancer, 2017, 36(1), 50.
[http://dx.doi.org/10.1186/s40880-017-0217-4] [PMID: 28629389]
[130]
Goel, A.; Aggarwal, B.B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr. Cancer, 2010, 62(7), 919-930.
[http://dx.doi.org/10.1080/01635581.2010.509835] [PMID: 20924967]
[131]
Wei, Y.; Yang, P.; Cao, S.; Zhao, L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch. Pharm. Res., 2018, 41(1), 1-13.
[http://dx.doi.org/10.1007/s12272-017-0979-x] [PMID: 29230689]
[132]
Aggarwal, B.B.; Yuan, W.; Li, S.; Gupta, S.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res., 2013, 57(9), 1529-1542.
[http://dx.doi.org/10.1002/mnfr.201200838] [PMID: 23847105]
[133]
James, M.I.; Iwuji, C.; Irving, G.; Karmokar, A.; Higgins, J.A.; Griffin-Teal, N.; Thomas, A.; Greaves, P.; Cai, H.; Patel, S.R.; Morgan, B.; Dennison, A.; Metcalfe, M.; Garcea, G.; Lloyd, D.M.; Berry, D.P.; Steward, W.P.; Howells, L.M.; Brown, K. Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy. Cancer Lett., 2015, 364(2), 135-141.
[http://dx.doi.org/10.1016/j.canlet.2015.05.005] [PMID: 25979230]
[134]
Tian, F.; Fan, T.; Zhang, Y.; Jiang, Y.; Zhang, X. Curcumin potentiates the antitumor effects of 5-FU in treatment of esophageal squamous carcinoma cells through downregulating the activation of NF-κB signaling pathway in vitro and in vivo. Acta Biochim. Biophys. Sin. (Shanghai), 2012, 44(10), 847-855.
[http://dx.doi.org/10.1093/abbs/gms074] [PMID: 23017833]
[135]
Mansouri, K.; Rasoulpoor, S.; Daneshkhah, A.; Abolfathi, S.; Salari, N.; Mohammadi, M.; Rasoulpoor, S.; Shabani, S. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer, 2020, 20(1), 791.
[http://dx.doi.org/10.1186/s12885-020-07256-8] [PMID: 32838749]
[136]
Uzzan, B.; Benamouzig, R. Is Curcumin a Chemopreventive Agent for Colorectal Cancer? Curr. Colorectal Cancer Rep., 2016, 12(1), 35-41.
[http://dx.doi.org/10.1007/s11888-016-0307-8]
[142]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[143]
Hammerman, P.S.; Voet, D.; Lawrence, M.S.; Voet, D.; Jing, R.; Cibulskis, K. Comprehensive genomic characterization of squamous cell lung cancers. Nature, 2012, 489(7417), 519-525.
[http://dx.doi.org/10.1038/nature11404] [PMID: 22960745]
[144]
DeNicola, G.M.; Karreth, F.A.; Humpton, T.J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K.H.; Yeo, C.J.; Calhoun, E.S.; Scrimieri, F.; Winter, J.M.; Hruban, R.H.; Iacobuzio-Donahue, C.; Kern, S.E.; Blair, I.A.; Tuveson, D.A. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011, 475(7354), 106-109.
[http://dx.doi.org/10.1038/nature10189] [PMID: 21734707]
[145]
Nielsen, T.K.; Højgaard, M.; Andersen, J.T.; Poulsen, H.E.; Lykkesfeldt, J.; Mikines, K.J. Elimination of ascorbic acid after high-dose infusion in prostate cancer patients: a pharmacokinetic evaluation. Basic Clin. Pharmacol. Toxicol., 2015, 116(4), 343-348.
[http://dx.doi.org/10.1111/bcpt.12323] [PMID: 25220574]
[146]
León-González, A.J.; Auger, C.; Schini-Kerth, V.B. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem. Pharmacol., 2015, 98(3), 371-380.
[http://dx.doi.org/10.1016/j.bcp.2015.07.017] [PMID: 26206193]
[147]
Song, J.; Kwon, O.; Chen, S.; Daruwala, R.; Eck, P.; Park, J.B.; Levine, M. Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose. J. Biol. Chem., 2002, 277(18), 15252-15260.
[http://dx.doi.org/10.1074/jbc.M110496200] [PMID: 11834736]
[148]
Patel, K.R.; Brown, V.A.; Jones, D.J.L.; Britton, R.G.; Hemingway, D.; Miller, A.S.; West, K.P.; Booth, T.D.; Perloff, M.; Crowell, J.A.; Brenner, D.E.; Steward, W.P.; Gescher, A.J.; Brown, K. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res., 2010, 70(19), 7392-7399.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2027] [PMID: 20841478]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy