Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Insights into Novel Coronavirus Disease 2019 (COVID-19): Current Understanding, Research, and Therapeutic Updates

Author(s): Dudala Sai Sushma, Varun Jaiswal, Arvind Kumar, Syed Asha and Tarun Pal*

Volume 16, Issue 1, 2022

Published on: 08 December, 2021

Page: [35 - 63] Pages: 29

DOI: 10.2174/1872208315666210805152122

Price: $65

conference banner
Abstract

Background: Humans can be infected with various coronaviruses that can cause serious illness and death. One such pandemic strain of coronavirus was recently identified in December 2019, and it led to a devastating outbreak in Wuhan city of China. It is caused by severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2). It is highly contagious and causes symptoms such as fever, cough, and shortness of breath.

Objective: The objective of this review is to highlight the current understanding, research, and therapeutic updates of the novel coronavirus disease 2019 (COVID-19).

Methods: A thorough literature search was conducted for research papers and patents in the context of COVID-19. All the related articles were extracted from various public repositories such as Google Scholar, Pubmed, ScienceDirect (Elsevier), Springer, Web of Science, etc.

Results: The present analysis revealed that the key areas of the inventions were vaccines and diagnostic kits apart from developing the treatment of CoV. It was also observed that no specific vaccine treatments were available for the treatment of 2019-nCov; therefore, developing novel chemical or biological drugs and kits for early diagnosis, prevention, and disease management is the primary governing topic among the patented inventions. The present study also indicates potential research opportunities for the future, particularly to combat 2019-nCoV.

The current focus of the researches has turned towards developing four potential treatments, including the development of candidate vaccines, development of novel potential drugs, repurposing of existing drugs, and development of convalescent plasma therapy. The PCR based diagnosis is the gold standard for the COVID-19 testing, but it requires resource time, expertise, and high associated cost; hence researchers are also developing different diagnostic methods for the COVID-19. Although vaccines are being developed by various companies and have passed the pre-clinical stages but there still exists no guarantee for these to come into effect. The current treatments that are being used for COVID-19 patients are not well established and have shown limited success.

Conclusion: The pandemic has challenged the medical, economic, and public health infrastructure across the globe. There is an urgent need to explore all available and possible methods/ approaches to study this disease for drug and vaccine development at the earliest.

Keywords: COVID-19, SARS- CoV-2, non structural proteins, epidemiology, pandemic, variant, pharmacovigilance.

Graphical Abstract
[1]
Hilgenfeld R, Peiris M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res 2013; 100(1): 286-95.
[http://dx.doi.org/10.1016/j.antiviral.2013.08.015] [PMID: 24012996]
[2]
Ong SWX, Tan YK, Chia PY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) from a symptomatic patient. JAMA 2020; 323(16): 1610-2.
[http://dx.doi.org/10.1001/jama.2020.3227] [PMID: 32129805]
[3]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[4]
Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: Are they closely related? Clin Microbiol Infect 2020; 26(6): 729-34.
[http://dx.doi.org/10.1016/j.cmi.2020.03.026] [PMID: 32234451]
[5]
Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS- CoV-2 associated with the COVID-19 outbreak. Curr Biol 2020; 30(7): 1346-1351.e2.
[http://dx.doi.org/10.1016/j.cub.2020.03.022] [PMID: 32197085]
[6]
Yadav PD, Potdar VA, Choudhary ML, et al. Full-genome sequences of the first two SARS- CoV-2 viruses from India. Indian J Med Res 2020; 151(2 & 3): 200-9.
[PMID: 32242873]
[7]
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[8]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS- CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[9]
Craven J. COVID-19 vaccine tracker. Regulatory Focus. 2021. Available from: https://www.raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker.
[10]
McIntosh K, Perlman S. Coronaviruses, Including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases 2015; 1928-1936.e2.
[http://dx.doi.org/10.1016/B978-1-4557-4801-3.00157-0]
[11]
Korsman SN, Van Zyl G, Preiser W, Nutt L, Andersson MI. Virology E-Book: An Illustrated Colour Text. Elsevier Health Sciences 2012.
[12]
Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress 2020; 4(4): 66-75.
[http://dx.doi.org/10.15698/cst2020.04.216] [PMID: 32292881]
[13]
Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 2010; 48(8): 2940-7.
[http://dx.doi.org/10.1128/JCM.00636-10] [PMID: 20554810]
[14]
Woo PC, Lau SK, Lam CS, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 2012; 86(7): 3995-4008.
[http://dx.doi.org/10.1128/JVI.06540-11] [PMID: 22278237]
[15]
Gelderblom HR. Structure and Classification of Viruses. In: Baron S, Ed. Medical Microbiology. 4th ed. University of Texas Medical Branch at Galveston: Galveston, TX, USA 1996.
[16]
Sturman LS, Ricard CS, Holmes KV. Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion. J Virol 1990; 64(6): 3042-50.
[http://dx.doi.org/10.1128/jvi.64.6.3042-3050.1990] [PMID: 2159562]
[17]
Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity. RNA Biol 2011; 8(2): 270-9.
[18]
Shanker AK, Bhanu D, Alluri A. Whole genome sequence analysis and homology modelling of a 3c like peptidase and 1 a non-structural protein 3 of the SARS- CoV-2 shows protein ligand interaction with 2 an aza-peptide and a noncovalent lead inhibitor with possible antiviral properties. New J Chem 2020; 44: 9202-12.
[http://dx.doi.org/10.1039/D0NJ00974A]
[19]
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63(3): 457-60.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[20]
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[21]
Chang CK, Lo SC, Wang YS, Hou MH. Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discov Today 2016; 21(4): 562-72.
[http://dx.doi.org/10.1016/j.drudis.2015.11.015] [PMID: 26691874]
[22]
Zeng Q, Langereis MA, van Vliet AL, Huizinga EG, de Groot RJ. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc Natl Acad Sci USA 2008; 105(26): 9065-9.
[http://dx.doi.org/10.1073/pnas.0800502105] [PMID: 18550812]
[23]
Deng SQ, Peng HJ. Characteristics of and public health responses to the coronavirus disease 2019 outbreak in china. J Clin Med 2020; 9(2): 575.
[http://dx.doi.org/10.3390/jcm9020575] [PMID: 32093211]
[24]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[25]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[26]
Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 2004; 78(11): 5619-32.
[http://dx.doi.org/10.1128/JVI.78.11.5619-5632.2004] [PMID: 15140959]
[27]
Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The architecture of SARS- CoV-2 transcriptome. Cell 2020; 181(4): 914-921.e10.
[http://dx.doi.org/10.1016/j.cell.2020.04.011] [PMID: 32330414]
[28]
Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS- CoV-2 and COVID-19: The most important research questions. Cell Biosci 2020; 10(1): 40.
[http://dx.doi.org/10.1186/s13578-020-00404-4] [PMID: 32190290]
[29]
Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J Med Virol 2020; 92(6): 584-8.
[http://dx.doi.org/10.1002/jmv.25719] [PMID: 32083328]
[30]
Chen YW, Yiu CB, Wong KY. Prediction of the SARS- CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res 2020; 9: 129.
[http://dx.doi.org/10.12688/f1000research.22457.2] [PMID: 32194944]
[31]
Pachetti M, Marini B, Benedetti F, et al. Emerging SARS- CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 2020; 18(1): 179.
[http://dx.doi.org/10.1186/s12967-020-02344-6] [PMID: 32321524]
[32]
Sungnak W, Huang N, BA(c)cavin C, et al. SARS- CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26(5): 681-7.
[http://dx.doi.org/10.1038/s41591-020-0868-6] [PMID: 32327758]
[33]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[34]
WHO Coronavirus (COVID-19) Dashboard. 2020. Available from: https://covid19.who.int/
[35]
Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020; 323(14): 1406-7.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[36]
Lan L, Xu D, Ye G, et al. Positive RT-PCR test results in patients recovered from COVID-19. JAMA 2020; 323(15): 1502-3.
[http://dx.doi.org/10.1001/jama.2020.2783] [PMID: 32105304]
[37]
Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[38]
Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395(10226): 809-15.
[http://dx.doi.org/10.1016/S0140-6736(20)30360-3] [PMID: 32151335]
[39]
Hindson J. COVID-19: faecal-oral transmission? Nat Rev Gastroenterol Hepatol 2020; 17(5): 259-9.
[http://dx.doi.org/10.1038/s41575-020-0295-7] [PMID: 32214231]
[40]
Heller L, Mota CR, Greco DB. COVID-19 faecal-oral transmission: Are we asking the right questions? Sci Total Environ 2020; 729: 138919.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138919] [PMID: 32353720]
[41]
Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020; 20(4): 425-34.
[http://dx.doi.org/10.1016/S1473-3099(20)30086-4] [PMID: 32105637]
[42]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[43]
Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 2020; 172(9): 577-82.
[http://dx.doi.org/10.7326/M20-0504] [PMID: 32150748]
[44]
Jin JM, Bai P, He W, et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health 2020; 8: 152.
[http://dx.doi.org/10.3389/fpubh.2020.00152] [PMID: 32411652]
[45]
Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol 2020; 92(4): 441-7.
[http://dx.doi.org/10.1002/jmv.25689] [PMID: 31994742]
[46]
Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17(5): 259-60.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[47]
Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8(4): e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[48]
Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 2020; 5(5): 428-30.
[http://dx.doi.org/10.1016/S2468-1253(20)30057-1] [PMID: 32145190]
[49]
Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS- CoV-2 infected patients. EBioMedicine 2020; 55: 102763.
[http://dx.doi.org/10.1016/j.ebiom.2020.102763] [PMID: 32361250]
[50]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[51]
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020; 71(15): 762-8.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[52]
Xu T, Huang R, Zhu L, et al. Epidemiological and clinical features of asymptomatic patients with SARS- CoV-2 infection. J Med Virol 2020; 92(10): 1884-9.
[http://dx.doi.org/10.1002/jmv.25944] [PMID: 32346873]
[53]
Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS- CoV-2 infections. Nat Med 2020; 26(8): 1200-4.
[http://dx.doi.org/10.1038/s41591-020-0965-6] [PMID: 32555424]
[54]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[55]
Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-7.
[http://dx.doi.org/10.1016/j.thromres.2020.04.013] [PMID: 32291094]
[56]
Obi AT, Barnes GD, Wakefield TW, et al. Practical diagnosis and treatment of suspected venous thromboembolism during COVID-19 pandemic. J Vasc Surg Venous Lymphat Disord 2020; 8(4): 526-34.
[http://dx.doi.org/10.1016/j.jvsv.2020.04.009] [PMID: 32305585]
[57]
Xie J, Covassin N, Fan Z, et al. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clin Proc 2020; 95(6): 1138-47.
[http://dx.doi.org/10.1016/j.mayocp.2020.04.006] [PMID: 32376101]
[58]
Center for disease control and prevention (CDC). How to Protect Yourself & Others. 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html
[59]
World Health Organization. Rational use of personal protective equipment (PPE) for coronavirus disease (COVID-19): interim guidance, 19 March 2020. World Health Organization 2020.
[60]
Ayan A, Kıraç FS. Guide for nuclear medicine applications during the COVID-19 outbreak. Mol Imaging Radionucl Ther 2020; 29(2): 49-58.
[http://dx.doi.org/10.4274/mirt.galenos.2020.33600] [PMID: 32368875]
[61]
Lewnard JA, Lo NC. Scientific and ethical basis for social-distancing interventions against COVID-19. Lancet Infect Dis 2020; 20(6): 631-3.
[http://dx.doi.org/10.1016/S1473-3099(20)30190-0] [PMID: 32213329]
[62]
Choudhary S, Malik YS, Tomar S. Identification of SARS- CoV-2 Cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Front Immunol 2020; 11: 1664.
[http://dx.doi.org/10.3389/fimmu.2020.01664] [PMID: 32754161]
[63]
Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci 2020; 252: 117652.
[http://dx.doi.org/10.1016/j.lfs.2020.117652] [PMID: 32278693]
[64]
Cava C, Bertoli G, Castiglioni I. In silico discovery of candidate drugs against Covid-19. Viruses 2020; 12(4): 404.
[http://dx.doi.org/10.3390/v12040404] [PMID: 32268515]
[65]
Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS- CoV-2. Cell Discov 2020; 6(1): 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 33723226]
[66]
Reiner Z, Hatamipour M, Banach M, et al. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch Med Sci 2020; 16(3): 490-6.
[http://dx.doi.org/10.5114/aoms.2020.94655] [PMID: 32399094]
[67]
Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS- CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents 2020; 34(2): 327-31.
[PMID: 32171193]
[68]
Enayatkhani M, Hasaniazad M, Faezi S, et al. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. J Biomol Struct Dyn 2020; 16: 1-6.
[http://dx.doi.org/10.1080/07391102.2020.1857843] [PMID: 32295479]
[69]
Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol 2020; 92(5): 495-500.
[http://dx.doi.org/10.1002/jmv.25698] [PMID: 32022276]
[70]
Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS- CoV-2 and other human coronaviruses. Trends Immunol 2020; 41(5): 355-9.
[http://dx.doi.org/10.1016/j.it.2020.03.007] [PMID: 32249063]
[71]
Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS- CoV-2) based on SARS-CoV immunological studies. Viruses 2020; 12(3): 254.
[http://dx.doi.org/10.3390/v12030254] [PMID: 32106567]
[72]
Naidu MV, Sushma DS, Jaiswal V, Asha S, Pal T. The role of advanced technologies supplemented with traditional methods in pharmacovigilance sciences. Recent Pat Biotechnol 2020; 14: 1.
[http://dx.doi.org/10.2174/1872208314666201021162704]
[73]
Center for disease control and prevention (CDC). About Variants of the Virus that Causes COVID-19. 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/transmission/variant.html
[74]
Alhazzani W, MA,ller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med 2020; 46(5): 854-87.
[http://dx.doi.org/10.1007/s00134-020-06022-5] [PMID: 32222812]
[75]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[76]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2(1): 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[77]
Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS- CoV-2 infection in vitro. Cell Discov 2020; 6(1): 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 33731711]
[78]
Chen J, Liu D, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ 2020; 49(1): 215-9. [Med Sci].
[PMID: 32391667]
[79]
Owens B. Excitement around hydroxychloroquine for treating COVID-19 causes challenges for rheumatology. Lancet Rheumatol 2020; 2(5): e257.
[http://dx.doi.org/10.1016/S2665-9913(20)30089-8] [PMID: 32368738]
[80]
Baidya A, Shankar A, Ahmed R, Das AK. Relevance and role of hydroxychloroquine in prophylaxis and therapy of COVID-19. J Med SciClin Res 2020; 8: 94-101.
[81]
Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2). Clin Infect Dis 2020; 71(15): 732-9.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[82]
Wu SF, Chang CB, Hsu JM, et al. Hydroxychloroquine inhibits CD154 expression in CD4+ T lymphocytes of systemic lupus erythematosus through NFAT, but not STAT5, signaling. Arthritis Res Ther 2017; 19(1): 183.
[http://dx.doi.org/10.1186/s13075-017-1393-y] [PMID: 28793932]
[83]
Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother 2020; 75(7): 1667-70.
[http://dx.doi.org/10.1093/jac/dkaa114] [PMID: 32196083]
[84]
van den Borne BE, Dijkmans BA, de Rooij HH, le Cessie S, Verweij CL. Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J Rheumatol 1997; 24(1): 55-60.
[PMID: 9002011]
[85]
FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems. 2020. Available from: https://www.fda.gov/drugs/fda-drug-safety-podcasts/fda-cautions-against-use
[86]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[87]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS- CoV-2 in vitro. Antiviral Res 2020; 178: 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[88]
Wahl A, Gralinski LE, Johnson CE, et al. SARS- CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature 2021; 591(7850): 451-7.
[http://dx.doi.org/10.1038/s41586-021-03312-w] [PMID: 33561864]
[89]
Sheahan TP, Sims AC, Zhou S, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS- CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883.
[http://dx.doi.org/10.1126/scitranslmed.abb5883] [PMID: 32253226]
[90]
Kelleni MT. Tocilizumab, remdesivir, favipiravir, and dexamethasone repurposed for covid-19: A comprehensive clinical and pharmacovigilant reassessment. SN Compr Clin Med 2021; 19: 1-5.
[PMID: 33644693]
[91]
Roivant starts gimsilumab dosing in Covid-19 trial. 2020. Available from: https://www.clinicaltrialsarena.com/news/roivant-gimsilumab-covid-19-trial/
[92]
Bonam SR, Kaveri SV, Sakuntabhai A, Gilardin L, Bayry J. Adjunct immunotherapies for the management of severely ill COVID-19 patients. CellRepMed 2020; 1(2): 100016.
[http://dx.doi.org/10.1016/j.xcrm.2020.100016] [PMID: 32562483]
[93]
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020; 117(20): 10970-5.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[94]
Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents 2020; 55(5): 105954.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105954] [PMID: 32234467]
[95]
Stone JH, Frigault MJ, Serling-Boyd NJ, et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med 2020; 383(24): 2333-44.
[http://dx.doi.org/10.1056/NEJMoa2028836] [PMID: 33085857]
[96]
Gottlieb RL, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 2021; 325(7): 632-44.
[http://dx.doi.org/10.1001/jama.2021.0202] [PMID: 33475701]
[97]
Mahase E. Covid-19: FDA authorises neutralising antibody bamlanivimab for non-admitted patients. BMJ 2020; 371: m4362.
[http://dx.doi.org/10.1136/bmj.m4362] [PMID: 33177042]
[98]
Maggi U, De Carlis L, Yiu D, et al. The impact of the COVID-19 outbreak on liver transplantation programs in Northern Italy. Am J Transplant 2020; 20(7): 1840-8.
[http://dx.doi.org/10.1111/ajt.15948] [PMID: 32330351]
[99]
Wolf J, Abzug MJ, Wattier RL, et al. Initial guidance on use of monoclonal antibody therapy for treatment of COVID-19 in children and adolescents. Pediatr Infect Dis J 2021. [Ahead of print].
[100]
Van Norman GA. Update to drugs, devices, and the FDA: how recent legislative changes have impacted approval of new therapies. JACC Basic Transl Sci 2020; 5(8): 831-9.
[http://dx.doi.org/10.1016/j.jacbts.2020.06.010] [PMID: 32864509]
[101]
Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020; 20(4): 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[102]
Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323(16): 1582-9.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[103]
Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117(17): 9490-6.
[http://dx.doi.org/10.1073/pnas.2004168117] [PMID: 32253318]
[104]
Sun P, Lu X, Xu C, Sun W, Pan B. Understanding of COVID-19 based on current evidence. J Med Virol 2020; 92(6): 548-51.
[http://dx.doi.org/10.1002/jmv.25722] [PMID: 32096567]
[105]
Monteil V, Kwon H, Prado P, et al. Inhibition of SARS- CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020; 181(4): 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[106]
Gulati A, Anudeep TC, Jeyaraman MESS, Arora A, Jain R, Dilip SJ. BCG vaccination: A beacon of hope with a word of caution–an overview on the current consensus in nCOVID-19. Int J Med Sci Clin Invent 2020; 7(5): 4810-21.
[http://dx.doi.org/10.18535/ijmsci/v7i05.04]
[107]
Miyasaka M. Is BCG vaccination causally related to reduced COVID-19 mortality? EMBO Mol Med 2020; 12(6): e12661.
[http://dx.doi.org/10.15252/emmm.202012661] [PMID: 32379923]
[108]
World Health Organisation. Draft landscape and tracker of COVID-19 candidate vaccines. 2021. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate- vaccines
[109]
WHO issues its first emergency use validation for a COVID-19 vaccine and emphasizes need for equitable global access. 2020. Available from: https://www.who.int/news/item/31-12-2020-who-issues-its-first-emergency-use-validation-for-a- covid-19-vaccine-and-emphasizes-need-for-equitable-global-access
[110]
Singh JA, Kochhar S, Wolff J. Placebo use and unblinding in COVID-19 vaccine trials: recommendations of a WHO Expert Working Group. Nat Med 2021; 27(4): 569-70.
[http://dx.doi.org/10.1038/s41591-021-01299-5] [PMID: 33727699]
[111]
World Health Organisation. WHO Coronavirus (COVID-19) Dashboard. 2021. Available from: https://covid19.who.int/
[112]
Carter LJ, Garner LV, Smoot JW, et al. Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci 2020; 6(5): 591-605.
[http://dx.doi.org/10.1021/acscentsci.0c00501] [PMID: 32382657]
[113]
Zhang Y, Odiwuor N, Xiong J, et al. Rapid molecular detection of SARS- CoV-2 (COVID-19) virus RNA using colorimetric LAMP. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.26.20028373]
[114]
Joung J, Ladha A, Saito M, et al. Detection of SARS- CoV-2 with SHERLOCK one-pot testing. N Engl J Med 2020; 383(15): 1492-4.
[http://dx.doi.org/10.1056/NEJMc2026172] [PMID: 32937062]
[115]
Nguyen T, Duong Bang D, Wolff A. 2019 novel coronavirus disease (COVID-19): paving the road for rapid detection and point-of-care diagnostics. Micromachines (Basel) 2020; 11(3): 306.
[http://dx.doi.org/10.3390/mi11030306] [PMID: 32183357]
[116]
Yang T, Wang YC, Shen CF, Cheng CM. Point-of- care RNA-based diagnostic device for COVID-19. Diagnostics (Basel) 2020; 10(3): 165.
[http://dx.doi.org/10.3390/diagnostics10030165] [PMID: 32197339]
[117]
Broughton JP, Deng X, Yu G, et al. CRISPR- Cas12-based detection of SARS- CoV-2. Nat Biotechnol 2020; 38(7): 870-4.
[http://dx.doi.org/10.1038/s41587-020-0513-4] [PMID: 32300245]
[118]
Lu H, Stratton CW, Tang YW. An evolving approach to the laboratory assessment of COVID-19. J Med Virol 2020; 92(10): 1812-7.
[http://dx.doi.org/10.1002/jmv.25954] [PMID: 32347966]
[119]
Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS- CoV-2 in patients with COVID-19. Nat Med 2020; 26(6): 845-8.
[http://dx.doi.org/10.1038/s41591-020-0897-1] [PMID: 32350462]
[120]
Pan Y, Li X, Yang G, et al. Serological immunochromatographic approach in diagnosis with SARS- CoV-2 infected COVID-19 patients. J Infect 2020; 81(1): e28-32.
[http://dx.doi.org/10.1016/j.jinf.2020.03.051] [PMID: 32283141]
[121]
Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 2020; 295(1): 202-7.
[http://dx.doi.org/10.1148/radiol.2020200230] [PMID: 32017661]
[122]
Babb R, Baum A, Chen G, et al. Anti-SARS- CoV-2-spike glycoprotein antibodies and antigen-binding fragments. US 10787501, 2020.
[123]
Shaoheng Y, Jincheng R. Polypeptide for inhibiting novel coronavirus and application thereof. CN111349150A, 2020.
[124]
Daoqi H, Guang L, Peng T, Gangqiang W, Songhui Z, Yongwu Z. Test strip for joint detection of COVID-19 antigen and antibody and application thereof CN111537746A, 2020.
[125]
Francisco EB, Pise A, Rodrigues H. Methods of treating cytokine storm infections, including COVID-19, by inhibiting CCR5/CCL5 (RANTES) interaction, and compositions for practicing the same. US2021032355A, 2020.
[126]
Solyman A. Miniaturized device to sterilize surfaces from Covid-19 and other viruses and bacteria. US2021085814A1, 2021.
[127]
Qiang C, Guoqing J, Xiyao S, Zhong S, Qingwen Y. Application of taurolidine in preparation of anti-novel coronavirus SARS- CoV-2 medicine. CN111773227A, 2020.
[128]
Gordon DE, Jang GM, Bouhaddou M, et al. SARS- CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459-68.Huang C, Lokugamage KG, Rozovics JM, Narayanan K, Semler BL, Makino S. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog 2011; 7(12): e1002433.
[PMID: 22174690]
[129]
Cornillez-Ty CT, Liao L, Yates JR III, Kuhn P, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J Virol 2009; 83(19): 10314-8.
[http://dx.doi.org/10.1128/JVI.00842-09] [PMID: 19640993]
[130]
Graham RL, Sims AC, Baric RS, Denison MR. The nsp2 proteins of mouse hepatitis virus and SARS coronavirus are dispensable for viral replication. Adv Exp Med Biol 2006; 581: 67-72.
[http://dx.doi.org/10.1007/978-0-387-33012-9_10] [PMID: 17037506]
[131]
Clementz MA, Chen Z, Banach BS, et al. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J Virol 2010; 84(9): 4619-29.
[http://dx.doi.org/10.1128/JVI.02406-09] [PMID: 20181693]
[132]
Saikatendu KS, Joseph JS, Subramanian V, et al. Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1 ″-phosphate dephosphorylation by a conserved domain of nsP3. Structure 2005; 13(11): 1665-75.
[http://dx.doi.org/10.1016/j.str.2005.07.022] [PMID: 16271890]
[133]
Matthews K, SchAfer A, Pham A, Frieman M. The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity. Virol J 2014; 11(1): 209.
[http://dx.doi.org/10.1186/s12985-014-0209-9] [PMID: 25481026]
[134]
van Hemert MJ, van den Worm SH, Knoops K, Mommaas AM, Gorbalenya AE, Snijder EJ. SARS- coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog 2008; 4(5): e1000054.
[http://dx.doi.org/10.1371/journal.ppat.1000054] [PMID: 18451981]
[135]
Imbert I, Snijder EJ, Dimitrova M, Guillemot JC, LA(c)cine P, Canard B. The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Res 2008; 133(2): 136-48.
[http://dx.doi.org/10.1016/j.virusres.2007.11.017] [PMID: 18255185]
[136]
Cottam EM, Maier HJ, Manifava M, et al. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy 2011; 7(11): 1335-47.
[http://dx.doi.org/10.4161/auto.7.11.16642] [PMID: 21799305]
[137]
te Velthuis AJ, van den Worm SH, Snijder EJ. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res 2012; 40(4): 1737-47.
[http://dx.doi.org/10.1093/nar/gkr893] [PMID: 22039154]
[138]
Egloff MP, Ferron F, Campanacci V, et al. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci USA 2004; 101(11): 3792-6.
[http://dx.doi.org/10.1073/pnas.0307877101] [PMID: 15007178]
[139]
Bouvet M, Lugari A, Posthuma CC, et al. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J Biol Chem 2014; 289(37): 25783-96.
[http://dx.doi.org/10.1074/jbc.M114.577353] [PMID: 25074927]
[140]
Pan J, Peng X, Gao Y, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS One 2008; 3(10): e3299.
[http://dx.doi.org/10.1371/journal.pone.0003299] [PMID: 18827877]
[141]
Peng Q, Peng R, Yuan B, et al. Gao GF structural and biochemical characterization of nsp12-nsp7-nsp8 core polymerase complex from SARS- CoV-2. Cell Rep 2020; 31(11): 107774.
[http://dx.doi.org/10.1016/j.celrep.2020.107774] [PMID: 32531208]
[142]
Ma Y, Wu L, Shaw N, et al. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci USA 2015; 112(30): 9436-41.
[http://dx.doi.org/10.1073/pnas.1508686112] [PMID: 26159422]
[143]
Kim Y, Jedrzejczak R, Maltseva NI, et al. Crystal structure of Nsp15 endoribonuclease NendoU from SARS- CoV-2. Protein Sci 2020; 29(7): 1596-605.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[144]
Decroly E, Debarnot C, Ferron F, et al. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 2011; 7(5): e1002059.
[http://dx.doi.org/10.1371/journal.ppat.1002059] [PMID: 21637813]
[145]
Antinori S, Cossu MV, Ridolfo AL, et al. Compassionate remdesivir treatment of severe Covid-19 pneumonia in intensive care unit (ICU) and Non-ICU patients: Clinical outcome and differences in post-treatment hospitalisation status. Pharmacol Res 2020; 158: 104899.
[http://dx.doi.org/10.1016/j.phrs.2020.104899] [PMID: 32407959]
[146]
Li Y, Xie Z, Lin W, et al. Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: an exploratory randomized controlled trial. Med 2020; 1(1): 105-113.e4.
[http://dx.doi.org/10.1016/j.medj.2020.04.001] [PMID: 32838353]
[147]
Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing) 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[148]
Group TR. Dexamethasone in hospitalized patients with Covid-19-preliminary report. N Engl J Med 2020. [Ahead of print].
[http://dx.doi.org/10.1056/NEJMoa2021436]
[149]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[150]
Iqbal HM, Romero-Castillo KD, Bilal M, Parra-Saldivar R. The emergence of novel-coronavirus and its replication cycle-an overview. J Pure Appl Microbiol 2020; 14(1): 13-6.
[http://dx.doi.org/10.22207/JPAM.14.1.03]
[151]
Pal T, Jaiswal V, Chauhan RS. DRPPP: A machine learning based tool for prediction of disease resistance proteins in plants. Comput Biol Med 2016; 78: 42-8.
[http://dx.doi.org/10.1016/j.compbiomed.2016.09.008] [PMID: 27658260]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy