Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Exploring CNS Effects of American Traditional Medicines using Zebrafish Models

Author(s): Murilo S. de Abreu, Fabiano Costa, Ana C.V.V. Giacomini, Konstantin A. Demin, Elena V. Petersen, Denis B. Rosemberg and Allan V. Kalueff*

Volume 20, Issue 3, 2022

Published on: 07 February, 2022

Page: [550 - 559] Pages: 10

DOI: 10.2174/1570159X19666210712153329

Price: $65

conference banner
Abstract

Although American traditional medicine (ATM) has been practiced for millennia, its complex multi-target mechanisms of therapeutic action remain poorly understood. Animal models are widely used to elucidate the therapeutic effects of various ATMs, including their modulation of brain and behavior. Complementing rodent models, the zebrafish (Danio rerio) is a promising novel organism in translational neuroscience and neuropharmacology research. Here, we emphasize the growing value of zebrafish for testing neurotropic effects of ATMs and outline future directions of research in this field. We also demonstrate the developing utility of zebrafish as complementary models for probing CNS mechanisms of ATM action and their potential to treat brain disorders.

Keywords: Zebrafish, American traditional medicine, behavior, brain effects, drug screening, animal models.

Graphical Abstract
[1]
Dowson, T.A.; Lewis-Williams, J.D. Curr. Anthropol., 1988, 29, 201-245.
[http://dx.doi.org/10.1086/203629]
[2]
Aldhouse-Green, M.J.; Aldhouse-Green, S. The quest for the shaman: Shape-shifters, sorcerers and spirit-heales of Ancient Europe; Thames & Hudson, 2005.
[3]
VanPool, C. Ancient medicinal plants of South America. Proc. Natl. Acad. Sci. USA, 2019, 116(23), 11087-11089.
[http://dx.doi.org/10.1073/pnas.1906805116] [PMID: 31113878]
[4]
Bussmann, R.W. The globalization of traditional medicine in Northern Perú: From shamanism to molecules. Evid. Based Complement. Med., 2013, 2013291903
[5]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177-177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[6]
Smith, T.; Gillespie, M.; Eckl, V.; Knepper, J.; Reynolds, C.M. Herbal Supplement Sales in US Increase by 9.4% in 2018. Herbagram, 2019, 123, 62-63.
[7]
Roesler, J.; Emmendörffer, A.; Steinmüller, C.; Luettig, B.; Wagner, H.; Lohmann-Matthes, M.L. Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to test subjects mediates activation of the phagocyte system. Int. J. Immunopharmacol., 1991, 13(7), 931-941.
[http://dx.doi.org/10.1016/0192-0561(91)90046-A] [PMID: 1761359]
[8]
Sengupta, K.; Alluri, V.; Golakoti, T.; Gottumukkala, G.; Raavi, J.; Kotchrlakota, L.; C Sigalan, S.; Dey, D.; Ghosh, S.; Chatterjee, A. A randomized, double blind, controlled, dose dependent clinical trial to evaluate the efficacy of a proanthocyanidin standardized whole cranberry (Vaccinium macrocarpon) powder on infections of the urinary tract. Curr. Bioact. Compd., 2011, 7(1), 39-46.
[http://dx.doi.org/10.2174/157340711795163820]
[9]
Takahashi, S.; Hamasuna, R.; Yasuda, M.; Arakawa, S.; Tanaka, K.; Ishikawa, K.; Kiyota, H.; Hayami, H.; Yamamoto, S.; Kubo, T.; Matsumoto, T. A randomized clinical trial to evaluate the preventive effect of cranberry juice (UR65) for patients with recurrent urinary tract infection. J. Infect. Chemother., 2013, 19(1), 112-117.
[http://dx.doi.org/10.1007/s10156-012-0467-7] [PMID: 22961092]
[10]
Reid, G.; Denstedt, J.D.; Kang, Y.S.; Lam, D.; Nause, C. Microbial adhesion and biofilm formation on ureteral stents in vitro and in vivo. J. Urol., 1992, 148(5), 1592-1594.
[http://dx.doi.org/10.1016/S0022-5347(17)36976-8] [PMID: 1433574]
[11]
MacLean, H. Sacred colors and shamanic vision among the Huichol Indians of Mexico. J. Anthropol. Res., 2001, 57(3), 305-323.
[http://dx.doi.org/10.1086/jar.57.3.3631425]
[12]
Hofmann, A.; Schultes, R.E. Plants of the gods: Origins of hallucinogenic use; McGraw-Hill Book Company, 1979.
[13]
Furst, P.T.; Coe, M.D. Ritual enemas. Nat. Hist., 1977, 86(3), 88-91.
[14]
Halpern, J.H. Hallucinogens and dissociative agents naturally growing in the United States. Pharmacol. Ther., 2004, 102(2), 131-138.
[http://dx.doi.org/10.1016/j.pharmthera.2004.03.003] [PMID: 15163594]
[15]
Domínguez-Clavé, E.; Soler, J.; Elices, M.; Pascual, J.C.; Álvarez, E.; de la Fuente Revenga, M.; Friedlander, P.; Feilding, A.; Riba, J. Ayahuasca: Pharmacology, neuroscience and therapeutic potential. Brain Res. Bull., 2016, 126(Pt 1), 89-101.
[http://dx.doi.org/10.1016/j.brainresbull.2016.03.002] [PMID: 26976063]
[16]
Tupper, K.W. The globalization of ayahuasca: Harm reduction or benefit maximization? Int. J. Drug Policy, 2008, 19(4), 297-303.
[http://dx.doi.org/10.1016/j.drugpo.2006.11.001] [PMID: 18638702]
[17]
Bresnick, T.; Levin, R. Phenomenal qualities of ayahuasca ingestion and its relation to fringe consciousness and personality. J. Conscious. Stud., 2006, 13(9), 5-24.
[18]
Hamill, J.; Hallak, J.; Dursun, S.M.; Baker, G. Ayahuasca: Psychological and Physiologic Effects, Pharmacology and Potential Uses in Addiction and Mental Illness. Curr. Neuropharmacol., 2019, 17(2), 108-128.
[http://dx.doi.org/10.2174/1570159X16666180125095902] [PMID: 29366418]
[19]
Santos, O.J.; Malafaia, O.; Ribas-Filho, J.M.; Czeczko, N.G.; Santos, R.H.; Santos, R.A. Influence of Schinus terebinthifolius Raddi (aroeira) and Carapa guianensis Aublet (andiroba) in the healing process of gastrorraphies. Arq. Bras. Cir. Dig., 2013, 26(2), 84-91.
[http://dx.doi.org/10.1590/S0102-67202013000200003] [PMID: 24000017]
[20]
Santos, E.C.; Bicca, M.A.; Blum-Silva, C.H.; Costa, A.P.; Dos Santos, A.A.; Schenkel, E.P.; Farina, M.; Reginatto, F.H.; de Lima, T.C. Anxiolytic-like, stimulant and neuroprotective effects of Ilex paraguariensis extracts in mice. Neuroscience, 2015, 292, 13-21.
[http://dx.doi.org/10.1016/j.neuroscience.2015.02.004] [PMID: 25681522]
[21]
Hiruma-Lima, C.A.; Rodrigues, C.M.; Kushima, H.; Moraes, T.M. Lolis, Sde.F.; Feitosa, S.B.; Magri, L.P.; Soares, F.R.; Cola, M.M.; Andrade, F.D.; Vilegas, W.; Souza Brito, A.R. The anti-ulcerogenic effects of Curatella americana L. J. Ethnopharmacol., 2009, 121(3), 425-432.
[http://dx.doi.org/10.1016/j.jep.2008.10.017] [PMID: 19022369]
[22]
Shukla, D.; Maheshwari, R.A.; Patel, K.; Balaraman, R.; Sen, A.K. Effect of Vaccinium macrocarpon on MK-801-induced psychosis in mice. Indian J. Pharmacol., 2018, 50(5), 227-235.
[http://dx.doi.org/10.4103/ijp.IJP_74_17] [PMID: 30636825]
[23]
Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci., 2014, 35(2), 63-75.
[http://dx.doi.org/10.1016/j.tips.2013.12.002] [PMID: 24412421]
[24]
Stewart, A.M.; Braubach, O.; Spitsbergen, J.; Gerlai, R.; Kalueff, A.V. Zebrafish models for translational neuroscience research: From tank to bedside. Trends Neurosci., 2014, 37(5), 264-278.
[http://dx.doi.org/10.1016/j.tins.2014.02.011] [PMID: 24726051]
[25]
Ho, S.Y.; Pack, M.; Farber, S.A. Analysis of small molecule metabolism in zebrafish. Methods Enzymol., 2003, 364, 408-426.
[http://dx.doi.org/10.1016/S0076-6879(03)64023-1] [PMID: 14631858]
[26]
Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G.J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assunção, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliot, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Woodmansey, R.; Clark, G.; Cooper, J.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Ersan-Ürün, Z.; Eser, C.; Geiger, H.; Geisler, M.; Karotki, L.; Kirn, A.; Konantz, J.; Konantz, M.; Oberländer, M.; Rudolph-Geiger, S.; Teucke, M.; Lanz, C.; Raddatz, G.; Osoegawa, K.; Zhu, B.; Rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Schuster, S.C.; Carter, N.P.; Harrow, J.; Ning, Z.; Herrero, J.; Searle, S.M.; Enright, A.; Geisler, R.; Plasterk, R.H.; Lee, C.; Westerfield, M.; de Jong, P.J.; Zon, L.I.; Postlethwait, J.H.; Nüsslein-Volhard, C.; Hubbard, T.J.; Roest Crollius, H.; Rogers, J.; Stemple, D.L.; Rogers, J.; Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496(7446), 498-503.
[http://dx.doi.org/10.1038/nature12111] [PMID: 23594743]
[27]
Zhu, F.; Jin, A.; Hall, C.J.; Crosier, K.E.; Wlodkowic, D. A high-throughput Lab-on-a-Chip interface for zebrafish embryo tests in drug discovery and ecotoxicology. Proc. Int. Soc. Optical Eng., 2013, 2013, 8923.
[28]
Khan, K.M.; Collier, A.D.; Meshalkina, D.A.; Kysil, E.V.; Khatsko, S.L.; Kolesnikova, T.; Morzherin, Y.Y.; Warnick, J.E.; Kalueff, A.V.; Echevarria, D.J. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br. J. Pharmacol., 2017, 174(13), 1925-1944.
[http://dx.doi.org/10.1111/bph.13754] [PMID: 28217866]
[29]
Demin, K.A.; Kolesnikova, T.O.; Khatsko, S.L.; Meshalkina, D.A.; Efimova, E.V.; Morzherin, Y.Y.; Kalueff, A.V. Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes. Neurotoxicol. Teratol., 2017, 62, 27-33.
[http://dx.doi.org/10.1016/j.ntt.2017.04.002] [PMID: 28438663]
[30]
Wang, D.; Hu, G.; Wang, J.; Yan, D.; Wang, M.; Yang, L.; Serikuly, N.; Alpyshov, E.; Demin, K.A.; Galstyan, D.S.; Amstislavskaya, T.G.; de Abreu, M.S.; Kalueff, A.V. Studying CNS effects of Traditional Chinese Medicine using zebrafish models. J. Ethnopharmacol., 2021, 267113383
[http://dx.doi.org/10.1016/j.jep.2020.113383] [PMID: 32918992]
[31]
Jiménez-Garrido, D.F.; Gómez-Sousa, M.; Ona, G.; Dos Santos, R.G.; Hallak, J.E.C.; Alcázar-Córcoles, M.Á.; Bouso, J.C. Effects of ayahuasca on mental health and quality of life in naïve users: A longitudinal and cross-sectional study combination. Sci. Rep., 2020, 10(1), 4075.
[http://dx.doi.org/10.1038/s41598-020-61169-x] [PMID: 32139811]
[32]
Frecska, E.; Bokor, P.; Winkelman, M. The therapeutic potentials of ayahuasca: Possible effects against various diseases of civilization. Front. Pharmacol., 2016, 7, 35-35.
[http://dx.doi.org/10.3389/fphar.2016.00035] [PMID: 26973523]
[33]
Carbonaro, T.M.; Gatch, M.B. Neuropharmacology of N,N-dimethyltryptamine. Brain Res. Bull., 2016, 126(Pt 1), 74-88.
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.016] [PMID: 27126737]
[34]
Savoldi, R.; Polari, D.; Pinheiro-da-Silva, J.; Silva, P.F.; Lobao-Soares, B.; Yonamine, M.; Freire, F.A.M.; Luchiari, A.C. Behavioral changes over time following ayahuasca exposure in zebrafish. Front. Behav. Neurosci., 2017, 11, 139.
[http://dx.doi.org/10.3389/fnbeh.2017.00139] [PMID: 28804451]
[35]
Kysil, E.V.; Meshalkina, D.A.; Frick, E.E.; Echevarria, D.J.; Rosemberg, D.B.; Maximino, C.; Lima, M.G.; Abreu, M.S.; Giacomini, A.C.; Barcellos, L.J.G.; Song, C.; Kalueff, A.V. Comparative analyses of zebrafish anxiety-like behavior using conflict-based novelty tests. Zebrafish, 2017, 14(3), 197-208.
[http://dx.doi.org/10.1089/zeb.2016.1415] [PMID: 28459655]
[36]
Lobao-Soares, B.; Eduardo-da-Silva, P.; Amarilha, H.; Pinheiro-da-Silva, J.; Silva, P.F.; Luchiari, A.C. It’s tea time: Interference of ayahuasca brew on discriminative learning in zebrafish. Front. Behav. Neurosci., 2018, 12, 190.
[http://dx.doi.org/10.3389/fnbeh.2018.00190] [PMID: 30210319]
[37]
Andrade, T.S.; de Oliveira, R.; da Silva, M.L.; Von Zuben, M.V.; Grisolia, C.K.; Domingues, I.; Caldas, E.D.; Pic-Taylor, A. Exposure to ayahuasca induces developmental and behavioral alterations on early life stages of zebrafish. Chem. Biol. Interact., 2018, 293, 133-140.
[http://dx.doi.org/10.1016/j.cbi.2018.08.001] [PMID: 30086270]
[38]
Andrighetti-Fröhner, C.R.; Sincero, T.C.M.; da Silva, A.C.; Savi, L.A.; Gaido, C.M.; Bettega, J.M.R.; Mancini, M.; de Almeida, M.T.R.; Barbosa, R.A.; Farias, M.R.; Barardi, C.R.M.; Simões, C.M.O. Antiviral evaluation of plants from Brazilian Atlantic Tropical Forest. Fitoterapia, 2005, 76(3-4), 374-378.
[http://dx.doi.org/10.1016/j.fitote.2005.03.010] [PMID: 15890472]
[39]
Viana, G.S.B.; do Vale, T.G.; Rao, V.S.N.; Matos, F.J.A. Analgesic and antiinflammatory effects of two chemotypes of Lippia alba: A comparative study. Pharm. Biol., 1998, 36(5), 347-351.
[http://dx.doi.org/10.1076/phbi.36.5.347.4646]
[40]
Pascual, M.E.; Slowing, K.; Carretero, E.; Sánchez Mata, D.; Villar, A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnopharmacol., 2001, 76(3), 201-214.
[http://dx.doi.org/10.1016/S0378-8741(01)00234-3] [PMID: 11448540]
[41]
Rojas, J.; Palacios, O.; Ronceros, S. The effect of the essential oil from Aloysia triphylla britton (lemon verbena) on Trypanosoma cruzi in mice. Rev. Peru. Med. Exp. Salud Publica, 2012, 29(1), 61-68.
[http://dx.doi.org/10.1590/S1726-46342012000100009] [PMID: 22510908]
[42]
De Figueiredo, R.O. Essential oil composition of Aloysia triphylla (L'Herit) Britton leaves cultivated in Botucatu, São Paulo, Brazil; 2002, 131-134.
[43]
Silva, H.N.P.d.; Carvalho, B.C.F.d.; Maia, J.L.S.; Becker, A.G.; Baldisserotto, B.; Heinzmann, B.M.; Mourão, R.H.V.; Silva, L.V.F.d. Anesthetic potential of the essential oils of Lippia alba and Lippia origanoides in Tambaqui juveniles. Cienc. Rural, 2019, 49(6)
[http://dx.doi.org/10.1590/0103-8478cr20181059]
[44]
Almeida, A.P.G.; Correia, T.G.; Heinzmann, B.M.; Val, A.L.; Baldisserotto, B. Stress-reducing and anesthetic effects of the essential oils of Aloysia triphylla and Lippia alba on Serrasalmus eigenmanni (Characiformes: Serrasalmidae). Neotrop. Ichthyol., 2019, 17(2)
[http://dx.doi.org/10.1590/1982-0224-20190021]]
[45]
Bandeira, G. Junior; de Abreu, M.S.; dos Santos da Rosa, J.G.; Pinheiro, C.G.; Heinzmann, B.M.; Caron, B.O.; Baldisserotto, B.; Gil Barcellos, L.J. Lippia alba and Aloysia triphylla essential oils are anxiolytic without inducing aversiveness in fish. Aquaculture, 2018, 482, 49-56.
[http://dx.doi.org/10.1016/j.aquaculture.2017.09.023]
[46]
Zago, D.C.; Santos, A.C.; Lanes, C.F.C.; Almeida, D.V.; Koakoski, G.; de Abreu, M.S.; Zeppenfeld, C.C.; Heinzmann, B.M.; Marins, L.F.; Baldisserotto, B.; Barcellos, L.J.G.; Cunha, M.A. Aloysia triphylla in the zebrafish food: Effects on physiology, behavior, and growth performance. Fish Physiol. Biochem., 2018, 44(2), 465-474.
[http://dx.doi.org/10.1007/s10695-017-0446-0] [PMID: 29423894]
[47]
Mora, S.; Díaz-Véliz, G.; Millán, R.; Lungenstrass, H.; Quirós, S.; Coto-Morales, T.; Hellión-Ibarrola, M.C. Anxiolytic and antidepressant-like effects of the hydroalcoholic extract from Aloysia polystachya in rats. Pharmacol. Biochem. Behav., 2005, 82(2), 373-378.
[http://dx.doi.org/10.1016/j.pbb.2005.09.007] [PMID: 16278011]
[48]
Hellión-Ibarrola, M.C.; Ibarrola, D.A.; Montalbetti, Y.; Kennedy, M.L.; Heinichen, O.; Campuzano, M.; Ferro, E.A.; Alvarenga, N.; Tortoriello, J.; De Lima, T.C.; Mora, S. The antidepressant-like effects of Aloysia polystachya (Griseb.) Moldenke (Verbenaceae) in mice. Phytomedicine, 2008, 15(6-7), 478-483.
[http://dx.doi.org/10.1016/j.phymed.2007.11.018] [PMID: 18222666]
[49]
Hellión-Ibarrola, M.C.; Ibarrola, D.A.; Montalbetti, Y.; Kennedy, M.L.; Heinichen, O.; Campuzano, M.; Tortoriello, J.; Fernández, S.; Wasowski, C.; Marder, M.; De Lima, T.C.; Mora, S. The anxiolytic-like effects of Aloysia polystachya (Griseb.) Moldenke (Verbenaceae) in mice. J. Ethnopharmacol., 2006, 105(3), 400-408.
[http://dx.doi.org/10.1016/j.jep.2005.11.013] [PMID: 16386395]
[50]
Costa de Melo, N.; Sánchez-Ortiz, B.L.; Dos Santos Sampaio, T.I.; Matias Pereira, A.C.; Pinheiro da Silva Neto, F.L.; Ribeiro da Silva, H.; Alves Soares Cruz, R.; Keita, H.; Soares Pereira, A.M.; Tavares Carvalho, J.C. Anxiolytic and antidepressant effects of the hydroethanolic extract from the leaves of Aloysia polystachya (Griseb.) Moldenke: A study on zebrafish (Danio rerio). Pharmaceuticals (Basel), 2019, 12(3), 106.
[http://dx.doi.org/10.3390/ph12030106] [PMID: 31373315]
[51]
Dos Santos Sampaio, T.I.; de Melo, N.C.; de Freitas Paiva, B.T.; da Silva Aleluia, G.A.; da Silva Neto, F.L.P.; da Silva, H.R.; Keita, H.; Cruz, R.A.S.; Sánchez-Ortiz, B.L.; Pineda-Peña, E.A.; Balderas, J.L.; Navarrete, A.; Carvalho, J.C.T. Leaves of Spondias mombin L. a traditional anxiolytic and antidepressant: Pharmacological evaluation on zebrafish (Danio rerio). J. Ethnopharmacol., 2018, 224, 563-578.
[http://dx.doi.org/10.1016/j.jep.2018.05.037] [PMID: 29852265]
[52]
Ayoka, A.O.; Akomolafe, R.O.; Iwalewa, E.O.; Ukponmwan, O.E. Studies on the anxiolytic effect of Spondias mombin L.(Anacardiaceae) extracts. Afr. J. Tradit. Complement. Altern. Med., 2005, 2(2), 153-165.
[http://dx.doi.org/10.4314/ajtcam.v2i2.31113]
[53]
Roth, B.L.; Baner, K.; Westkaemper, R.; Siebert, D.; Rice, K.C.; Steinberg, S.; Ernsberger, P.; Rothman, R.B.; Salvinorin, A.; Salvinorin, A. A: potent naturally occurring nonnitrogenous κ opioid selective agonist. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11934-11939.
[http://dx.doi.org/10.1073/pnas.182234399] [PMID: 12192085]
[54]
Maqueda, A.E.; Valle, M.; Addy, P.H.; Antonijoan, R.M.; Puntes, M.; Coimbra, J.; Ballester, M.R.; Garrido, M.; González, M.; Claramunt, J.; Barker, S.; Johnson, M.W.; Griffiths, R.R.; Riba, J. Salvinorin-A induces intense dissociative effects, blocking external sensory perception and modulating interoception and sense of body ownership in humans. Int. J. Neuropsychopharmacol., 2015, 18(12)pyv065
[http://dx.doi.org/10.1093/ijnp/pyv065] [PMID: 26047623]
[55]
Braida, D.; Capurro, V.; Zani, A.; Rubino, T.; Viganò, D.; Parolaro, D.; Sala, M. Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Br. J. Pharmacol., 2009, 157(5), 844-853.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00230.x] [PMID: 19422370]
[56]
Braida, D.; Limonta, V.; Pegorini, S.; Zani, A.; Guerini-Rocco, C.; Gori, E.; Sala, M. Hallucinatory and rewarding effect of salvinorin A in zebrafish: κ-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology (Berl.), 2007, 190(4), 441-448.
[http://dx.doi.org/10.1007/s00213-006-0639-1] [PMID: 17219220]
[57]
Tomentosa, U. DC: Cat’s claw, una de gato, or saventaro. KH Reinard. J. Altern. Complement. Med., 1999, 5(2), 143-151.
[PMID: 10328636]
[58]
Williams, J.E. Review of antiviral and immunomodulating properties of plants of the Peruvian rainforest with a particular emphasis on Una de Gato and Sangre de Grado. Altern. Med. Rev., 2001, 6(6), 567-579.
[PMID: 11804547]
[59]
Santo, G.D.; Grotto, A.; Boligon, A.A.; Da Costa, B.; Rambo, C.L.; Fantini, E.A.; Sauer, E.; Lazzarotto, L.M.V.; Bertoncello, K.T.; Júnior, O.T.; Garcia, S.C.; Siebel, A.M.; Rosemberg, D.B.; Magro, J.D.; Conterato, G.M.M.; Zanatta, L. Protective effect of Uncaria tomentosa extract against oxidative stress and genotoxicity induced by glyphosate-Roundup® using zebrafish (Danio rerio) as a model. Environ. Sci. Pollut. Res. Int., 2018, 25(12), 11703-11715.
[http://dx.doi.org/10.1007/s11356-018-1350-6] [PMID: 29442306]
[60]
Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem., 2007, 55(19), 7879-7885.
[http://dx.doi.org/10.1021/jf0715323] [PMID: 17708648]
[61]
González-Trujano, M.E.; Peña, E.I.; Martínez, A.L.; Moreno, J.; Guevara-Fefer, P.; Déciga-Campos, M.; López-Muñoz, F.J. Evaluation of the antinociceptive effect of Rosmarinus officinalis L. using three different experimental models in rodents. J. Ethnopharmacol., 2007, 111(3), 476-482.
[http://dx.doi.org/10.1016/j.jep.2006.12.011] [PMID: 17223299]
[62]
Takaki, I.; Bersani-Amado, L.E.; Vendruscolo, A.; Sartoretto, S.M.; Diniz, S.P.; Bersani-Amado, C.A.; Cuman, R.K.N. Anti-inflammatory and antinociceptive effects of Rosmarinus officinalis L. essential oil in experimental animal models. J. Med. Food, 2008, 11(4), 741-746.
[http://dx.doi.org/10.1089/jmf.2007.0524] [PMID: 19053868]
[63]
Nogueira de Melo, G.A.; Grespan, R.; Fonseca, J.P.; Farinha, T.O.; Silva, E.L.; Romero, A.L.; Bersani-Amado, C.A.; Cuman, R.K. Rosmarinus officinalis L. essential oil inhibits in vivo and in vitro leukocyte migration. J. Med. Food, 2011, 14(9), 944-946.
[http://dx.doi.org/10.1089/jmf.2010.0159] [PMID: 21663474]
[64]
Borges, R.S.; Keita, H.; Ortiz, B.L.S.; Dos Santos Sampaio, T.I.; Ferreira, I.M.; Lima, E.S.; de Jesus Amazonas da Silva, M.; Fernandes, C.P.; de Faria Mota Oliveira, A.E.M.; da Conceição, E.C.; Rodrigues, A.B.L.; Filho, A.C.M.P.; Castro, A.N.; Carvalho, J.C.T. Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology, 2018, 26(4), 1057-1080.
[http://dx.doi.org/10.1007/s10787-017-0438-9] [PMID: 29404883]
[65]
Fedel-Miyasato, L.E.S.; Formagio, A.S.N.; Auharek, S.A.; Kassuya, C.A.L.; Navarro, S.D.; Cunha-Laura, A.L.; Monreal, A.C.D.; Vieira, M.C.; Oliveira, R.J. Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: A comparative study. Genet. Mol. Res., 2014, 13(2), 3411-3425.
[http://dx.doi.org/10.4238/2014.April.30.2] [PMID: 24841786]
[66]
de Melo Júnior, E.J.M.; Raposo, M.J.; Lisboa Neto, J.A.; Diniz, M.F.A.; Marcelino Júnior, C.A.C.; Sant’Ana, A.E.G. Medicinal plants in the healing of dry socket in rats: Microbiological and microscopic analysis. Phytomedicine, 2002, 9(2), 109-116.
[http://dx.doi.org/10.1078/0944-7113-00087] [PMID: 11995943]
[67]
Cavalher-Machado, S.C.; Rosas, E.C. Brito, Fde.A.; Heringe, A.P.; de Oliveira, R.R.; Kaplan, M.A.C.; Figueiredo, M.R.; Henriques, Md. The anti-allergic activity of the acetate fraction of Schinus terebinthifolius leaves in IgE induced mice paw edema and pleurisy. Int. Immunopharmacol., 2008, 8(11), 1552-1560.
[http://dx.doi.org/10.1016/j.intimp.2008.06.012] [PMID: 18672096]
[68]
Siddiqui, R.R.; Ahmad, H.; Shakoor, C.; Ehteshamuddin, A.F.M.; Shireen, S. Antimicrobial activity of essential oils. Part II. Pak. J. Sci. Ind. Res., 1996, 39(1/4), 43-47.
[69]
Scheid, T.; Moraes, M. S.; Henriques, T. P.; Riffel, A. P. K.; Belló-Klein, A.; Poser, G. L. V.; Ethur, E. M.; Partata, W. A. Effects of Methanol Fraction from Leaves of Schinus terebinthifolius Raddi on Nociception and Spinal-Cord Oxidative Biomarkers in Rats with Neuropathic Pain.Evidence-based Compl. Alternat. Med: eCAM, 2018, 5783412.
[70]
Lima, M.D.C.L.; de Araújo, J.I.F.; Gonçalves Mota, C.; Magalhães, F.E.A.; Campos, A.R.; da Silva, P.T.; Rodrigues, T.H.S.; Matos, M.G.C.; de Sousa, K.C.; de Sousa, M.B.; Saker-Sampaio, S.; Pereira, A.L.; Teixeira, E.H.; Dos Santos, H.S. Antinociceptive Effect of the Essential Oil of Schinus terebinthifolius (female) Leaves on Adult Zebrafish (Danio rerio). Zebrafish, 2020, 17(2), 112-119.
[http://dx.doi.org/10.1089/zeb.2019.1809] [PMID: 32105571]
[71]
Alalor, C.A.; Igwilo, C.I.; Jeroh, E. Evaluation of the antibacterial properties of aqueous and methanol extracts of Cassia alata. J. Pharm. Allied Health Sci., 2012, 2(2), 40.
[http://dx.doi.org/10.3923/jpahs.2012.40.46]
[72]
Fatmawati, S. Yuliana; Purnomo, A.S.; Abu Bakar, M.F. Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon, 2020, 6(7)e04396
[http://dx.doi.org/10.1016/j.heliyon.2020.e04396] [PMID: 32685725]
[73]
Lelina, F.M.U.; Fuentes, R.G. Cassia alata leaf methanolic extracts decreased melanin pigmentation in Zebrafish. Phil. J. Nat. Sci., 2018, 23, 41-47.
[74]
Batista, F.L.A.; Lima, L.M.G.; Abrante, I.A.; de Araújo, J.I.F.; Batista, F.L.A.; Abrante, I.A.; Magalhães, E.A.; de Lima, D.R.; Lima, M.D.C.L.; do Prado, B.S.; Moura, L.F.W.G.; Guedes, M.I.F.; Ferreira, M.K.A.; de Menezes, J.E.S.A.; Santos, S.A.A.R.; Mendes, F.R.S.; Moreira, R.A.; Monteiro-Moreira, A.C.O.; Campos, A.R.; Magalhães, F.E.A. Antinociceptive activity of ethanolic extract of Azadirachta indica A. Juss (Neem, Meliaceae) fruit through opioid, glutamatergic and acid-sensitive ion pathways in adult zebrafish (Danio rerio). Biomed. Pharmacother., 2018, 108, 408-416.
[http://dx.doi.org/10.1016/j.biopha.2018.08.160] [PMID: 30236850]
[75]
Subapriya, R.; Nagini, S. Medicinal properties of neem leaves: A review. Curr. Med. Chem. Anticancer Agents, 2005, 5(2), 149-6.
[http://dx.doi.org/10.2174/1568011053174828] [PMID: 15777222]
[76]
Patel, S.M.; Nagulapalli Venkata, K.C.; Bhattacharyya, P.; Sethi, G.; Bishayee, A. Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Semin. Cancer Biol., 2016, 40-41, 100-115.
[http://dx.doi.org/10.1016/j.semcancer.2016.03.002] [PMID: 27019417]
[77]
Al Akeel, R.; Mateen, A.; Janardhan, K.; Gupta, V.C. Analysis of anti-bacterial and anti oxidative activity of Azadirachta indica bark using various solvents extracts. Saudi J. Biol. Sci., 2017, 24(1), 11-14.
[http://dx.doi.org/10.1016/j.sjbs.2015.08.006] [PMID: 28053565]
[78]
Verri, W.A.; Vicentini, F.D.; Baracat, M.; Georgetti, S.R.; Cardoso, R.D.R.; Cunha, T.; Ferreira, S.; Cunha, F.Q.; Fonseca, M.J.V.; Casagrande, R. Flavonoids as Anti-Inflammatory and Analgesic Drugs: Mechanisms of Action and Perspectives in the Development of Pharmaceutical Forms. S Studies Nat. Prod. Chem., 2012, 36, 297-330.
[79]
Fidelis, Q.C.; Ribeiro, T.A.N.; Araújo, M.F.; Carvalho, M.G. Ouratea genus: Chemical and pharmacological aspects. Rev. Bras. Farmacogn., 2014, 24(1), 1-19.
[http://dx.doi.org/10.1590/0102-695X20142413361]
[80]
do Nascimento, J.E.T.; de Morais, S.M.; de Lisboa, D.S.; de Oliveira Sousa, M.; Santos, S.A.A.R.; Magalhães, F.E.A.; Campos, A.R. The orofacial antinociceptive effect of Kaempferol-3-O-rutinoside, isolated from the plant Ouratea fieldingiana, on adult zebrafish (Danio rerio). Biomed. Pharmacother., 2018, 107, 1030-1036.
[http://dx.doi.org/10.1016/j.biopha.2018.08.089] [PMID: 30257314]
[81]
Xiao, X.; Wang, X.; Gui, X.; Chen, L.; Huang, B. Natural flavonoids as promising analgesic candidates: a systematic review. Chem. Biodivers., 2016, 13(11), 1427-1440.
[http://dx.doi.org/10.1002/cbdv.201600060] [PMID: 27449823]
[82]
Mathias, J.R.; Saxena, M.T.; Mumm, J.S. Advances in zebrafish chemical screening technologies. Future Med. Chem., 2012, 4(14), 1811-1822.
[http://dx.doi.org/10.4155/fmc.12.115] [PMID: 23043478]
[83]
Taylor, K.L.; Grant, N.J.; Temperley, N.D.; Patton, E.E. Small molecule screening in zebrafish: An in vivo approach to identifying new chemical tools and drug leads. Cell Commun. Signal., 2010, 8, 11-11.
[http://dx.doi.org/10.1186/1478-811X-8-11] [PMID: 20540792]
[84]
Crawford, A.D.; Esguerra, C.V.; de Witte, P.A.M. Fishing for drugs from nature: Zebrafish as a technology platform for natural product discovery. Planta Med., 2008, 74(6), 624-632.
[http://dx.doi.org/10.1055/s-2008-1034374] [PMID: 18584811]
[85]
de Abreu, M.S.; Kalueff, A.V. Of mice and zebrafish: The impact of the experimenter identity on animal behavior. Lab Anim. (NY), 2021, 50(7), 1-2.
[PMID: 33299171]
[86]
Demin, K.A.; Lakstygal, A.M.; de Abreu, M.S.; Kalueff, A.V. Behavioral Studies in Zebrafish. Reference Module in Neuroscience and Biobehavioral Psychology; Elsevier, 2020.
[http://dx.doi.org/10.1016/B978-0-12-809324-5.23966-7]
[87]
Demin, K.A.; Taranov, A.S.; Ilyin, N.P.; Lakstygal, A.M.; Volgin, A.D.; de Abreu, M.S.; Strekalova, T.; Kalueff, A.V. Understanding neurobehavioral effects of acute and chronic stress in zebrafish. Stress, 2021, 24(1), 1-18.
[http://dx.doi.org/10.1080/10253890.2020.1724948] [PMID: 32036720]
[88]
de Abreu, M.S.; Giacomini, A.C.V.V.; Genario, R.; Dos Santos, B.E.; da Rosa, L.G.; Demin, K.A.; Wappler-Guzzetta, E.A.; Kalueff, A.V. Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: The zebrafish model. Pharmacol. Res., 2019, 141, 602-608.
[http://dx.doi.org/10.1016/j.phrs.2019.01.044] [PMID: 30708051]
[89]
Zabegalov, K.N.; Kolesnikova, T.O.; Khatsko, S.L.; Volgin, A.D.; Yakovlev, O.A.; Amstislavskaya, T.G.; Friend, A.J.; Bao, W.; Alekseeva, P.A.; Lakstygal, A.M.; Meshalkina, D.A.; Demin, K.A.; de Abreu, M.S.; Rosemberg, D.B.; Kalueff, A.V. Understanding zebrafish aggressive behavior. Behav. Processes, 2019, 158, 200-210.
[http://dx.doi.org/10.1016/j.beproc.2018.11.010] [PMID: 30468887]
[90]
Meshalkina, D.A.; Kizlyk, M.N.; Kysil, E.V.; Collier, A.D.; Echevarria, D.J.; Abreu, M.S.; Barcellos, L.J.G.; Song, C.; Kalueff, A.V. Understanding zebrafish cognition. Behav. Processes, 2017, 141(Pt 2), 229-241.
[http://dx.doi.org/10.1016/j.beproc.2016.11.020] [PMID: 27919782]
[91]
Costa, F.V.; Rosa, L.V.; Quadros, V.A.; Santos, A.R.S.; Kalueff, A.V.; Rosemberg, D.B. Understanding nociception-related phenotypes in adult zebrafish: Behavioral and pharmacological characterization using a new acetic acid model. Behav. Brain Res., 2019, 359, 570-578.
[http://dx.doi.org/10.1016/j.bbr.2018.10.009] [PMID: 30296529]
[92]
Meshalkina, D.A.; N; Kizlyk, M.; V; Kysil, E.; Collier, A.D.; Echevarria, D.J.; Abreu, M.S.; Barcellos, L.J.G.; Song, C.; Warnick, J.E.; Kyzar, E.J.; Kalueff, A.V. Zebrafish models of autism spectrum disorder. Exp. Neurol., 2018, 299(Pt A), 207-216.
[http://dx.doi.org/10.1016/j.expneurol.2017.02.004] [PMID: 28163161]
[93]
Demin, K.A.; Meshalkina, D.A.; Volgin, A.D.; Yakovlev, O.V.; de Abreu, M.S.; Alekseeva, P.A.; Friend, A.J.; Lakstygal, A.M.; Zabegalov, K.; Amstislavskaya, T.G.; Strekalova, T.; Bao, W.; Kalueff, A.V. Developing zebrafish experimental animal models relevant to schizophrenia. Neurosci. Biobehav. Rev., 2019, 105, 126-133.
[http://dx.doi.org/10.1016/j.neubiorev.2019.07.017] [PMID: 31369798]
[94]
Gawel, K.; Banono, N.S.; Michalak, A.; Esguerra, C.V. A critical review of zebrafish schizophrenia models: Time for validation? Neurosci. Biobehav. Rev., 2019, 107, 6-22.
[http://dx.doi.org/10.1016/j.neubiorev.2019.08.001] [PMID: 31381931]
[95]
Gawel, K.; Langlois, M.; Martins, T.; van der Ent, W.; Tiraboschi, E.; Jacmin, M.; Crawford, A.D.; Esguerra, C.V. Seizing the moment: Zebrafish epilepsy models. Neurosci. Biobehav. Rev., 2020, 116, 1-20.
[http://dx.doi.org/10.1016/j.neubiorev.2020.06.010] [PMID: 32544542]
[96]
de Abreu, M.S.; Giacomini, C.V.V.; Genario, R.; Fontana, B.D.; Parker, M.O.; Marcon, L.; Scolari, N.; Bueno, B.; Demin, K.A.; Galstyan, D.; Kolesnikova, T.O.; Amstislavskaya, T.G.; Zabegalov, K.N.; Strekalova, T.; Kalueff, A.V. Zebrafish models of impulsivity and impulse control disorders. Eur. J. Neurosci., 2020, 52(10), 4233-4248.
[97]
de Abreu, M.S.; Genario, R.; Giacomini, A.C.V.V.; Demin, K.A.; Lakstygal, A.M.; Amstislavskaya, T.G.; Fontana, B.D.; Parker, M.O.; Kalueff, A.V. Zebrafish as a model of neurodevelopmental disorders. Neuroscience, 2020, 445, 3-11.
[PMID: 31472215]
[98]
Fontana, B.D.; Franscescon, F.; Rosemberg, D.B.; Norton, W.H.J.; Kalueff, A.V.; Parker, M.O. Zebrafish models for attention deficit hyperactivity disorder (ADHD). Neurosci. Biobehav. Rev., 2019, 100, 9-18.
[http://dx.doi.org/10.1016/j.neubiorev.2019.02.009] [PMID: 30779935]
[99]
Fisher, M.; Tatlisumak, T. Use of animal models has not contributed to development of acute stroke therapies. Con. Stroke, 2005, 36(10), 2324-2325.
[http://dx.doi.org/10.1161/01.STR.0000179039.76922.e8] [PMID: 16141429]
[100]
Pound, P.; Ebrahim, S.; Sandercock, P.; Bracken, M.B.; Roberts, I. Where is the evidence that animal research benefits humans? BMJ, 2004, 328(7438), 514-517.
[http://dx.doi.org/10.1136/bmj.328.7438.514] [PMID: 14988196]
[101]
Olson, H.; Betton, G.; Robinson, D.; Thomas, K.; Monro, A.; Kolaja, G.; Lilly, P.; Sanders, J.; Sipes, G.; Bracken, W.; Dorato, M.; Van Deun, K.; Smith, P.; Berger, B.; Heller, A. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol., 2000, 32(1), 56-67.
[http://dx.doi.org/10.1006/rtph.2000.1399] [PMID: 11029269]
[102]
Greaves, P.; Williams, A.; Eve, M. First dose of potential new medicines to humans: How animals help. Nat. Rev. Drug Discov., 2004, 3(3), 226-236.
[http://dx.doi.org/10.1038/nrd1329] [PMID: 15031736]
[103]
Wojcikowski, K.; Gobe, G. Animal studies on medicinal herbs: Predictability, dose conversion and potential value. Phytother. Res., 2014, 28(1), 22-27.
[http://dx.doi.org/10.1002/ptr.4966] [PMID: 23553964]
[104]
Serikuly, N.; Alpyshov, E.T.; Wang, D.; Wang, J.; Yang, L.; Hu, G.; Yan, D.; Demin, K.A.; Kolesnikova, T.O.; Galstyan, D.; Amstislavskaya, T.G.; Babashev, A.M.; Mor, M.S.; Efimova, E.V.; Gainetdinov, R.R.; Strekalova, T.; de Abreu, M.S.; Song, C.; Kalueff, A.V. Effects of acute and chronic arecoline in adult zebrafish: Anxiolytic-like activity, elevated brain monoamines and the potential role of microglia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104109977
[http://dx.doi.org/10.1016/j.pnpbp.2020.109977] [PMID: 32454162]
[105]
Audira, G.; Siregar, P.; Strungaru, S-A.; Huang, J-C.; Hsiao, C-D. Which zebrafish strains are more suitable to perform behavioral studies? A comprehensive comparison by phenomic approach. Biology (Basel), 2020, 9(8), 200.
[http://dx.doi.org/10.3390/biology9080200] [PMID: 32752218]
[106]
Tuttle, A.H.; Philip, V.M.; Chesler, E.J.; Mogil, J.S. Comparing phenotypic variation between inbred and outbred mice. Nat. Methods, 2018, 15(12), 994-996.
[http://dx.doi.org/10.1038/s41592-018-0224-7] [PMID: 30504873]
[107]
Tiller, J.W.G. Depression and anxiety. Med. J. Aust., 2013, 199(S6), S28-S31.
[http://dx.doi.org/10.5694/mja12.10628] [PMID: 25370281]
[108]
Al-Harbi, K.S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Prefer. Adherence, 2012, 6, 369-388.
[http://dx.doi.org/10.2147/PPA.S29716] [PMID: 22654508]
[109]
Muscatello, M.R.A.; Zoccali, R.A.; Bruno, A. Is there a time when prescribing pharmacotherapy in psychiatry is futile? Expert Opin. Pharmacother., 2020, 21(7), 733-735.
[http://dx.doi.org/10.1080/14656566.2020.1729739] [PMID: 32089018]
[110]
Desai, A.K.; Grossberg, G.T. Herbals and botanicals in geriatric psychiatry. Am. J. Geriatr. Psychiatry, 2003, 11(5), 498-506.
[http://dx.doi.org/10.1097/00019442-200309000-00004] [PMID: 14506083]
[111]
Fugh-Berman, A.; Cott, J.M. Dietary supplements and natural products as psychotherapeutic agents. Psychosom. Med., 1999, 61(5), 712-728.
[http://dx.doi.org/10.1097/00006842-199909000-00012] [PMID: 10511018]
[112]
Perry, N.S.L.; Bollen, C.; Perry, E.K.; Ballard, C. Salvia for dementia therapy: Review of pharmacological activity and pilot tolerability clinical trial. Pharmacol. Biochem. Behav., 2003, 75(3), 651-659.
[http://dx.doi.org/10.1016/S0091-3057(03)00108-4] [PMID: 12895683]
[113]
Lima, L.M.; Ferreira, S.M.; Avila, A.A.L.; Perazzo, F.F.; Schneedorf, J.M.; Hinsberger, A.; Carvalho, J.C.T. Ayahuasca central nervous system effects: Behavioral study. Phytotherapie, 2007, 5(5), 254.
[http://dx.doi.org/10.1007/s10298-007-0266-y]
[114]
Hatano, V.Y.; Torricelli, A.S.; Giassi, A.C.; Coslope, L.A.; Viana, M.B. Anxiolytic effects of repeated treatment with an essential oil from Lippia alba and (R)-(-)-carvone in the elevated T-maze. Braz. J. Med. Biol. Res., 2012, 45(3), 238-243.
[http://dx.doi.org/10.1590/S0100-879X2012007500021] [PMID: 22358424]
[115]
Jiménez-Ferrer, E.; Santillán-Urquiza, M.A.; Alegría-Herrera, E.; Zamilpa, A.; Noguerón-Merino, C.; Tortoriello, J.; Navarro-García, V.; Avilés-Flores, M.; Fuentes-Mata, M.; Herrera-Ruiz, M. Anxiolytic effect of fatty acids and terpenes fraction from Aloysia triphylla: Serotoninergic, GABAergic and glutamatergic implications. Biomed. Pharmacother., 2017, 96, 320-327.
[http://dx.doi.org/10.1016/j.biopha.2017.10.024] [PMID: 29017144]
[116]
Rahman, M.A.; Akter, N.; Rashid, H.; Ahmed, N.U.; Uddin, N.; Islam, M.S. Analgesic and anti-inflammatory effect of whole Ageratum conyzoides and Emilia sonchifolia alcoholic extracts in animal models. Afr. J. Pharm. Pharmacol., 2012, 6(20), 1469-1476.
[117]
Klein-Júnior, L.C.; Zambiasi, D.; Salgado, G.R.; Delle Monache, F.; Filho, V.C.; de Campos Buzzi, F. The validation of Calophyllum brasiliense (“guanandi”) uses in Brazilian traditional medicine as analgesic by in vivo antinociceptive evaluation and its chemical analysis. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(7), 733-739.
[http://dx.doi.org/10.1007/s00210-017-1366-3] [PMID: 28391533]
[118]
Santana, D.G.; Oliveira, A.S.; Souza, M.T.S.; Santos, J.T.D.C.; Hassimotto, N.M.A.; Silva, A.M.O.E.; Grespan, R.; Camargo, E.A. Vaccinium macrocarpon aiton extract ameliorates inflammation and hyperalgesia through oxidative stress inhibition in experimental acute pancreatitis. Evid. Based Complement. Alternat. Med., 2018, 20189646937
[http://dx.doi.org/10.1155/2018/9646937] [PMID: 29861777]
[119]
Kyzar, E.J.; Nichols, C.D.; Gainetdinov, R.R.; Nichols, D.E.; Kalueff, A.V. Psychedelic Drugs in Biomedicine. Trends Pharmacol. Sci., 2017, 38(11), 992-1005.
[http://dx.doi.org/10.1016/j.tips.2017.08.003] [PMID: 28947075]
[120]
Wang, D.; Yang, L.; Wang, J.; Hu, G.; Liu, Z.; Yan, D.; Serikuly, N.; Alpyshov, E.T.; Demin, K.A.; Galstyan, D.S.; Strekalova, T.; de Abreu, M.S.; Amstislavskaya, T.G.; Kalueff, A.V. Behavioral and physiological effects of acute and chronic kava exposure in adult zebrafish. Neurotoxicol. Teratol., 2020, 79106881
[http://dx.doi.org/10.1016/j.ntt.2020] [PMID: 32240749]
[121]
Volgin, A.D.; Bashirzade, A.; Amstislavskaya, T.G.; Yakovlev, O.A.; Demin, K.A.; Ho, Y.J.; Wang, D.; Shevyrin, V.A.; Yan, D.; Tang, Z.; Wang, J.; Wang, M.; Alpyshov, E.T.; Serikuly, N.; Wappler-Guzzetta, E.A.; Lakstygal, A.M.; Kalueff, A.V. DARK Classics in chemical neuroscience: Arecoline. ACS Chem. Neurosci.. 2019, 10(5), 2176-2185.
[http://dx.doi.org/10.1021/acschemneuro.8b00711] [PMID: 30664352]
[122]
Khan, K.M.; Collier, A.D.; Meshalkina, D.A.; Kysil, E.V.; Khatsko, S.L.; Kolesnikova, T.; Morzherin, Y.Y.; Warnick, J.E.; Kalueff, A.V.; Echevarria, D.J. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br. J. Pharmacol., 2017, 174(13), 1925-1944.
[http://dx.doi.org/10.1111/bph.13754] [PMID: 28217866]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy