Review Article

含咖啡因的饮料对心血管疾病的益处:真实的还是超现实的?“Metron

卷 29, 期 13, 2022

发表于: 08 July, 2021

页: [2235 - 2260] 页: 26

弟呕挨: 10.2174/0929867328666210708091709

价格: $65

conference banner
摘要

含咖啡因饮料是全球消费最广泛的饮料,咖啡和茶是咖啡因最主要的两种来源。咖啡因含量因不同类型的饮料而异。除了咖啡因,咖啡和茶还有其他生物活性化合物,都可能影响一般和心血管(CV)健康。适度的咖啡因摄入(<300-400毫克/天),无论来源如何,都被欧洲和美国卫生当局认为是安全的,因为它与不良健康和CV影响无关,虽然它可以带来某些健康益处。咖啡摄入与CV风险之间存在非线性关联;适度喝咖啡与CV风险呈负相关,每天2-4杯最高益处,而大量饮用咖啡可能会增加风险。关于茶,由于每份咖啡因含量较低,其消费量仅受每日咖啡因总摄入量的限制。这两种含咖啡因的饮料,咖啡和茶,都含有额外的酚类化合物,具有抗氧化和抗炎活性,具有心脏保护作用。在几种咖啡化合物中,氯乙酸和类黑色素提供这种有益的作用,而二萜烯可能对脂质产生不利影响。大多数茶叶成分(多酚)都是心脏保护的。一个主要问题与能量饮料有关,其咖啡因含量要高得多,这使个人,特别是青少年和年轻人,处于高健康和CV风险中。本文讨论了所有这些问题,包括相关研究和荟萃分析,涉及的发病机制以及卫生当局的相关建议。

关键词: 咖啡,咖啡因,含咖啡因的饮料,心血管疾病,心律失常,心房颤动,心力衰竭,高血压。

[1]
Heckman, M.A.; Weil, J.; Gonzalez de Mejia, E. Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci., 2010, 75(3), R77-R87.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01561.x] [PMID: 20492310]
[2]
Mitchell, D.C.; Knight, C.A.; Hockenberry, J.; Teplansky, R.; Hartman, T.J. Beverage caffeine intakes in the U.S. Food Chem. Toxicol., 2014, 63, 136-142.
[http://dx.doi.org/10.1016/j.fct.2013.10.042] [PMID: 24189158]
[3]
Knight, C.A.; Knight, I.; Mitchell, D.C.; Zepp, J.E. Beverage caffeine intake in US consumers and subpopulations of interest: Estimates from the Share of Intake Panel survey. Food Chem. Toxicol., 2004, 42(12), 1923-1930.
[http://dx.doi.org/10.1016/j.fct.2004.05.002] [PMID: 15500929]
[4]
Frary, C.D.; Johnson, R.K.; Wang, M.Q. Food sources and intakes of caffeine in the diets of persons in the United States. J. Am. Diet. Assoc., 2005, 105(1), 110-113.
[http://dx.doi.org/10.1016/j.jada.2004.10.027] [PMID: 15635355]
[5]
Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam., 2003, 20(1), 1-30.
[http://dx.doi.org/10.1080/0265203021000007840] [PMID: 12519715]
[6]
Butt, M.S.; Sultan, M.T. Coffee and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr., 2011, 51(4), 363-373.
[http://dx.doi.org/10.1080/10408390903586412] [PMID: 21432699]
[7]
Floegel, A.; Pischon, T.; Bergmann, M.M.; Teucher, B.; Kaaks, R.; Boeing, H. Coffee consumption and risk of chronic disease in the european prospective investigation into cancer and nutrition (EPIC)-Germany study. Am. J. Clin. Nutr., 2012, 95(4), 901-908.
[http://dx.doi.org/10.3945/ajcn.111.023648] [PMID: 22338038]
[8]
Higdon, J.V.; Frei, B. Coffee and health: A review of recent human research. Crit. Rev. Food Sci. Nutr., 2006, 46(2), 101-123.
[http://dx.doi.org/10.1080/10408390500400009] [PMID: 16507475]
[9]
Lim, Y.; Park, Y.; Choi, S.K.; Ahn, S.; Ohn, J.H. The effect of coffee consumption on the prevalence of diabetes mellitus: The 2012-2016 korea national health and nutrition examination survey. Nutrients, 2019, 11(10), E2377.
[http://dx.doi.org/10.3390/nu11102377] [PMID: 31590412]
[10]
Komorita, Y.; Iwase, M.; Fujii, H.; Ohkuma, T.; Ide, H.; Jodai-Kitamura, T.; Yoshinari, M.; Oku, Y.; Higashi, T.; Nakamura, U.; Kitazono, T. Additive effects of green tea and coffee on all-cause mortality in patients with type 2 diabetes mellitus: The fukuoka diabetes registry. BMJ Open Diabetes Res. Care, 2020, 8(1), e001252.
[http://dx.doi.org/10.1136/bmjdrc-2020-001252] [PMID: 33087342]
[11]
Kim, Y.; Je, Y.; Giovannucci, E. Coffee consumption and all-cause and cause-specific mortality: A meta-analysis by potential modifiers. Eur. J. Epidemiol., 2019, 34(8), 731-752.
[http://dx.doi.org/10.1007/s10654-019-00524-3] [PMID: 31055709]
[12]
Godos, J.; Pluchinotta, F.R.; Marventano, S.; Buscemi, S.; Li Volti, G.; Galvano, F.; Grosso, G. Coffee components and cardiovascular risk: Beneficial and detrimental effects. Int. J. Food Sci. Nutr., 2014, 65(8), 925-936.
[http://dx.doi.org/10.3109/09637486.2014.940287] [PMID: 25046596]
[13]
Samanta, S. Potential bioactive components and health promotional benefits of tea (camellia sinensis). J. Am. Coll. Nutr., 2020, 1-29.
[http://dx.doi.org/10.1080/07315724.2020.1827082] [PMID: 33216711]
[14]
Ding, M.; Bhupathiraju, S.N.; Satija, A.; van Dam, R.M.; Hu, F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation, 2014, 129(6), 643-659.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005925] [PMID: 24201300]
[15]
Kouli, G.M.; Panagiotakos, D.B.; Georgousopoulou, E.N.; Mellor, D.D.; Chrysohoou, C.; Zana, A.; Tsigos, C.; Tousoulis, D.; Stefanadis, C.; Pitsavos, C. J-shaped relationship between habitual coffee consumption and 10-year (2002-2012) cardiovascular disease incidence: The attica study. Eur. J. Nutr., 2018, 57(4), 1677-1685.
[http://dx.doi.org/10.1007/s00394-017-1455-6] [PMID: 28424867]
[16]
Ruggiero, E.; Di Castelnuovo, A.; Costanzo, S.; Persichillo, M.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonaccio, M. Daily coffee drinking is associated with lower risks of cardiovascular and total mortality in a general italian population: results from the moli-sani study. J. Nutr., 2021, 151(2), 395-404.
[http://dx.doi.org/10.1093/jn/nxaa365] [PMID: 33382422]
[17]
Di Maso, M.; Boffetta, P.; Negri, E.; La Vecchia, C.; Bravi, F. Caffeinated coffee consumption and health outcomes in the us population: A dose-response meta-analysis and estimation of disease cases and deaths avoided. Adv. Nutr., 2021, 12(4), 1160-1176.
[http://dx.doi.org/ 10.1093/advances/nmaa177] [PMID: 33570108]
[18]
Burdan, F. Coffee in health and disease prevention; Preedy, V.R., Ed.; Academic Press, 2015, pp. 823-829.
[http://dx.doi.org/10.1016/B978-0-12-409517-5.00090-5]
[19]
Riksen, N.P.; Smits, P.; Rongen, G.A. The cardiovascular effects of methylxanthines. Handb. Exp. Pharmacol., 2011, (200), 413-437.
[http://dx.doi.org/10.1007/978-3-642-13443-2_16] [PMID: 20859806]
[20]
Spielman, W.S.; Arend, L.J. Adenosine receptors and signaling in the kidney. Hypertension, 1991, 17(2), 117-130.
[http://dx.doi.org/10.1161/01.HYP.17.2.117] [PMID: 1991645]
[21]
Jee, S.H.; He, J.; Appel, L.J.; Whelton, P.K.; Suh, I.; Klag, M.J. Coffee consumption and serum lipids: A meta-analysis of randomized controlled clinical trials. Am. J. Epidemiol., 2001, 153(4), 353-362.
[http://dx.doi.org/10.1093/aje/153.4.353] [PMID: 11207153]
[22]
Moeenfard, M.; Erny, G.L.; Alves, A. Variability of some diterpene esters in coffee beverages as influenced by brewing procedures. J. Food Sci. Technol., 2016, 53(11), 3916-3927.
[http://dx.doi.org/10.1007/s13197-016-2378-6] [PMID: 28035147]
[23]
Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr., 2017, 56(7), 2215-2244.
[http://dx.doi.org/10.1007/s00394-017-1379-1] [PMID: 28391515]
[24]
Mohamadi, N.; Sharififar, F.; Pournamdari, M.; Ansari, M. A Review on Biosynthesis, Analytical Techniques, and Pharmacological Activities of Trigonelline as a Plant Alkaloid. J. Diet. Suppl., 2018, 15(2), 207-222.
[http://dx.doi.org/10.1080/19390211.2017.1329244] [PMID: 28816550]
[25]
Manolis, A.S. Moderate intake of flavonoid-rich tea, green or black, confers cardiovascular protection. Hosp. Chron., 2015, 10(1), 3-6.
[26]
Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim Nutr, 2020, 6(2), 115-123.
[http://dx.doi.org/10.1016/j.aninu.2020.01.001] [PMID: 32542190]
[27]
Kochman, J.; Jakubczyk, K.; Antoniewicz, J.; Mruk, H.; Janda, K. Health benefits and chemical composition of matcha green tea: A review. Molecules, 2020, 26(1), E85.
[http://dx.doi.org/10.3390/molecules26010085] [PMID: 33375458]
[28]
Gunter, M.J.; Murphy, N.; Cross, A.J.; Dossus, L.; Dartois, L.; Fagherazzi, G.; Kaaks, R.; Kühn, T.; Boeing, H.; Aleksandrova, K.; Tjønneland, A.; Olsen, A.; Overvad, K.; Larsen, S.C.; Redondo Cornejo, M.L.; Agudo, A.; Sánchez Pérez, M.J.; Altzibar, J.M.; Navarro, C.; Ardanaz, E.; Khaw, K.T.; Butterworth, A.; Bradbury, K.E.; Trichopoulou, A.; Lagiou, P.; Trichopoulos, D.; Palli, D.; Grioni, S.; Vineis, P.; Panico, S.; Tumino, R.; Bueno-de-Mesquita, B.; Siersema, P.; Leenders, M.; Beulens, J.W.J.; Uiterwaal, C.U.; Wallström, P.; Nilsson, L.M.; Landberg, R.; Weiderpass, E.; Skeie, G.; Braaten, T.; Brennan, P.; Licaj, I.; Muller, D.C.; Sinha, R.; Wareham, N.; Riboli, E. Coffee drinking and mortality in 10 european countries: A multinational cohort study. Ann. Intern. Med., 2017, 167(4), 236-247.
[http://dx.doi.org/10.7326/M16-2945] [PMID: 28693038]
[29]
Kishimoto, Y.; Saita, E.; Taguchi, C.; Aoyama, M.; Ikegami, Y.; Ohmori, R.; Kondo, K.; Momiyama, Y. Associations between green tea consumption and coffee consumption and the prevalence of coronary artery disease. J. Nutr. Sci. Vitaminol. (Tokyo), 2020, 66(3), 237-245.
[http://dx.doi.org/10.3177/jnsv.66.237] [PMID: 32612086]
[30]
Park, S.Y.; Freedman, N.D.; Haiman, C.A.; Le Marchand, L.; Wilkens, L.R.; Setiawan, V.W. Association of coffee consumption with total and cause-specific mortality among nonwhite populations. Ann. Intern. Med., 2017, 167(4), 228-235.
[http://dx.doi.org/10.7326/M16-2472] [PMID: 28693036]
[31]
Zhou, A.; Hyppönen, E. Long-term coffee consumption, caffeine metabolism genetics, and risk of cardiovascular disease: A prospective analysis of up to 347,077 individuals and 8368 cases. Am. J. Clin. Nutr., 2019, 109(3), 509-516.
[http://dx.doi.org/10.1093/ajcn/nqy297] [PMID: 30838377]
[32]
Chung, M.; Zhao, N.; Wang, D.; Shams-White, M.; Karlsen, M.; Cassidy, A.; Ferruzzi, M.; Jacques, P.F.; Johnson, E.J.; Wallace, T.C. Dose-response relation between tea consumption and risk of cardiovascular disease and all-cause mortality: A systematic review and meta-analysis of population-based studies. Adv. Nutr., 2020, 11(4), 790-814.
[http://dx.doi.org/10.1093/advances/nmaa010] [PMID: 32073596]
[33]
Yi, M.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Zhao, R.; Wan, Q.; Du, L.; Zhou, Y. Tea consumption and health outcomes: Umbrella review of meta-analyses of observational studies in humans. Mol. Nutr. Food Res., 2019, 63(16), e1900389.
[http://dx.doi.org/10.1002/mnfr.201900389] [PMID: 31216091]
[34]
Mo, L.; Xie, W.; Pu, X.; Ouyang, D. Coffee consumption and risk of myocardial infarction: A dose-response meta-analysis of observational studies. Oncotarget, 2018, 9(30), 21530-21540.
[http://dx.doi.org/10.18632/oncotarget.23947] [PMID: 29765557]
[35]
Mukamal, K.J.; Hallqvist, J.; Hammar, N.; Ljung, R.; Gémes, K.; Ahlbom, A.; Ahnve, S.; Janszky, I. Coffee consumption and mortality after acute myocardial infarction: The Stockholm Heart Epidemiology Program. Am. Heart J., 2009, 157(3), 495-501.
[http://dx.doi.org/10.1016/j.ahj.2008.11.009] [PMID: 19249420]
[36]
van Dongen, L.H.; Mölenberg, F.J.; Soedamah-Muthu, S.S.; Kromhout, D.; Geleijnse, J.M. Coffee consumption after myocardial infarction and risk of cardiovascular mortality: A prospective analysis in the Alpha Omega Cohort. Am. J. Clin. Nutr., 2017, 106(4), 1113-1120.
[http://dx.doi.org/10.3945/ajcn.117.153338] [PMID: 28835365]
[37]
Miranda, A.M.; Goulart, A.C.; Benseñor, I.M.; Lotufo, P.A.; Marchioni, D.M. Moderate coffee consumption is associated with lower risk of mortality in prior acute coronary syndrome patients: A prospective analysis in the ERICO cohort. Int. J. Food Sci. Nutr., 2020, 1-11.
[http://dx.doi.org/10.1080/09637486.2020.1862069] [PMID: 33349068]
[38]
Ribeiro, E.M.; Alves, M.; Costa, J.; Ferreira, J.J.; Pinto, F.J.; Caldeira, D. Safety of coffee consumption after myocardial infarction: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis., 2020, 30(12), 2146-2158.
[http://dx.doi.org/10.1016/j.numecd.2020.07.016] [PMID: 33158718]
[39]
Brown, O.I.; Allgar, V.; Wong, K.Y. Coffee reduces the risk of death after acute myocardial infarction: A meta-analysis. Coron. Artery Dis., 2016, 27(7), 566-572.
[http://dx.doi.org/10.1097/MCA.0000000000000397] [PMID: 27315099]
[40]
Mukamal, K.J.; Alert, M.; Maclure, M.; Muller, J.E.; Mittleman, M.A. Tea consumption and infarct-related ventricular arrhythmias: The determinants of myocardial infarction onset study. J. Am. Coll. Nutr., 2006, 25(6), 472-479.
[http://dx.doi.org/10.1080/07315724.2006.10719561] [PMID: 17229893]
[41]
Bodar, V.; Chen, J.; Sesso, H.D.; Gaziano, J.M.; Djoussé, L. Coffee consumption and risk of heart failure in the Physicians’ Health Study. Clin. Nutr. ESPEN, 2020, 40, 133-137.
[http://dx.doi.org/10.1016/j.clnesp.2020.09.216] [PMID: 33183526]
[42]
Nwabuo, C.C.; Betoko, A.S.; Reis, J.P.; Moreira, H.T.; Vasconcellos, H.D.; Guallar, E.; Cox, C.; Sidney, S.; Ambale-Venkatesh, B.; Lewis, C.E.; Schreiner, P.J.; Lloyd-Jones, D.; Kiefe, C.I.; Gidding, S.S.; Lima, J.A.C. Coffee and tea consumption in the early adult lifespan and left ventricular function in middle age: The CARDIA study. ESC Heart Fail., 2020, 7(4), 1510-1519.
[http://dx.doi.org/10.1002/ehf2.12684] [PMID: 32449612]
[43]
Mostofsky, E.; Rice, M.S.; Levitan, E.B.; Mittleman, M.A. Habitual coffee consumption and risk of heart failure: A dose-response meta-analysis. Circ Heart Fail, 2012, 5(4), 401-405.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.967299] [PMID: 22740040]
[44]
Stevens, L.M.; Linstead, E.; Hall, J.L.; Kao, D.P. Association between coffee intake and incident heart failure risk: A machine learning analysis of the fhs, the aric study, and the chs. Circ Heart Fail, 2021, 14(2), e006799.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.119.006799] [PMID: 33557575]
[45]
Mesas, A.E.; Leon-Muñoz, L.M.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: A systematic review and meta-analysis. Am. J. Clin. Nutr., 2011, 94(4), 1113-1126.
[http://dx.doi.org/10.3945/ajcn.111.016667] [PMID: 21880846]
[46]
Shah, S.A.; Chu, B.W.; Lacey, C.S.; Riddock, I.C.; Lee, M.; Dargush, A.E. Impact of acute energy drink consumption on blood pressure parameters: A meta-analysis. Ann. Pharmacother., 2016, 50(10), 808-815.
[http://dx.doi.org/10.1177/1060028016656433] [PMID: 27340146]
[47]
D’Elia, L.; La Fata, E.; Galletti, F.; Scalfi, L.; Strazzullo, P. Coffee consumption and risk of hypertension: A dose-response meta-analysis of prospective studies. Eur. J. Nutr., 2019, 58(1), 271-280.
[http://dx.doi.org/10.1007/s00394-017-1591-z] [PMID: 29222637]
[48]
Miranda, A.M.; Goulart, A.C.; Benseñor, I.M.; Lotufo, P.A.; Marchioni, D.M. Coffee consumption and risk of hypertension: A prospective analysis in the cohort study. Clin. Nutr., 2021, 40(2), 542-549.
[http://dx.doi.org/10.1016/j.clnu.2020.05.052] [PMID: 32576389]
[49]
Navarro, A.M.; Martinez-Gonzalez, M.A.; Gea, A.; Ramallal, R.; Ruiz-Canela, M.; Toledo, E. Coffee consumption and risk of hypertension in the SUN Project. Clin. Nutr., 2019, 38(1), 389-397.
[http://dx.doi.org/10.1016/j.clnu.2017.12.009] [PMID: 29331442]
[50]
Renda, G.; Zimarino, M.; Antonucci, I.; Tatasciore, A.; Ruggieri, B.; Bucciarelli, T.; Prontera, T.; Stuppia, L.; De Caterina, R. Genetic determinants of blood pressure responses to caffeine drinking. Am. J. Clin. Nutr., 2012, 95(1), 241-248.
[http://dx.doi.org/10.3945/ajcn.111.018267] [PMID: 22170367]
[51]
Lopez-Garcia, E.; Orozco-Arbeláez, E.; Leon-Muñoz, L.M.; Guallar-Castillon, P.; Graciani, A.; Banegas, J.R.; Rodríguez-Artalejo, F. Habitual coffee consumption and 24-h blood pressure control in older adults with hypertension. Clin. Nutr., 2016, 35(6), 1457-1463.
[http://dx.doi.org/10.1016/j.clnu.2016.03.021] [PMID: 27075317]
[52]
Du, Y.; Lv, Y.; Zha, W.; Hong, X.; Luo, Q. Effect of coffee consumption on dyslipidemia: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis., 2020, 30(12), 2159-2170.
[http://dx.doi.org/10.1016/j.numecd.2020.08.017] [PMID: 33239163]
[53]
Cornelis, M.C.; van Dam, R.M. Habitual coffee and tea consumption and cardiometabolic biomarkers in the uk biobank: The role of beverage types and genetic variation. J. Nutr., 2020, 150(10), 2772-2788.
[http://dx.doi.org/10.1093/jn/nxaa212] [PMID: 32805014]
[54]
Carlström, M.; Larsson, S.C. Coffee consumption and reduced risk of developing type 2 diabetes: A systematic review with meta-analysis. Nutr. Rev., 2018, 76(6), 395-417.
[http://dx.doi.org/10.1093/nutrit/nuy014] [PMID: 29590460]
[55]
Osama, H.; Abdelrahman, M.A.; Madney, Y.M.; Harb, H.S.; Saeed, H.; Abdelrahim, M.E.A. Coffee and type 2 diabetes risk: Is the association mediated by adiponectin, leptin, c-reactive protein or Interleukin-6? A systematic review and meta-analysis. Int. J. Clin. Pract., 2021, 75(6), e13983.
[http://dx.doi.org/10.1111/ijcp.13983] [PMID: 33400346]
[56]
Imamura, F.; Schulze, M.B.; Sharp, S.J.; Guevara, M.; Romaguera, D.; Bendinelli, B.; Salamanca-Fernández, E.; Ardanaz, E.; Arriola, L.; Aune, D.; Boeing, H.; Dow, C.; Fagherazzi, G.; Franks, P.W.; Freisling, H.; Jakszyn, P.; Kaaks, R.; Khaw, K.T.; Kühn, T.; Mancini, F.R.; Masala, G.; Chirlaque, M.D.; Nilsson, P.M.; Overvad, K.; Pala, V.M.; Panico, S.; Perez-Cornago, A.; Quirós, J.R.; Ricceri, F.; Rodríguez-Barranco, M.; Rolandsson, O.; Sluijs, I.; Stepien, M.; Spijkerman, A.M.W.; Tjønneland, A.; Tong, T.Y.N.; Tumino, R.; Vissers, L.E.T.; Ward, H.A.; Langenberg, C.; Riboli, E.; Forouhi, N.G.; Wareham, N.J. Estimated substitution of tea or coffee for sugar-sweetened beverages was associated with lower type 2 diabetes incidence in case-cohort analysis across 8 european countries in the epic-interact study. J. Nutr., 2019, 149(11), 1985-1993.
[http://dx.doi.org/10.1093/jn/nxz156] [PMID: 31396627]
[57]
Said, M.A.; van de Vegte, Y.J.; Verweij, N.; van der Harst, P. Associations of observational and genetically determined caffeine intake with coronary artery disease and diabetes mellitus. J. Am. Heart Assoc., 2020, 9(24), e016808.
[http://dx.doi.org/10.1161/JAHA.120.016808] [PMID: 33287642]
[58]
Kim, A.N.; Cho, H.J.; Youn, J.; Jin, T.; Kang, M.; Sung, J.; Lee, J.E. Coffee consumption, genetic polymorphisms, and the risk of type 2 diabetes mellitus: A pooled analysis of four prospective cohort studies. Int. J. Environ. Res. Public Health, 2020, 17(15), E5379.
[http://dx.doi.org/10.3390/ijerph17155379] [PMID: 32722593]
[59]
Williamson, G. Protection against developing type 2 diabetes by coffee consumption: Assessment of the role of chlorogenic acid and metabolites on glycaemic responses. Food Funct., 2020, 11(6), 4826-4833.
[http://dx.doi.org/10.1039/D0FO01168A] [PMID: 32484174]
[60]
Shang, F.; Li, X.; Jiang, X. Coffee consumption and risk of the metabolic syndrome: A meta-analysis. Diabetes Metab., 2016, 42(2), 80-87.
[http://dx.doi.org/10.1016/j.diabet.2015.09.001] [PMID: 26431818]
[61]
Wong, T.H.T.; Wong, C.H.; Zhang, X.; Zhou, Y.; Xu, J.; Yuen, K.C. The association between coffee consumption and metabolic syndrome in adults: A systematic review and meta-analysis. Adv. Nutr., 2021, 12(3), 708-721.
[http://dx.doi.org/10.1093/advances/nmaa132] [PMID: 33118010]
[62]
Frost, L.; Vestergaard, P. Caffeine and risk of atrial fibrillation or flutter: The danish diet, cancer, and health study. Am. J. Clin. Nutr., 2005, 81(3), 578-582.
[http://dx.doi.org/10.1093/ajcn/81.3.578] [PMID: 15755825]
[63]
Mostofsky, E.; Johansen, M.B.; Lundbye-Christensen, S.; Tjønneland, A.; Mittleman, M.A.; Overvad, K. Risk of atrial fibrillation associated with coffee intake: Findings from the danish diet, cancer, and health study. Eur. J. Prev. Cardiol., 2016, 23(9), 922-930.
[http://dx.doi.org/10.1177/2047487315624524] [PMID: 26701875]
[64]
Conen, D.; Chiuve, S.E.; Everett, B.M.; Zhang, S.M.; Buring, J.E.; Albert, C.M. Caffeine consumption and incident atrial fibrillation in women. Am. J. Clin. Nutr., 2010, 92(3), 509-514.
[http://dx.doi.org/10.3945/ajcn.2010.29627] [PMID: 20573799]
[65]
Casiglia, E.; Tikhonoff, V.; Albertini, F.; Gasparotti, F.; Mazza, A.; Montagnana, M.; Danese, E.; Benati, M.; Spinella, P.; Palatini, P. Caffeine intake reduces incident atrial fibrillation at a population level. Eur. J. Prev. Cardiol., 2018, 25(10), 1055-1062.
[http://dx.doi.org/10.1177/2047487318772945] [PMID: 29692210]
[66]
Xu, J.; Fan, W.; Budoff, M.J.; Heckbert, S.R.; Amsterdam, E.A.; Alonso, A.; Wong, N.D. Intermittent nonhabitual coffee consumption and risk of atrial fibrillation: The multi-ethnic study of atherosclerosis. J. Atr. Fibrillation, 2019, 12(1), 2205.
[http://dx.doi.org/10.4022/jafib.2205] [PMID: 31687073]
[67]
Yuan, S.; Larsson, S.C. No association between coffee consumption and risk of atrial fibrillation: A mendelian randomization study. Nutr. Metab. Cardiovasc. Dis., 2019, 29(11), 1185-1188.
[http://dx.doi.org/10.1016/j.numecd.2019.07.015] [PMID: 31558414]
[68]
Zuchinali, P.; Souza, G.C.; Pimentel, M.; Chemello, D.; Zimerman, A.; Giaretta, V.; Salamoni, J.; Fracasso, B.; Zimerman, L.I.; Rohde, L.E. Short-term effects of high-dose caffeine on cardiac arrhythmias in patients with heart failure: A randomized clinical trial. JAMA Intern. Med., 2016, 176(12), 1752-1759.
[http://dx.doi.org/10.1001/jamainternmed.2016.6374] [PMID: 27749954]
[69]
Dixit, S.; Stein, P.K.; Dewland, T.A.; Dukes, J.W.; Vittinghoff, E.; Heckbert, S.R.; Marcus, G.M. Consumption of caffeinated products and cardiac ectopy. J. Am. Heart Assoc., 2016, 5(1), e002503.
[http://dx.doi.org/10.1161/JAHA.115.002503] [PMID: 26813889]
[70]
Caldeira, D.; Martins, C.; Alves, L.B.; Pereira, H.; Ferreira, J.J.; Costa, J. Caffeine does not increase the risk of atrial fibrillation: A systematic review and meta-analysis of observational studies. Heart, 2013, 99(19), 1383-1389.
[http://dx.doi.org/10.1136/heartjnl-2013-303950] [PMID: 24009307]
[71]
Larsson, S.C.; Drca, N.; Jensen-Urstad, M.; Wolk, A. Coffee consumption is not associated with increased risk of atrial fibrillation: Results from two prospective cohorts and a meta-analysis. BMC Med., 2015, 13, 207.
[http://dx.doi.org/10.1186/s12916-015-0447-8] [PMID: 26394673]
[72]
Krittanawong, C.; Tunhasiriwet, A.; Wang, Z.; Farrell, A.M.; Chirapongsathorn, S.; Zhang, H.; Kitai, T.; Mehta, D. Is caffeine or coffee consumption a risk for new-onset atrial fibrillation? A systematic review and meta-analysis. Eur. J. Prev. Cardiol., 2020, 2047487320908385.
[http://dx.doi.org/10.1177/2047487320908385] [PMID: 32183549]
[73]
Zuchinali, P.; Ribeiro, P.A.; Pimentel, M.; da Rosa, P.R.; Zimerman, L.I.; Rohde, L.E. Effect of caffeine on ventricular arrhythmia: A systematic review and meta-analysis of experimental and clinical studies. Europace, 2016, 18(2), 257-266.
[http://dx.doi.org/10.1093/europace/euv261] [PMID: 26443445]
[74]
Kim, B.; Nam, Y.; Kim, J.; Choi, H.; Won, C. Coffee consumption and stroke risk: A meta-analysis of epidemiologic studies. Korean J. Fam. Med., 2012, 33(6), 356-365.
[http://dx.doi.org/10.4082/kjfm.2012.33.6.356] [PMID: 23267421]
[75]
Shao, C.; Tang, H.; Wang, X.; He, J. Coffee consumption and stroke risk: Evidence from a systematic review and meta-analysis of more than 2.4 million men and women. J. Stroke Cerebrovasc. Dis., 2021, 30(1), 105452.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105452] [PMID: 33188952]
[76]
Umemura, T.; Ueda, K.; Nishioka, K.; Hidaka, T.; Takemoto, H.; Nakamura, S.; Jitsuiki, D.; Soga, J.; Goto, C.; Chayama, K.; Yoshizumi, M.; Higashi, Y. Effects of acute administration of caffeine on vascular function. Am. J. Cardiol., 2006, 98(11), 1538-1541.
[http://dx.doi.org/10.1016/j.amjcard.2006.06.058] [PMID: 17126666]
[77]
Seal, A.D.; Bardis, C.N.; Gavrieli, A.; Grigorakis, P.; Adams, J.D.; Arnaoutis, G.; Yannakoulia, M.; Kavouras, S.A. Coffee with high but not low caffeine content augments fluid and electrolyte excretion at rest. Front. Nutr., 2017, 4, 40.
[http://dx.doi.org/10.3389/fnut.2017.00040] [PMID: 28868290]
[78]
Echeverri, D.; Montes, F.R.; Cabrera, M.; Galán, A.; Prieto, A. Caffeine’s vascular mechanisms of action. Int. J. Vasc. Med., 2010, 2010, 834060.
[http://dx.doi.org/10.1155/2010/834060] [PMID: 21188209]
[79]
Ammon, H.P.; Bieck, P.R.; Mandalaz, D.; Verspohl, E.J. Adaptation of blood pressure to continuous heavy coffee drinking in young volunteers. A double-blind crossover study. Br. J. Clin. Pharmacol., 1983, 15(6), 701-706.
[http://dx.doi.org/10.1111/j.1365-2125.1983.tb01553.x] [PMID: 6871070]
[80]
Robertson, D.; Wade, D.; Workman, R.; Woosley, R.L.; Oates, J.A. Tolerance to the humoral and hemodynamic effects of caffeine in man. J. Clin. Invest., 1981, 67(4), 1111-1117.
[http://dx.doi.org/10.1172/JCI110124] [PMID: 7009653]
[81]
Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens. Res., 2012, 35(4), 370-374.
[http://dx.doi.org/10.1038/hr.2011.195] [PMID: 22072103]
[82]
Higashi, Y. Coffee and endothelial function: A coffee paradox? Nutrients, 2019, 11(9), E2104.
[http://dx.doi.org/10.3390/nu11092104] [PMID: 31487926]
[83]
Noordzij, M.; Uiterwaal, C.S.; Arends, L.R.; Kok, F.J.; Grobbee, D.E.; Geleijnse, J.M. Blood pressure response to chronic intake of coffee and caffeine: A meta-analysis of randomized controlled trials. J. Hypertens., 2005, 23(5), 921-928.
[http://dx.doi.org/10.1097/01.hjh.0000166828.94699.1d] [PMID: 15834273]
[84]
Corti, R.; Binggeli, C.; Sudano, I.; Spieker, L.; Hänseler, E.; Ruschitzka, F.; Chaplin, W.F.; Lüscher, T.F.; Noll, G. Coffee acutely increases sympathetic nerve activity and blood pressure independently of caffeine content: Role of habitual versus nonhabitual drinking. Circulation, 2002, 106(23), 2935-2940.
[http://dx.doi.org/10.1161/01.CIR.0000046228.97025.3A] [PMID: 12460875]
[85]
Buscemi, S.; Batsis, J.A.; Arcoleo, G.; Verga, S. Coffee and endothelial function: A battle between caffeine and antioxidants? Eur. J. Clin. Nutr., 2010, 64(10), 1242-1243.
[http://dx.doi.org/10.1038/ejcn.2010.137] [PMID: 20664622]
[86]
Buscemi, S.; Verga, S.; Batsis, J.A.; Donatelli, M.; Tranchina, M.R.; Belmonte, S.; Mattina, A.; Re, A.; Cerasola, G. Acute effects of coffee on endothelial function in healthy subjects. Eur. J. Clin. Nutr., 2010, 64(5), 483-489.
[http://dx.doi.org/10.1038/ejcn.2010.9] [PMID: 20125186]
[87]
Kolb, H.; Kempf, K.; Martin, S. Health effects of coffee: Mechanism unraveled? Nutrients, 2020, 12(6), E1842.
[http://dx.doi.org/10.3390/nu12061842] [PMID: 32575704]
[88]
Jung, S.; Kim, M.H.; Park, J.H.; Jeong, Y.; Ko, K.S. Cellular antioxidant and anti-inflammatory effects of coffee extracts with different roasting levels. J. Med. Food, 2017, 20(6), 626-635.
[http://dx.doi.org/10.1089/jmf.2017.3935] [PMID: 28581877]
[89]
Geleijnse, J.M. Habitual coffee consumption and blood pressure: An epidemiological perspective. Vasc. Health Risk Manag., 2008, 4(5), 963-970.
[http://dx.doi.org/10.2147/VHRM.S3055] [PMID: 19183744]
[90]
Daneschvar, H.L.; Smetana, G.W.; Brindamour, L.; Bain, P.A.; Mukamal, K.J. Impact of coffee consumption on physiological markers of cardiovascular risk: A systematic review. Am. J. Med., 2020.
[http://dx.doi.org/10.1016/j.amjmed.2020.09.036] [PMID: 33130125]
[91]
Wedick, N.M.; Brennan, A.M.; Sun, Q.; Hu, F.B.; Mantzoros, C.S.; van Dam, R.M. Effects of caffeinated and decaffeinated coffee on biological risk factors for type 2 diabetes: A randomized controlled trial. Nutr. J., 2011, 10, 93.
[http://dx.doi.org/10.1186/1475-2891-10-93] [PMID: 21914162]
[92]
Kempf, K.; Kolb, H.; Gärtner, B.; Bytof, G.; Stiebitz, H.; Lantz, I.; Lang, R.; Hofmann, T.; Martin, S. Cardiometabolic effects of two coffee blends differing in content for major constituents in overweight adults: A randomized controlled trial. Eur. J. Nutr., 2015, 54(5), 845-854.
[http://dx.doi.org/10.1007/s00394-014-0763-3] [PMID: 25204719]
[93]
Tverdal, A.; Selmer, R.; Cohen, J.M.; Thelle, D.S. Coffee consumption and mortality from cardiovascular diseases and total mortality: Does the brewing method matter? Eur. J. Prev. Cardiol., 2020, 27(18), 1986-1993.
[http://dx.doi.org/10.1177/2047487320914443] [PMID: 32320635]
[94]
Urgert, R.; Katan, M.B. The cholesterol-raising factor from coffee beans. Annu. Rev. Nutr., 1997, 17, 305-324.
[http://dx.doi.org/10.1146/annurev.nutr.17.1.305] [PMID: 9240930]
[95]
Corrêa, T.A.; Rogero, M.M.; Mioto, B.M.; Tarasoutchi, D.; Tuda, V.L.; César, L.A.; Torres, E.A. Paper-filtered coffee increases cholesterol and inflammation biomarkers independent of roasting degree: A clinical trial. Nutrition, 2013, 29(7-8), 977-981.
[http://dx.doi.org/10.1016/j.nut.2013.01.003] [PMID: 23510568]
[96]
Fried, R.E.; Levine, D.M.; Kwiterovich, P.O.; Diamond, E.L.; Wilder, L.B.; Moy, T.F.; Pearson, T.A. The effect of filtered-coffee consumption on plasma lipid levels. Results of a randomized clinical trial. JAMA, 1992, 267(6), 811-815.
[http://dx.doi.org/10.1001/jama.1992.03480060057030] [PMID: 1732652]
[97]
Saeed, M.; Naveed, M. BiBi, J.; Ali Kamboh, A.; Phil, L.; Chao, S. Potential nutraceutical and food additive properties and risks of coffee: A comprehensive overview. Crit. Rev. Food Sci. Nutr., 2019, 59(20), 3293-3319.
[http://dx.doi.org/10.1080/10408398.2018.1489368] [PMID: 30614268]
[98]
Bahramsoltani, R.; Ebrahimi, F.; Farzaei, M.H.; Baratpourmoghaddam, A.; Ahmadi, P.; Rostamiasrabadi, P.; Rasouli Amirabadi, A.H.; Rahimi, R. Dietary polyphenols for atherosclerosis: A comprehensive review and future perspectives. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 114-132.
[http://dx.doi.org/10.1080/10408398.2017.1360244] [PMID: 28812379]
[99]
Manolis, A.S. Moderate Intake of Flavonoid-Rich Tea, Green or Black. Confers Cardiovascular Protection Rhythmos, 2015, 10(1), 1-4.
[100]
Scicchitanoa, P.; Camelib, M.; Maielloc, M.; Modestid, P.A.; Muiesane, M.L.; Novo, S. Nutraceuticals and dyslipidaemia: Beyond the common therapeutics. J. Funct. Foods, 2014, 6, 11-32.
[http://dx.doi.org/10.1016/j.jff.2013.12.006]
[101]
Maaliki, D.; Shaito, A.A.; Pintus, G.; El-Yazbi, A.; Eid, A.H. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr. Opin. Pharmacol., 2019, 45, 57-65.
[http://dx.doi.org/10.1016/j.coph.2019.04.014] [PMID: 31102958]
[102]
Carrillo, J.A.; Benitez, J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin. Pharmacokinet., 2000, 39(2), 127-153.
[http://dx.doi.org/10.2165/00003088-200039020-00004] [PMID: 10976659]
[103]
Belayneh, A.; Molla, F. The effect of coffee on pharmacokinetic properties of drugs: A review. BioMed Res. Int., 2020, 2020, 7909703.
[http://dx.doi.org/10.1155/2020/7909703] [PMID: 32775441]
[104]
Hutachok, N.; Angkasith, P.; Chumpun, C.; Fucharoen, S.; Mackie, I.J.; Porter, J.B.; Srichairatanakool, S. Anti-platelet aggregation and anti-cyclooxygenase activities for a range of coffee extracts (coffea arabica). Molecules, 2020, 26(1), E10.
[http://dx.doi.org/10.3390/molecules26010010] [PMID: 33375091]
[105]
Lev, E.I.; Arikan, M.E.; Vaduganathan, M.; Alviar, C.L.; Tellez, A.; Mathuria, N.; Builes, A.; Granada, J.F.; del Conde, I.; Kleiman, N.S. Effect of caffeine on platelet inhibition by clopidogrel in healthy subjects and patients with coronary artery disease. Am. Heart J., 2007, 154(4), 694.e1-694.e7.
[http://dx.doi.org/10.1016/j.ahj.2007.07.014] [PMID: 17892993]
[106]
Liu, J.; Liu, S.; Zhou, H.; Hanson, T.; Yang, L.; Chen, Z.; Zhou, M. Association of green tea consumption with mortality from all-cause, cardiovascular disease and cancer in a Chinese cohort of 165,000 adult men. Eur. J. Epidemiol., 2016, 31(9), 853-865.
[http://dx.doi.org/10.1007/s10654-016-0173-3] [PMID: 27372743]
[107]
Tian, T.; Lv, J.; Jin, G.; Yu, C.; Guo, Y.; Bian, Z.; Yang, L.; Chen, Y.; Shen, H.; Chen, Z.; Hu, Z.; Li, L. Tea consumption and risk of stroke in Chinese adults: A prospective cohort study of 0.5 million men and women. Am. J. Clin. Nutr., 2020, 111(1), 197-206.
[PMID: 31711152]
[108]
Dludla, P.V.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Nyambuya, T.M.; Orlando, P.; Silvestri, S.; Marcheggiani, F.; Cirilli, I.; Ziqubu, K.; Ndevahoma, F.; Mxinwa, V.; Mokgalaboni, K.; Sabbatinelli, J.; Louw, J.; Tiano, L. Tea consumption and its effects on primary and secondary prevention of coronary artery disease: Qualitative synthesis of evidence from randomized controlled trials. Clin. Nutr. ESPEN, 2021, 41, 77-87.
[http://dx.doi.org/10.1016/j.clnesp.2020.11.006] [PMID: 33487310]
[109]
Zhang, C.; Qin, Y.Y.; Wei, X.; Yu, F.F.; Zhou, Y.H.; He, J. Tea consumption and risk of cardiovascular outcomes and total mortality: A systematic review and meta-analysis of prospective observational studies. Eur. J. Epidemiol., 2015, 30(2), 103-113.
[http://dx.doi.org/10.1007/s10654-014-9960-x] [PMID: 25354990]
[110]
Pang, J.; Zhang, Z.; Zheng, T.Z.; Bassig, B.A.; Mao, C.; Liu, X.; Zhu, Y.; Shi, K.; Ge, J.; Yang, Y.J. Dejia-Huang; Bai, M.; Peng, Y. Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis. Int. J. Cardiol., 2016, 202, 967-974.
[http://dx.doi.org/10.1016/j.ijcard.2014.12.176] [PMID: 26318390]
[111]
Greyling, A.; Ras, R.T.; Zock, P.L.; Lorenz, M.; Hopman, M.T.; Thijssen, D.H.; Draijer, R. The effect of black tea on blood pressure: A systematic review with meta-analysis of randomized controlled trials. PLoS One, 2014, 9(7), e103247.
[http://dx.doi.org/10.1371/journal.pone.0103247] [PMID: 25079225]
[112]
Ma, C.; Zheng, X.; Yang, Y.; Bu, P. The effect of black tea supplementation on blood pressure: A systematic review and dose-response meta-analysis of randomized controlled trials. Food Funct., 2021, 12(1), 41-56.
[http://dx.doi.org/10.1039/D0FO02122A] [PMID: 33237083]
[113]
Enriquez, A.; Frankel, D.S. Arrhythmogenic effects of energy drinks. J. Cardiovasc. Electrophysiol., 2017, 28(6), 711-717.
[http://dx.doi.org/10.1111/jce.13210] [PMID: 28387431]
[114]
Rottlaender, D.; Motloch, L.J.; Reda, S.; Larbig, R.; Hoppe, U.C. Cardiac arrest due to long QT syndrome associated with excessive consumption of energy drinks. Int. J. Cardiol., 2012, 158(3), e51-e52.
[http://dx.doi.org/10.1016/j.ijcard.2011.10.017] [PMID: 22056042]
[115]
Dufendach, K.A.; Horner, J.M.; Cannon, B.C.; Ackerman, M.J. Congenital type 1 long QT syndrome unmasked by a highly caffeinated energy drink. Heart Rhythm, 2012, 9(2), 285-288.
[http://dx.doi.org/10.1016/j.hrthm.2011.10.011] [PMID: 22001708]
[116]
Rutledge, M.; Witthed, A.; Khouzam, R.N. It took a RedBull to unmask Brugada syndrome. Int. J. Cardiol., 2012, 161(1), e14-e15.
[http://dx.doi.org/10.1016/j.ijcard.2012.03.095] [PMID: 22465350]
[117]
Berger, A.J.; Alford, K. Cardiac arrest in a young man following excess consumption of caffeinated “energy drinks”. Med. J. Aust., 2009, 190(1), 41-43.
[http://dx.doi.org/10.5694/j.1326-5377.2009.tb02263.x] [PMID: 19120009]
[118]
Kaoukis, A.; Panagopoulou, V.; Mojibian, H.R.; Jacoby, D. Reverse Takotsubo cardiomyopathy associated with the consumption of an energy drink. Circulation, 2012, 125(12), 1584-1585.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.057505] [PMID: 22451608]
[119]
Luo, Y.S.; Chen, Z.; Blanchette, A.D.; Zhou, Y.H.; Wright, F.A.; Baker, E.S.; Chiu, W.A.; Rusyn, I. Relationships between constituents of energy drinks and beating parameters in human induced pluripotent stem cell (iPSC)-Derived cardiomyocytes. Food Chem. Toxicol., 2021, 149, 111979.
[http://dx.doi.org/10.1016/j.fct.2021.111979] [PMID: 33450301]
[120]
FDA, highly concentrated caffeine in dietary supplements: Guidance for industry. 2018. Available from: https://www.fda.gov/media/112363/download [Accessed 7 March, 2021]
[121]
Manolis, A.S.; Manolis, T.A. Sugary Beverages Pose Significant Risks to Cardiovascular and Overall Health. Rhythmos, 2019, 14(3), 45-50.
[122]
Lévy, S.; Santini, L.; Capucci, A.; Oto, A.; Santomauro, M.; Riganti, C.; Raviele, A.; Cappato, R. European cardiac arrhythmia society statement on the cardiovascular events associated with the use or abuse of energy drinks. J. Interv. Card. Electrophysiol., 2019, 56(1), 99-115.
[http://dx.doi.org/10.1007/s10840-019-00610-2] [PMID: 31482331]
[123]
EFSA panel on dietetic products, N.; allergies, scientific opinion on the safety of caffeine. 2015.
[124]
FDA, spilling the beans: How much caffeine is too much? 2018. Available from: https://www.fda.gov/consumers/consumer-updates/spilling-beans-how-much-caffeine-too-much [Accessed 7 March, 2021]
[125]
Committee on Nutrition and the Council on Sports Medicine and Fitness. Sports drinks and energy drinks for children and adolescents: Are they appropriate? Pediatrics, 2011, 127(6), 1182-1189.
[http://dx.doi.org/10.1542/peds.2011-0965] [PMID: 21624882]
[126]
Voskoboinik, A.; Koh, Y.; Kistler, P.M. Cardiovascular effects of caffeinated beverages. Trends Cardiovasc. Med., 2019, 29(6), 345-350.
[http://dx.doi.org/10.1016/j.tcm.2018.09.019] [PMID: 30301595]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy