Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Letter Article

Zn(OAc)2•2H2O-Catalyzed Betti Base Synthesis under Solvent-free Conditions

Author(s): M. Mujahid Alam, Hari B. Bollikolla and Ravi Varala*

Volume 19, Issue 1, 2022

Published on: 16 June, 2021

Page: [14 - 18] Pages: 5

DOI: 10.2174/1570178618666210616155257

conference banner
Abstract

Zn(OAc)2•2H2O-catalyzed one-pot multicomponent reaction of Betti bases using β- naphthol, aldehydes, and amines, under neat conditions in moderate to excellent yields (68- 96%) is reported in this study. This synthetic protocol offers several advantages, such as operational simplicity, shorter reaction period, high yields, and easy work-up procedures.

Keywords: Betti base, zinc acetate dehydrate (Zn(OAc)2•2H2O), catalysis, multicomponent synthesis, β-naphthol, amines and solvent-free conditions.

Graphical Abstract
[1]
Jain, R.P.; Vederas, J.C. Bioorg. Med. Chem. Lett., 2004, 14(14), 3655-3658.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.021] [PMID: 15203137]
[2]
Janati, F. Eurasian. J. Anal. Chem., 2018, 13em31
[http://dx.doi.org/10.29333/ejac/90249]
[3]
Teimuri-Mofrad, R.; Ahadzadeh, I.; Gholamhosseini Nazari, M.; Esmati, S.; Shahrisa, A. Res. Chem. Intermed., 2018, 44, 2913-2927.
[http://dx.doi.org/10.1007/s11164-018-3287-2]
[4]
Noyori, R. Asymmetric catalysis in organic synthesis; John Wiley and Sons: New York, 1994.
[5]
Tanaka, K.; Toda, F. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257]
[6]
Zangade, S.; Patil, P. Curr. Org. Chem., 2019, 23, 2295-2318.
[http://dx.doi.org/10.2174/1385272823666191016165532]
[7]
Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Eur. J. Med. Chem., 2017, 132, 108-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.025] [PMID: 28342939]
[8]
Maiti, B.; Chanda, K. RSC Advances, 2016, 6, 50384-50413.
[http://dx.doi.org/10.1039/C6RA06930D]
[9]
Zarganes-Tzitzikas, T.; Chandgude, A.L.; Dömling, A. Chem. Rec., 2015, 15(5), 981-996.
[http://dx.doi.org/10.1002/tcr.201500201] [PMID: 26455350]
[10]
Cardellicchio, C.; Capozzi, M.A.M.; Naso, F. Tetrahedron Asymmetry, 2010, 21, 507-517.
[http://dx.doi.org/10.1016/j.tetasy.2010.03.020]
[11]
Olyaei, A.; Sadeghpour, M. RSC Advances, 2019, 9, 18467-18497.
[http://dx.doi.org/10.1039/C9RA02813G]
[12]
Saidi, M.R.; Azizi, N.; Naimi-Jamal, M.R. Tetrahedron Lett., 2001, 42, 8111-8113.
[http://dx.doi.org/10.1016/S0040-4039(01)01732-4]
[13]
Gong, Y.; Kato, K. Tetrahedron Asymmetry, 2001, 12, 2121-2127.
[http://dx.doi.org/10.1016/S0957-4166(01)00402-5]
[14]
Shari, A.; Mirzaei, M.; Naimi-Jamal, M.R. Monatsh. Chem., 2001, 132, 875-880.
[http://dx.doi.org/10.1007/s007060170077]
[15]
Mukherjee, C.; MacLean, E.D.; Cameron, T.S.; Jha, A. J. Mol. Catal., B Enzym., 2010, 62, 46-53.
[http://dx.doi.org/10.1016/j.molcatb.2009.09.001]
[16]
Karmakar, B.; Banerji, J. Tetrahedron Lett., 2011, 52, 4957-4960.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.075]
[17]
Dindulkar, S.D.; Puranik, V.G.; Jeong, Y.T. Tetrahedron Lett., 2012, 53, 4376-4380.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.022]
[18]
Kidwai, M.; Chauhan, R. Asian J. Org. Chem., 2013, 2, 395-398.
[http://dx.doi.org/10.1002/ajoc.201300039]
[19]
Zahiri, S.; Mokhtary, M.; Torabi, M. Iran. J. Catal, 2015, 5, 149-153.
[20]
Shahrisa, A.; Teimuri-Mofrad, R. Synlett, 2015, 26, 1031-1038.
[http://dx.doi.org/10.1055/s-0034-1380323]
[21]
Janati, F.; Heravi, M.M.; Mir Shokraie, A. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2015, 45, 1-5.
[http://dx.doi.org/10.1080/15533174.2012.762381]
[22]
Mekheimer, R.A.; Asiri, A.M.; Abdel Hameed, A.M.; Awed, R.R.; Sadek, K.U. Green Process. Synth., 2016, 5, 365-369.
[http://dx.doi.org/10.1515/gps-2016-0012]
[23]
Teimuri-Mofrad, R.; Gholamhosseini-Nazari, M.; Esmati, S.; Shahrisa, A. Res. Chem. Intermed., 2017, 43, 6845-6861.
[http://dx.doi.org/10.1007/s11164-017-3024-2]
[24]
Mou, J.; Gao, G.; Chen, C.; Liu, J.; Gao, J.; Liu, Y.; Pei, D. RSC Advances, 2017, 7, 13868-13875.
[http://dx.doi.org/10.1039/C6RA28599F]
[25]
Muralidharan, V.P.; Alagumuthu, M.; Iyer, S.K. Bioorg. Med. Chem. Lett., 2017, 27(11), 2510-2514.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.093] [PMID: 28462836]
[26]
Teimuri-Mofrad, R.; Ahadzadeh, I.; Gholamhosseini Nazari, M.; Esmati, S.; Shahrisa, A. Res. Chem. Intermed., 2018, 44, 2913-2927.
[http://dx.doi.org/10.1007/s11164-018-3287-2]
[27]
Ramu, E.; Varala, R.; Sreelatha, N.; Adapa, S.R. Tetrahedron Lett., 2007, 48, 7184-7190.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.196]
[28]
Reddy, V.V.R.; Saritha, B.; Ramu, R.; Varala, R.; Jayashree, A. Asian J. Chem., 2014, 26, 7439-7442.
[http://dx.doi.org/10.14233/ajchem.2014.17180]
[29]
Qin, Y.; Zhou, D.; Li, M. Lett. Org. Chem., 2012, 9, 267-272.
[http://dx.doi.org/10.2174/157017812800233741]
[30]
Węglarz, I.; Szewczyk, M. Mlynarski. J. Adv. Synth. Catal., 2020, 362, 1532-1536.
[http://dx.doi.org/10.1002/adsc.201901457]
[31]
Brahmachari, G.; Laskar, S.; Sarkar, S. Ind. J. Chem. B., 2010, 49B, 1274-1281.
[32]
Ayothiraman, R.; Rangaswamy, S.; Maity, P.; Simmons, E.M.; Beutner, G.L.; Janey, J.; Treitler, D.S.; Eastgate, M.D.; Vaidyanathan, R. J. Org. Chem., 2017, 82(14), 7420-7427.
[http://dx.doi.org/10.1021/acs.joc.7b01101] [PMID: 28677970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy