Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Understanding the Role of Histone Deacetylase and their Inhibitors in Neurodegenerative Disorders: Current Targets and Future Perspective

Author(s): Vishal Kumar, Satyabrata Kundu, Arti Singh and Shamsher Singh*

Volume 20, Issue 1, 2022

Page: [158 - 178] Pages: 21

DOI: 10.2174/1570159X19666210609160017

Open Access Journals Promotions 2
Abstract

Neurodegenerative diseases are a group of pathological conditions that cause motor incordination (jerking movements), cognitive and memory impairments result from degeneration of neurons in a specific area of the brain. Oxidative stress, mitochondrial dysfunction, excitotoxicity, neuroinflammation, neurochemical imbalance and histone deacetylase enzymes (HDAC) are known to play a crucial role in neurodegeneration. HDAC is classified into four categories (class I, II, III and class IV) depending upon their location and functions. HDAC1 and 2 are involved in neurodegeneration, while HDAC3-11 and class III HDACs are beneficial as neuroprotective. HDACs are localized in different parts of the brain- HDAC1 (hippocampus and cortex), HDAC2 (nucleus), HDAC3, 4, 5, 7 and 9 (nucleus and cytoplasm), HDAC6 & HDAC7 (cytoplasm) and HDAC11 (Nucleus, cornus ammonis 1 and spinal cord). In pathological conditions, HDAC up-regulates glutamate, phosphorylation of tau, and glial fibrillary acidic proteins while down-regulating BDNF, Heat shock protein 70 and Gelsolin. Class III HDACs are divided into seven sub-classes (SIRT1-SIRT7). Sirtuins are localized in the different parts of the brain and neuron -Sirt1 (nucleus), Sirt2 (cortex, striatum, hippocampus and spinal cord), Sirt3 (mitochondria and cytoplasm), Sirt4, Sirt5 & Sirt6 (mitochondria), Sirt7 (nucleus) and Sirt8 (nucleolus). SIRTs (1, 3, 4, and 6) are involved in neuronal survival, proliferation and modulating stress response, and SIRT2 is associated with Parkinsonism, Huntington’s disease and Alzheimer’s disease, whereas SIRT6 is only associated with Alzheimer’s disease. In this critical review, we have discussed the mechanisms and therapeutic targets of HDACs that would be beneficial for the management of neurodegenerative disorders

Keywords: HDACs, SIRTs, neurodegenerative disorder, neuroprotection and neurotoxic effect, future targets

Graphical Abstract
[1]
Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: models, mechanisms, and a new hope; The Company of Biologists Ltd, 2017.
[2]
Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem., 2010, 345(1-2), 91-104.
[http://dx.doi.org/10.1007/s11010-010-0563-x] [PMID: 20730621]
[3]
Wang, Y.; Xu, E.; Musich, P.R.; Lin, F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther., 2019, 25(7), 816-824.
[http://dx.doi.org/10.1111/cns.13116] [PMID: 30889315]
[4]
Lewerenz, J.; Maher, P. Chronic glutamate toxicity in neurodegenerative diseases—what is the evidence? Front. Neurosci., 2015, 9, 469.
[http://dx.doi.org/10.3389/fnins.2015.00469] [PMID: 26733784]
[5]
D’Mello, S.R. Histone deacetylases as targets for the treatment of human neurodegenerative diseases. Drug News Perspect., 2009, 22(9), 513-524.
[http://dx.doi.org/10.1358/dnp.2009.22.9.1437959] [PMID: 20072728]
[6]
De Simone, A.; Milelli, A. Histone deacetylase inhibitors as multitarget ligands: new players in Alzheimer’s disease drug discovery? ChemMedChem, 2019, 14(11), 1067-1073.
[http://dx.doi.org/10.1002/cmdc.201900174] [PMID: 30958639]
[7]
Annunziato, A.T.; Hansen, J.C. Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Expr., 2000, 9(1-2), 37-61.
[PMID: 11097424]
[8]
Alberts, B. Molecular biology of the cell. Garland science, 2008.
[9]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Drosophila and the molecular genetics of pattern formation: Genesis of the body plan.Molecular Biology of the Cell, 4th ed; Garland Science, 2002.
[10]
Seto, E.; Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol., 2014, 6(4)a018713
[http://dx.doi.org/10.1101/cshperspect.a018713] [PMID: 24691964]
[11]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[12]
Parbin, S.; Kar, S.; Shilpi, A.; Sengupta, D.; Deb, M.; Rath, S.K.; Patra, S.K. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J. Histochem. Cytochem., 2014, 62(1), 11-33.
[http://dx.doi.org/10.1369/0022155413506582] [PMID: 24051359]
[13]
Singh, B.N.; Zhang, G.; Hwa, Y.L.; Li, J.; Dowdy, S.C.; Jiang, S-W. Nonhistone protein acetylation as cancer therapy targets. Expert Rev. Anticancer Ther., 2010, 10(6), 935-954.
[http://dx.doi.org/10.1586/era.10.62] [PMID: 20553216]
[14]
Yang, X-J.; Grégoire, S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell. Biol., 2005, 25(8), 2873-2884.
[http://dx.doi.org/10.1128/MCB.25.8.2873-2884.2005] [PMID: 15798178]
[15]
Xu, K.; Dai, X-L.; Huang, H-C.; Jiang, Z-F. Targeting HDACs: A promising therapy for Alzheimer’s disease. Oxidative medicine and cellular longevity, 2011.
[http://dx.doi.org/10.1155/2011/143269]
[16]
Wang, Y.; Wang, X.; Liu, L.; Wang, X. HDAC inhibitor trichostatin A-inhibited survival of dopaminergic neuronal cells. Neurosci. Lett., 2009, 467(3), 212-216.
[http://dx.doi.org/10.1016/j.neulet.2009.10.037] [PMID: 19835929]
[17]
Suelves, N.; Kirkham-McCarthy, L.; Lahue, R.S.; Ginés, S. A selective inhibitor of histone deacetylase 3 prevents cognitive deficits and suppresses striatal CAG repeat expansions in Huntington’s disease mice. Sci. Rep., 2017, 7(1), 6082.
[http://dx.doi.org/10.1038/s41598-017-05125-2] [PMID: 28729730]
[18]
LoPresti, P. The selective HDAC6 inhibitor ACY-738 impacts memory and disease regulation in an animal model of multiple sclerosis. Front. Neurol., 2019, 10, 519.
[http://dx.doi.org/10.3389/fneur.2019.00519] [PMID: 31316445]
[19]
Lu, J.; Frerich, J.M.; Turtzo, L.C.; Li, S.; Chiang, J.; Yang, C.; Wang, X.; Zhang, C.; Wu, C.; Sun, Z.; Niu, G.; Zhuang, Z.; Brady, R.O.; Chen, X. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10747-10752.
[http://dx.doi.org/10.1073/pnas.1308950110] [PMID: 23754423]
[20]
Wade, P.A. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum. Mol. Genet., 2001, 10(7), 693-698.
[http://dx.doi.org/10.1093/hmg/10.7.693] [PMID: 11257101]
[21]
Cress, W.D.; Seto, E. Histone deacetylases, transcriptional control, and cancer. J. Cell. Physiol., 2000, 184(1), 1-16.
[http://dx.doi.org/10.1002/(SICI)1097-4652(200007)184:1<1:AID-JCP1>3.0.CO;2-7] [PMID: 10825229]
[22]
Yang, W-M.; Tsai, S-C.; Wen, Y-D.; Fejér, G.; Seto, E. Functional domains of histone deacetylase-3. J. Biol. Chem., 2002, 277(11), 9447-9454.
[http://dx.doi.org/10.1074/jbc.M105993200] [PMID: 11779848]
[23]
Buggy, J.J.; Sideris, M.L.; Mak, P.; Lorimer, D.D.; McIntosh, B.; Clark, J.M. Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem. J., 2000, 350(Pt 1), 199-205.
[http://dx.doi.org/10.1042/bj3500199] [PMID: 10926844]
[24]
Marks, P.; Rifkind, R.A.; Richon, V.M.; Breslow, R.; Miller, T.; Kelly, W.K. Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer, 2001, 1(3), 194-202.
[http://dx.doi.org/10.1038/35106079] [PMID: 11902574]
[25]
Chawla, S.; Vanhoutte, P.; Arnold, F.J.; Huang, C.L.H.; Bading, H. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem., 2003, 85(1), 151-159.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01648.x] [PMID: 12641737]
[26]
Majdzadeh, N; Morrison, BE; D'Mello, SR Class IIA HDACs in the regulation of neurodegeneration.Frontiers in bioscience: a journal and virtual library, 2008, 13, 1072.
[http://dx.doi.org/10.2741/2745]
[27]
Haberland, M.; Johnson, A.; Mokalled, M.H.; Montgomery, R.L.; Olson, E.N. Genetic dissection of histone deacetylase requirement in tumor cells. Proc. Natl. Acad. Sci. USA, 2009, 106(19), 7751-7755.
[http://dx.doi.org/10.1073/pnas.0903139106] [PMID: 19416910]
[28]
Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941.
[http://dx.doi.org/10.3390/molecules20033898] [PMID: 25738536]
[29]
Iwata, A.; Riley, B.E.; Johnston, J.A.; Kopito, R.R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem., 2005, 280(48), 40282-40292.
[http://dx.doi.org/10.1074/jbc.M508786200] [PMID: 16192271]
[30]
Yalcin, G. Sirtuins and neurodegeneration. Journal of Neurology & Neuromedicine., 2018, 3(1)
[http://dx.doi.org/10.29245/2572.942X/2017/1.1168]
[31]
Majdzadeh, N.; Wang, L.; Morrison, B.E.; Bassel-Duby, R.; Olson, E.N.; D’Mello, S.R. HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev. Neurobiol., 2008, 68(8), 1076-1092.
[http://dx.doi.org/10.1002/dneu.20637] [PMID: 18498087]
[32]
Chuang, D-M.; Leng, Y.; Marinova, Z.; Kim, H-J.; Chiu, C-T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci., 2009, 32(11), 591-601.
[http://dx.doi.org/10.1016/j.tins.2009.06.002] [PMID: 19775759]
[33]
Thomas, E.A. Involvement of HDAC1 and HDAC3 in the pathology of polyglutamine disorders: therapeutic implications for selective HDAC1/HDAC3 inhibitors. Pharmaceuticals (Basel), 2014, 7(6), 634-661.
[http://dx.doi.org/10.3390/ph7060634] [PMID: 24865773]
[34]
Blander, G.; Guarente, L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem., 2004, 73(1), 417-435.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073651] [PMID: 15189148]
[35]
Montgomery, R.L.; Davis, C.A.; Potthoff, M.J.; Haberland, M.; Fielitz, J.; Qi, X.; Hill, J.A.; Richardson, J.A.; Olson, E.N. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev., 2007, 21(14), 1790-1802.
[http://dx.doi.org/10.1101/gad.1563807] [PMID: 17639084]
[36]
McKinsey, T.A.; Zhang, C-L.; Lu, J.; Olson, E.N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature, 2000, 408(6808), 106-111.
[http://dx.doi.org/10.1038/35040593] [PMID: 11081517]
[37]
Zupkovitz, G.; Tischler, J.; Posch, M.; Sadzak, I.; Ramsauer, K.; Egger, G.; Grausenburger, R.; Schweifer, N.; Chiocca, S.; Decker, T.; Seiser, C. Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol. Cell. Biol., 2006, 26(21), 7913-7928.
[http://dx.doi.org/10.1128/MCB.01220-06] [PMID: 16940178]
[38]
Yamaguchi, M.; Tonou-Fujimori, N.; Komori, A.; Maeda, R.; Nojima, Y.; Li, H.; Okamoto, H.; Masai, I. Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development, 2005, 132(13), 3027-3043.
[http://dx.doi.org/10.1242/dev.01881] [PMID: 15944187]
[39]
Farooq, M.; Sulochana, K.N.; Pan, X.; To, J.; Sheng, D.; Gong, Z.; Ge, R. Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish. Dev. Biol., 2008, 317(1), 336-353.
[http://dx.doi.org/10.1016/j.ydbio.2008.02.034] [PMID: 18367159]
[40]
Thomas, E.A.; D’Mello, S.R. Complex neuroprotective and neurotoxic effects of histone deacetylases. J. Neurochem., 2018, 145(2), 96-110.
[http://dx.doi.org/10.1111/jnc.14309] [PMID: 29355955]
[41]
Jacob, C.; Christen, C.N.; Pereira, J.A.; Somandin, C.; Baggiolini, A.; Lötscher, P.; Ozçelik, M.; Tricaud, N.; Meijer, D.; Yamaguchi, T.; Matthias, P.; Suter, U. HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat. Neurosci., 2011, 14(4), 429-436.
[http://dx.doi.org/10.1038/nn.2762] [PMID: 21423190]
[42]
Lebrun-Julien, F.; Suter, U. Combined HDAC1 and HDAC2 depletion promotes retinal ganglion cell survival after injury through reduction of p53 target gene expression. ASN Neuro, 2015, 7(3)1759091415593066
[http://dx.doi.org/10.1177/1759091415593066] [PMID: 26129908]
[43]
Morrison, B.E.; Majdzadeh, N.; Zhang, X.; Lyles, A.; Bassel-Duby, R.; Olson, E.N.; D’Mello, S.R. Neuroprotection by histone deacetylase-related protein. Mol. Cell. Biol., 2006, 26(9), 3550-3564.
[http://dx.doi.org/10.1128/MCB.26.9.3550-3564.2006] [PMID: 16611996]
[44]
Zhou, H.; Cai, Y.; Liu, D.; Li, M.; Sha, Y.; Zhang, W.; Wang, K.; Gong, J.; Tang, N.; Huang, A.; Xia, J. Pharmacological or transcriptional inhibition of both HDAC1 and 2 leads to cell cycle blockage and apoptosis via p21Waf1/Cip1 and p19INK4d upregulation in hepatocellular carcinoma. Cell Prolif., 2018, 51(3)e12447
[http://dx.doi.org/10.1111/cpr.12447] [PMID: 29484736]
[45]
Boucheron, N.; Tschismarov, R.; Goeschl, L.; Moser, M.A.; Lagger, S.; Sakaguchi, S.; Winter, M.; Lenz, F.; Vitko, D.; Breitwieser, F.P.; Müller, L.; Hassan, H.; Bennett, K.L.; Colinge, J.; Schreiner, W.; Egawa, T.; Taniuchi, I.; Matthias, P.; Seiser, C.; Ellmeier, W. CD4(+) T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat. Immunol., 2014, 15(5), 439-448.
[http://dx.doi.org/10.1038/ni.2864] [PMID: 24681565]
[46]
Datta, M; Staszewski, O; Raschi, E; Frosch, M; Hagemeyer, N Tay, TL Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context- dependent manner. Immunity, 2018, 48(3), 514-529. e6.,
[http://dx.doi.org/10.1016/j.immuni.2018.02.016]
[47]
Gräff, J.; Rei, D.; Guan, J-S.; Wang, W-Y.; Seo, J.; Hennig, K.M.; Nieland, T.J.; Fass, D.M.; Kao, P.F.; Kahn, M.; Su, S.C.; Samiei, A.; Joseph, N.; Haggarty, S.J.; Delalle, I.; Tsai, L.H. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature, 2012, 483(7388), 222-226.
[http://dx.doi.org/10.1038/nature10849] [PMID: 22388814]
[48]
Lorson, C.L.; Rindt, H.; Shababi, M. Spinal muscular atrophy: mechanisms and therapeutic strategies. Hum. Mol. Genet., 2010, 19(R1), R111-R118.
[http://dx.doi.org/10.1093/hmg/ddq147] [PMID: 20392710]
[49]
Kernochan, L.E.; Russo, M.L.; Woodling, N.S.; Huynh, T.N.; Avila, A.M.; Fischbeck, K.H.; Sumner, C.J. The role of histone acetylation in SMN gene expression. Hum. Mol. Genet., 2005, 14(9), 1171-1182.
[http://dx.doi.org/10.1093/hmg/ddi130] [PMID: 15772088]
[50]
Sun, X-Y.; Zheng, T.; Yang, X.; Liu, L.; Gao, S-S.; Xu, H-B.; Song, Y.T.; Tong, K.; Yang, L.; Gao, Y.; Wu, T.; Hao, J.R.; Lu, C.; Ma, T.; Gao, C. HDAC2 hyperexpression alters hippocampal neuronal transcription and microglial activity in neuroinflammation-induced cognitive dysfunction. J. Neuroinflammation, 2019, 16(1), 249.
[http://dx.doi.org/10.1186/s12974-019-1640-z] [PMID: 31796106]
[51]
Guenther, M.G.; Barak, O.; Lazar, M.A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol., 2001, 21(18), 6091-6101.
[http://dx.doi.org/10.1128/MCB.21.18.6091-6101.2001] [PMID: 11509652]
[52]
Fischle, W.; Dequiedt, F.; Fillion, M.; Hendzel, M.J.; Voelter, W.; Verdin, E. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J. Biol. Chem., 2001, 276(38), 35826-35835.
[http://dx.doi.org/10.1074/jbc.M104935200] [PMID: 11466315]
[53]
Dequiedt, F.; Van Lint, J.; Lecomte, E.; Van Duppen, V.; Seufferlein, T.; Vandenheede, J.R.; Wattiez, R.; Kettmann, R. Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. J. Exp. Med., 2005, 201(5), 793-804.
[http://dx.doi.org/10.1084/jem.20042034] [PMID: 15738054]
[54]
Li, J.; Lin, Q.; Wang, W.; Wade, P.; Wong, J. Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev., 2002, 16(6), 687-692.
[http://dx.doi.org/10.1101/gad.962502] [PMID: 11914274]
[55]
Brehm, A.; Miska, E.A.; McCance, D.J.; Reid, J.L.; Bannister, A.J.; Kouzarides, T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature, 1998, 391(6667), 597-601.
[http://dx.doi.org/10.1038/35404] [PMID: 9468139]
[56]
Nicolas, E.; Ait-Si-Ali, S.; Trouche, D. The histone deacetylase HDAC3 targets RbAp48 to the retinoblastoma protein. Nucleic Acids Res., 2001, 29(15), 3131-3136.
[http://dx.doi.org/10.1093/nar/29.15.3131] [PMID: 11470869]
[57]
Katayama, S.; Morii, A.; Makanga, J.O.; Suzuki, T.; Miyata, N.; Inazu, T. HDAC8 regulates neural differentiation through embryoid body formation in P19 cells. Biochem. Biophys. Res. Commun., 2018, 498(1), 45-51.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.195] [PMID: 29499194]
[58]
Ruijter, AJd; GENNIP, AHv; Caron, HN; Kemp, S; KUILENBURG, ABv Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(3), 737-749.
[http://dx.doi.org/10.1042/bj20021321]
[59]
Chakrabarti, A.; Oehme, I.; Witt, O.; Oliveira, G.; Sippl, W.; Romier, C.; Pierce, R.J.; Jung, M. HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol. Sci., 2015, 36(7), 481-492.
[http://dx.doi.org/10.1016/j.tips.2015.04.013] [PMID: 26013035]
[60]
Alam, N.; Zimmerman, L.; Wolfson, N.A.; Joseph, C.G.; Fierke, C.A.; Schueler-Furman, O. Structure-based identification of HDAC8 non-histone substrates. Structure, 2016, 24(3), 458-468.
[http://dx.doi.org/10.1016/j.str.2016.02.002] [PMID: 26933971]
[61]
Takase, K.; Oda, S.; Kuroda, M.; Funato, H. Monoaminergic and neuropeptidergic neurons have distinct expression profiles of histone deacetylases. PLoS One, 2013, 8(3)e58473
[http://dx.doi.org/10.1371/journal.pone.0058473] [PMID: 23469282]
[62]
Mielcarek, M.; Zielonka, D.; Carnemolla, A.; Marcinkowski, J.T.; Guidez, F. HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements. Front. Cell. Neurosci., 2015, 9, 42.
[http://dx.doi.org/10.3389/fncel.2015.00042] [PMID: 25759639]
[63]
Korzus, E.; Rosenfeld, M.G.; Mayford, M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 2004, 42(6), 961-972.
[http://dx.doi.org/10.1016/j.neuron.2004.06.002] [PMID: 15207240]
[64]
Fitzsimons, H.L.; Schwartz, S.; Given, F.M.; Scott, M.J. The histone deacetylase HDAC4 regulates long-term memory in Drosophila. PLoS One, 2013, 8(12)e83903
[http://dx.doi.org/10.1371/journal.pone.0083903] [PMID: 24349558]
[65]
Zhu, Y.; Huang, M.; Bushong, E.; Phan, S.; Uytiepo, M.; Beutter, E.; Boemer, D.; Tsui, K.; Ellisman, M.; Maximov, A. Class IIa HDACs regulate learning and memory through dynamic experience-dependent repression of transcription. Nat. Commun., 2019, 10(1), 3469.
[http://dx.doi.org/10.1038/s41467-019-11409-0] [PMID: 31375688]
[66]
Sando, R., III; Gounko, N.; Pieraut, S.; Liao, L.; Yates, J., III; Maximov, A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell, 2012, 151(4), 821-834.
[http://dx.doi.org/10.1016/j.cell.2012.09.037] [PMID: 23141539]
[67]
Fischer, A.; Sananbenesi, F.; Wang, X.; Dobbin, M.; Tsai, L-H. Recovery of learning and memory is associated with chromatin remodelling. Nature, 2007, 447(7141), 178-182.
[http://dx.doi.org/10.1038/nature05772] [PMID: 17468743]
[68]
Kim, M-S.; Akhtar, M.W.; Adachi, M.; Mahgoub, M.; Bassel-Duby, R.; Kavalali, E.T.; Olson, E.N.; Monteggia, L.M. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J. Neurosci., 2012, 32(32), 10879-10886.
[http://dx.doi.org/10.1523/JNEUROSCI.2089-12.2012] [PMID: 22875922]
[69]
Arnold, M.A.; Kim, Y.; Czubryt, M.P.; Phan, D.; McAnally, J.; Qi, X.; Shelton, J.M.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev. Cell, 2007, 12(3), 377-389.
[http://dx.doi.org/10.1016/j.devcel.2007.02.004] [PMID: 17336904]
[70]
Lang, C; Campbell, KR; Ryan, BJ; Carling, P; Attar, M; Vowles, J Single-cell sequencing of iPSC-dopamine neurons reconstructs disease progression and identifies HDAC4 as a regulator of Parkinson cell phenotypes.Cell stem cell,, 2019, 24(1), 93-106-e6.
[http://dx.doi.org/10.1016/j.stem.2018.10.023]
[71]
Cho, Y.; Cavalli, V. HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J., 2012, 31(14), 3063-3078.
[http://dx.doi.org/10.1038/emboj.2012.160] [PMID: 22692128]
[72]
Cho, Y.; Sloutsky, R.; Naegle, K.M.; Cavalli, V. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell, 2013, 155(4), 894-908.
[http://dx.doi.org/10.1016/j.cell.2013.10.004] [PMID: 24209626]
[73]
Haberland, M.; Montgomery, R.L.; Olson, E.N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet., 2009, 10(1), 32-42.
[http://dx.doi.org/10.1038/nrg2485] [PMID: 19065135]
[74]
Agis-Balboa, R.C.; Pavelka, Z.; Kerimoglu, C.; Fischer, A. Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease. J. Alzheimers Dis., 2013, 33(1), 35-44.
[http://dx.doi.org/10.3233/JAD-2012-121009] [PMID: 22914591]
[75]
Ma, C.; D’Mello, S.R. Neuroprotection by histone deacetylase-7 (HDAC7) occurs by inhibition of c-jun expression through a deacetylase-independent mechanism. J. Biol. Chem., 2011, 286(6), 4819-4828.
[http://dx.doi.org/10.1074/jbc.M110.146860] [PMID: 21118817]
[76]
Jia, H.; Pallos, J.; Jacques, V.; Lau, A.; Tang, B.; Cooper, A.; Syed, A.; Purcell, J.; Chen, Y.; Sharma, S.; Sangrey, G.R.; Darnell, S.B.; Plasterer, H.; Sadri-Vakili, G.; Gottesfeld, J.M.; Thompson, L.M.; Rusche, J.R.; Marsh, J.L.; Thomas, E.A. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol. Dis., 2012, 46(2), 351-361.
[http://dx.doi.org/10.1016/j.nbd.2012.01.016] [PMID: 22590724]
[77]
Kao, H-Y.; Verdel, A.; Tsai, C-C.; Simon, C.; Juguilon, H.; Khochbin, S. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J. Biol. Chem., 2001, 276(50), 47496-47507.
[http://dx.doi.org/10.1074/jbc.M107631200] [PMID: 11585834]
[78]
Bertos, N.R.; Wang, A.H.; Yang, X-J. Class II histone deacetylases: structure, function, and regulation. Biochem. Cell Biol., 2001, 79(3), 243-252.
[http://dx.doi.org/10.1139/o01-032] [PMID: 11467738]
[79]
Benn, C.L.; Butler, R.; Mariner, L.; Nixon, J.; Moffitt, H.; Mielcarek, M.; Woodman, B.; Bates, G.P. Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington’s disease. PLoS One, 2009, 4(6)e5747
[http://dx.doi.org/10.1371/journal.pone.0005747] [PMID: 19484127]
[80]
Zhou, X.; Marks, P.A.; Rifkind, R.A.; Richon, V.M. Cloning and characterization of a histone deacetylase, HDAC9. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10572-10577.
[http://dx.doi.org/10.1073/pnas.191375098] [PMID: 11535832]
[81]
Foolad, F.; Khodagholi, F.; Javan, M. Sirtuins in Multiple Sclerosis: The crossroad of neurodegeneration, autoimmunity and metabolism. Mult. Scler. Relat. Disord., 2019, 34, 47-58.
[http://dx.doi.org/10.1016/j.msard.2019.06.004] [PMID: 31228716]
[82]
He, H.; Hu, Z.; Xiao, H.; Zhou, F.; Yang, B. The tale of histone modifications and its role in multiple sclerosis. Hum. Genomics, 2018, 12(1), 31.
[http://dx.doi.org/10.1186/s40246-018-0163-5] [PMID: 29933755]
[83]
Kovacs, J.J.; Murphy, P.J.; Gaillard, S.; Zhao, X.; Wu, J-T.; Nicchitta, C.V.; Yoshida, M.; Toft, D.O.; Pratt, W.B.; Yao, T.P. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell, 2005, 18(5), 601-607.
[http://dx.doi.org/10.1016/j.molcel.2005.04.021] [PMID: 15916966]
[84]
Zhang, X.; Yuan, Z.; Zhang, Y.; Yong, S.; Salas-Burgos, A.; Koomen, J.; Olashaw, N.; Parsons, J.T.; Yang, X.J.; Dent, S.R.; Yao, T.P.; Lane, W.S.; Seto, E. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell, 2007, 27(2), 197-213.
[http://dx.doi.org/10.1016/j.molcel.2007.05.033] [PMID: 17643370]
[85]
Rivieccio, M.A.; Brochier, C.; Willis, D.E.; Walker, B.A.; D’Annibale, M.A.; McLaughlin, K.; Siddiq, A.; Kozikowski, A.P.; Jaffrey, S.R.; Twiss, J.L.; Ratan, R.R.; Langley, B. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc. Natl. Acad. Sci. USA, 2009, 106(46), 19599-19604.
[http://dx.doi.org/10.1073/pnas.0907935106] [PMID: 19884510]
[86]
Perry, S.; Kiragasi, B.; Dickman, D.; Ray, A. The role of histone deacetylase 6 in synaptic plasticity and memory. Cell Rep., 2017, 18(6), 1337-1345.
[http://dx.doi.org/10.1016/j.celrep.2017.01.028] [PMID: 28178513]
[87]
Finnin, M.S.; Donigian, J.R.; Cohen, A.; Richon, V.M.; Rifkind, R.A.; Marks, P.A.; Breslow, R.; Pavletich, N.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 1999, 401(6749), 188-193.
[http://dx.doi.org/10.1038/43710] [PMID: 10490031]
[88]
Ganai, S.A. A Ganai S. Small-molecule modulation of HDAC6 activity: the propitious therapeutic strategy to vanquish neurodegenerative disorders. Curr. Med. Chem., 2017, 24(37), 4104-4120.
[http://dx.doi.org/10.2174/0929867324666170209104030] [PMID: 28215142]
[89]
Guo, W; Van Den Bosch, L. Therapeutic potential of HDAC6 in amyotrophic lateral sclerosis.Cell stress,, 2018, 2(1)
[http://dx.doi.org/10.15698/cst2018.01.120]
[90]
Guardiola, A.R.; Yao, T-P. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J. Biol. Chem., 2002, 277(5), 3350-3356.
[http://dx.doi.org/10.1074/jbc.M109861200] [PMID: 11726666]
[91]
Wang, L.; Zheng, S.; Zhang, L.; Xiao, H.; Gan, H.; Chen, H.; Zhai, X.; Liang, P.; Zhao, J.; Li, Y. Histone deacetylation 10 alleviates inflammation after intracerebral hemorrhage via the PTPN22/NLRP3 pathway in rats. Neuroscience, 2020, 432, 247-259.
[http://dx.doi.org/10.1016/j.neuroscience.2020.02.027] [PMID: 32112918]
[92]
Liao, W.; Sun, J.; Liu, W.; Li, W.; Jia, J.; Ou, F.; Su, K.; Zheng, Y.; Zhang, Z.; Sun, Y. HDAC10 upregulation contributes to interleukin 1β-mediated inflammatory activation of synovium-derived mesenchymal stem cells in temporomandibular joint. J. Cell. Physiol., 2019, 234(8), 12646-12662.
[http://dx.doi.org/10.1002/jcp.27873] [PMID: 30515817]
[93]
Michan, S.; Sinclair, D. Sirtuins in mammals: insights into their biological function. Biochem. J., 2007, 404(1), 1-13.
[http://dx.doi.org/10.1042/BJ20070140] [PMID: 17447894]
[94]
Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[95]
Nemoto, S.; Fergusson, M.M.; Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem., 2005, 280(16), 16456-16460.
[http://dx.doi.org/10.1074/jbc.M501485200] [PMID: 15716268]
[96]
Cohen, HY; Miller, C; Bitterman, KJ; Wall, NR; Hekking, B; Kessler, B Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. science,, 2004, 305(5682), 390-392.
[97]
Qadir, MI; Anwar, S Sirtuins in brain aging and neurological disorders.Critical Reviews™ in Eukaryotic Gene Expression,, 2017, 27(4)
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2017019532]
[98]
Jeong, H.; Cohen, D.E.; Cui, L.; Supinski, A.; Savas, J.N.; Mazzulli, J.R.; Yates, J.R., III; Bordone, L.; Guarente, L.; Krainc, D. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med., 2011, 18(1), 159-165.
[http://dx.doi.org/10.1038/nm.2559] [PMID: 22179316]
[99]
Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403(6771), 795-800.
[http://dx.doi.org/10.1038/35001622] [PMID: 10693811]
[100]
Li, W.; Zhang, B.; Tang, J.; Cao, Q.; Wu, Y.; Wu, C.; Guo, J.; Ling, E.A.; Liang, F. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin. J. Neurosci., 2007, 27(10), 2606-2616.
[http://dx.doi.org/10.1523/JNEUROSCI.4181-06.2007] [PMID: 17344398]
[101]
Guarente, L. Calorie restriction and sirtuins revisited. Genes Dev., 2013, 27(19), 2072-2085.
[http://dx.doi.org/10.1101/gad.227439.113] [PMID: 24115767]
[102]
Donmez, G.; Outeiro, T.F. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol. Med., 2013, 5(3), 344-352.
[http://dx.doi.org/10.1002/emmm.201302451] [PMID: 23417962]
[103]
Lee, I.H. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp. Mol. Med., 2019, 51(9), 1-11.
[http://dx.doi.org/10.1038/s12276-019-0302-7] [PMID: 31492861]
[104]
Zhang, F.; Wang, S.; Gan, L.; Vosler, P.S.; Gao, Y.; Zigmond, M.J.; Chen, J. Protective effects and mechanisms of sirtuins in the nervous system. Prog. Neurobiol., 2011, 95(3), 373-395.
[http://dx.doi.org/10.1016/j.pneurobio.2011.09.001] [PMID: 21930182]
[105]
Zhang, J.; Xiang, H.; Liu, J.; Chen, Y.; He, R-R.; Liu, B. Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target. Theranostics, 2020, 10(18), 8315-8342.
[http://dx.doi.org/10.7150/thno.45922] [PMID: 32724473]
[106]
Vernucci, E.; Tomino, C.; Molinari, F.; Limongi, D.; Aventaggiato, M; Sansone, L. Mitophagy and oxidative stress in cancer and aging: focus on sirtuins and nanomaterials. Oxidative medicine and cellular longevity, 2019.
[http://dx.doi.org/10.1155/2019/6387357]
[107]
Ye, X.; Li, M.; Hou, T.; Gao, T.; Zhu, W.G.; Yang, Y. Sirtuins in glucose and lipid metabolism. Oncotarget, 2017, 8(1), 1845-1859.
[http://dx.doi.org/10.18632/oncotarget.12157] [PMID: 27659520]
[108]
Morin, N.; Jourdain, V.A.; Di Paolo, T. Modeling dyskinesia in animal models of Parkinson disease. Exp. Neurol., 2014, 256, 105-116.
[http://dx.doi.org/10.1016/j.expneurol.2013.01.024] [PMID: 23360802]
[109]
Salvatori, I.; Valle, C.; Ferri, A.; Carrì, M.T. SIRT3 and mitochondrial metabolism in neurodegenerative diseases. Neurochem. Int., 2017, 109, 184-192.
[http://dx.doi.org/10.1016/j.neuint.2017.04.012] [PMID: 28449871]
[110]
Han, Y.; Zhou, S.; Coetzee, S.; Chen, A. SIRT4 and its roles in energy and redox metabolism in health, disease and during exercise. Front. Physiol., 2019, 10, 1006.
[http://dx.doi.org/10.3389/fphys.2019.01006] [PMID: 31447696]
[111]
Shih, J.; Liu, L.; Mason, A.; Higashimori, H.; Donmez, G. Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid. J. Neurochem., 2014, 131(5), 573-581.
[http://dx.doi.org/10.1111/jnc.12942] [PMID: 25196144]
[112]
Schlicker, C.; Gertz, M.; Papatheodorou, P.; Kachholz, B.; Becker, C.F.; Steegborn, C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol., 2008, 382(3), 790-801.
[http://dx.doi.org/10.1016/j.jmb.2008.07.048] [PMID: 18680753]
[113]
Wang, C-H.; Wei, Y-H. Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and Type 2 Diabetes. Int. J. Mol. Sci., 2020, 21(15), 5266.
[http://dx.doi.org/10.3390/ijms21155266] [PMID: 32722262]
[114]
Li, F.; Liu, L. SIRT5 Deficiency Enhances susceptibility to kainate-induced seizures and exacerbates hippocampal neurodegeneration not through mitochondrial antioxidant enzyme SOD2. Front. Cell. Neurosci., 2016, 10, 171.
[http://dx.doi.org/10.3389/fncel.2016.00171] [PMID: 27445698]
[115]
Tennen, R.I.; Chua, K.F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem. Sci., 2011, 36(1), 39-46.
[http://dx.doi.org/10.1016/j.tibs.2010.07.009] [PMID: 20729089]
[116]
Wang, Y.; He, J.; Liao, M.; Hu, M.; Li, W.; Ouyang, H.; Wang, X.; Ye, T.; Zhang, Y.; Ouyang, L. An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. Eur. J. Med. Chem., 2019, 161, 48-77.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.028] [PMID: 30342425]
[117]
Mostoslavsky, R.; Chua, K.F.; Lombard, D.B.; Pang, W.W.; Fischer, M.R.; Gellon, L.; Liu, P.; Mostoslavsky, G.; Franco, S.; Murphy, M.M.; Mills, K.D.; Patel, P.; Hsu, J.T.; Hong, A.L.; Ford, E.; Cheng, H.L.; Kennedy, C.; Nunez, N.; Bronson, R.; Frendewey, D.; Auerbach, W.; Valenzuela, D.; Karow, M.; Hottiger, M.O.; Hursting, S.; Barrett, J.C.; Guarente, L.; Mulligan, R.; Demple, B.; Yancopoulos, G.D.; Alt, F.W. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell, 2006, 124(2), 315-329.
[http://dx.doi.org/10.1016/j.cell.2005.11.044] [PMID: 16439206]
[118]
Ford, E.; Voit, R.; Liszt, G.; Magin, C.; Grummt, I.; Guarente, L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev., 2006, 20(9), 1075-1080.
[http://dx.doi.org/10.1101/gad.1399706] [PMID: 16618798]
[119]
Fan, B.; Lu, K-Y.; Reymond Sutandy, F.X.; Chen, Y-W.; Konan, K.; Zhu, H.; Kao, C.C.; Chen, C.S. A human proteome microarray identifies that the heterogeneous nuclear ribonucleoprotein K (hnRNP K) recognizes the 5′ terminal sequence of the hepatitis C virus RNA. Mol. Cell. Proteomics, 2014, 13(1), 84-92.
[http://dx.doi.org/10.1074/mcp.M113.031682] [PMID: 24113282]
[120]
Vazquez, B.N.; Thackray, J.K.; Serrano, L. Sirtuins and DNA damage repair: SIRT7 comes to play. Nucleus, 2017, 8(2), 107-115.
[http://dx.doi.org/10.1080/19491034.2016.1264552] [PMID: 28406750]
[121]
George, S.; Palli, S.R. Histone deacetylase 11 knockdown blocks larval development and metamorphosis in the red flour beetle, Tribolium castaneum. Front. Genet., 2020, 11, 683.
[http://dx.doi.org/10.3389/fgene.2020.00683] [PMID: 32719718]
[122]
Gao, L.; Cueto, M.A.; Asselbergs, F.; Atadja, P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem., 2002, 277(28), 25748-25755.
[http://dx.doi.org/10.1074/jbc.M111871200] [PMID: 11948178]
[123]
Licciardi, P.V; Karagiannis, T.C Regulation of immune responses by histone deacetylase inhibitors. International Scholarly Research Notices, 2012.
[http://dx.doi.org/10.5402/2012/690901]
[124]
Kelley, B.J.; Petersen, R.C. Alzheimer’s disease and mild cognitive impairment. Neurol. Clin., 2007, 25(3), 577-609. v.
[http://dx.doi.org/10.1016/j.ncl.2007.03.008] [PMID: 17659182]
[125]
Karantzoulis, S.; Galvin, J.E. Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev. Neurother., 2011, 11(11), 1579-1591.
[http://dx.doi.org/10.1586/ern.11.155] [PMID: 22014137]
[126]
Guan, J-S.; Haggarty, S.J.; Giacometti, E.; Dannenberg, J-H.; Joseph, N.; Gao, J.; Nieland, T.J.; Zhou, Y.; Wang, X.; Mazitschek, R.; Bradner, J.E.; DePinho, R.A.; Jaenisch, R.; Tsai, L.H. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 2009, 459(7243), 55-60.
[http://dx.doi.org/10.1038/nature07925] [PMID: 19424149]
[127]
McQuown, S.C.; Barrett, R.M.; Matheos, D.P.; Post, R.J.; Rogge, G.A.; Alenghat, T.; Mullican, S.E.; Jones, S.; Rusche, J.R.; Lazar, M.A.; Wood, M.A. HDAC3 is a critical negative regulator of long-term memory formation. J. Neurosci., 2011, 31(2), 764-774.
[http://dx.doi.org/10.1523/JNEUROSCI.5052-10.2011] [PMID: 21228185]
[128]
Bardai, F.H.; D’Mello, S.R. Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3β. J. Neurosci., 2011, 31(5), 1746-1751.
[http://dx.doi.org/10.1523/JNEUROSCI.5704-10.2011] [PMID: 21289184]
[129]
Szegő, É.M.; Outeiro, T.F.; Kazantsev, A.G. Sirtuins in brain and neurodegenerative disease. Introductory Review on Sirtuins in Biology, Aging, and Disease; Elsevier, 2018, pp. 175-195.
[130]
de Lau, L.M.; Breteler, M.M. Epidemiology of Parkinson’s disease. Lancet Neurol., 2006, 5(6), 525-535.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]
[131]
Dietz, K.C.; Casaccia, P. HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol. Res., 2010, 62(1), 11-17.
[http://dx.doi.org/10.1016/j.phrs.2010.01.011] [PMID: 20123018]
[132]
Shukla, S.; Tekwani, B.L. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front. Pharmacol., 2020, 11, 537.
[http://dx.doi.org/10.3389/fphar.2020.00537] [PMID: 32390854]
[133]
Harrison, I.F.; Powell, N.M.; Dexter, D.T. The histone deacetylase inhibitor nicotinamide exacerbates neurodegeneration in the lactacystin rat model of Parkinson’s disease. J. Neurochem., 2019, 148(1), 136-156.
[http://dx.doi.org/10.1111/jnc.14599] [PMID: 30269333]
[134]
Wu, X.; Chen, P.S.; Dallas, S.; Wilson, B.; Block, M.L.; Wang, C-C.; Kinyamu, H.; Lu, N.; Gao, X.; Leng, Y.; Chuang, D.M.; Zhang, W.; Lu, R.B.; Hong, J.S. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int. J. Neuropsychopharmacol., 2008, 11(8), 1123-1134.
[http://dx.doi.org/10.1017/S1461145708009024] [PMID: 18611290]
[135]
Glozak, MA; Sengupta, N; Zhang, X; Seto, E Acetylation and deacetylation of non-histone proteins. gene,, 2005, 363, 15-23.
[136]
Dompierre, J.P.; Godin, J.D.; Charrin, B.C.; Cordelières, F.P.; King, S.J.; Humbert, S.; Saudou, F. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J. Neurosci., 2007, 27(13), 3571-3583.
[http://dx.doi.org/10.1523/JNEUROSCI.0037-07.2007] [PMID: 17392473]
[137]
Zhang, Y.; Li, N.; Caron, C.; Matthias, G.; Hess, D.; Khochbin, S.; Matthias, P. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J., 2003, 22(5), 1168-1179.
[http://dx.doi.org/10.1093/emboj/cdg115] [PMID: 12606581]
[138]
Suh, H-S.; Choi, S.; Khattar, P.; Choi, N.; Lee, S.C. Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. J. Neuroimmune Pharmacol., 2010, 5(4), 521-532.
[http://dx.doi.org/10.1007/s11481-010-9192-0] [PMID: 20157787]
[139]
Liu, L.; Peritore, C.; Ginsberg, J.; Shih, J.; Arun, S.; Donmez, G. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease. Behav. Brain Res., 2015, 281, 215-221.
[http://dx.doi.org/10.1016/j.bbr.2014.12.035] [PMID: 25541039]
[140]
Reuter, I.; Tai, Y.F.; Pavese, N.; Chaudhuri, K.R.; Mason, S.; Polkey, C.E.; Clough, C.; Brooks, D.J.; Barker, R.A.; Piccini, P. Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry, 2008, 79(8), 948-951.
[http://dx.doi.org/10.1136/jnnp.2007.142380] [PMID: 18356253]
[141]
Beal, M.F.; Ferrante, R.J.; Swartz, K.J.; Kowall, N.W. Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J. Neurosci., 1991, 11(6), 1649-1659.
[http://dx.doi.org/10.1523/JNEUROSCI.11-06-01649.1991] [PMID: 1710657]
[142]
Valor, L.M. Understanding histone deacetylation in Huntington’s disease. Oncotarget, 2017, 8(4), 5660-5661.
[http://dx.doi.org/10.18632/oncotarget.13924] [PMID: 28086204]
[143]
Sadri-Vakili, G.; Cha, J-H.J. Histone deacetylase inhibitors: a novel therapeutic approach to Huntington’s disease (complex mechanism of neuronal death). Curr. Alzheimer Res., 2006, 3(4), 403-408.
[http://dx.doi.org/10.2174/156720506778249407] [PMID: 17017871]
[144]
Gardian, G.; Browne, S.E.; Choi, D-K.; Klivenyi, P.; Gregorio, J.; Kubilus, J.K.; Ryu, H.; Langley, B.; Ratan, R.R.; Ferrante, R.J.; Beal, M.F. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem., 2005, 280(1), 556-563.
[http://dx.doi.org/10.1074/jbc.M410210200] [PMID: 15494404]
[145]
Jia, H.; Morris, C.D.; Williams, R.M.; Loring, J.F.; Thomas, E.A. HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc. Natl. Acad. Sci. USA, 2015, 112(1), E56-E64.
[http://dx.doi.org/10.1073/pnas.1415195112] [PMID: 25535382]
[146]
Wijesekera, L.C.; Leigh, P.N. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis., 2009, 4(1), 3.
[http://dx.doi.org/10.1186/1750-1172-4-3] [PMID: 19192301]
[147]
Rossaert, E.; Pollari, E.; Jaspers, T.; Van Helleputte, L.; Jarpe, M.; Van Damme, P.; De Bock, K.; Moisse, M.; Van Den Bosch, L. Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model. Acta Neuropathol. Commun., 2019, 7(1), 107.
[http://dx.doi.org/10.1186/s40478-019-0750-2] [PMID: 31277703]
[148]
Pigna, E.; Simonazzi, E.; Sanna, K.; Bernadzki, K.M.; Proszynski, T.; Heil, C.; Palacios, D.; Adamo, S.; Moresi, V. Histone deacetylase 4 protects from denervation and skeletal muscle atrophy in a murine model of amyotrophic lateral sclerosis. EBioMedicine, 2019, 40, 717-732.
[http://dx.doi.org/10.1016/j.ebiom.2019.01.038] [PMID: 30713114]
[149]
Kuta, R.; Larochelle, N.; Fernandez, M.; Pal, A.; Minotti, S.; Tibshirani, M.; St Louis, K.; Gentil, B.J.; Nalbantoglu, J.N.; Hermann, A.; Durham, H.D. Depending on the stress, histone deacetylase inhibitors act as heat shock protein co-inducers in motor neurons and potentiate arimoclomol, exerting neuroprotection through multiple mechanisms in ALS models. Cell Stress Chaperones, 2020, 25(1), 173-191.
[http://dx.doi.org/10.1007/s12192-019-01064-1] [PMID: 31900865]
[150]
Lagger, G.; O’Carroll, D.; Rembold, M.; Khier, H.; Tischler, J.; Weitzer, G.; Schuettengruber, B.; Hauser, C.; Brunmeir, R.; Jenuwein, T.; Seiser, C. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J., 2002, 21(11), 2672-2681.
[http://dx.doi.org/10.1093/emboj/21.11.2672] [PMID: 12032080]
[151]
Yang, W-M.; Yao, Y-L.; Sun, J-M.; Davie, J.R.; Seto, E. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J. Biol. Chem., 1997, 272(44), 28001-28007.
[http://dx.doi.org/10.1074/jbc.272.44.28001] [PMID: 9346952]
[152]
Longworth, M.S.; Laimins, L.A. Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Src. Oncogene, 2006, 25(32), 4495-4500.
[http://dx.doi.org/10.1038/sj.onc.1209473] [PMID: 16532030]
[153]
Hu, E.; Chen, Z.; Fredrickson, T.; Zhu, Y.; Kirkpatrick, R.; Zhang, G-F.; Johanson, K.; Sung, C.M.; Liu, R.; Winkler, J. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J. Biol. Chem., 2000, 275(20), 15254-15264.
[http://dx.doi.org/10.1074/jbc.M908988199] [PMID: 10748112]
[154]
Ganai, S.A. Histone Deacetylase Inhibitors-Epidrugs for Neurological Disorders; Springer, 2019.
[http://dx.doi.org/10.1007/978-981-13-8019-8]
[155]
Rumbaugh, G.; Sillivan, S.E.; Ozkan, E.D.; Rojas, C.S.; Hubbs, C.R.; Aceti, M.; Kilgore, M.; Kudugunti, S.; Puthanveettil, S.V.; Sweatt, J.D.; Rusche, J.; Miller, C.A. Pharmacological selectivity within class I histone deacetylases predicts effects on synaptic function and memory rescue. Neuropsychopharmacology, 2015, 40(10), 2307-2316.
[http://dx.doi.org/10.1038/npp.2015.93] [PMID: 25837283]
[156]
Jeong, J.H.; An, J.Y.; Kwon, Y.T.; Rhee, J.G.; Lee, Y.J. Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem., 2009, 106(1), 73-82.
[http://dx.doi.org/10.1002/jcb.21977] [PMID: 19009557]
[157]
Hockly, E.; Richon, V.M.; Woodman, B.; Smith, D.L.; Zhou, X.; Rosa, E.; Sathasivam, K.; Ghazi-Noori, S.; Mahal, A.; Lowden, P.A.; Steffan, J.S.; Marsh, J.L.; Thompson, L.M.; Lewis, C.M.; Marks, P.A.; Bates, G.P. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA, 2003, 100(4), 2041-2046.
[http://dx.doi.org/10.1073/pnas.0437870100] [PMID: 12576549]
[158]
Chang, JK Tolfenamic acid: A potential modifier of tau protein in Alzheimer's disease. 2015 (Thesis).,
[159]
Guo, W.; Naujock, M.; Fumagalli, L.; Vandoorne, T.; Baatsen, P.; Boon, R.; Ordovás, L.; Patel, A.; Welters, M.; Vanwelden, T.; Geens, N.; Tricot, T.; Benoy, V.; Steyaert, J.; Lefebvre-Omar, C.; Boesmans, W.; Jarpe, M.; Sterneckert, J.; Wegner, F.; Petri, S.; Bohl, D.; Vanden, B.P.; Robberecht, W.; Van Damme, P.; Verfaillie, C.; Van Den Bosch, L. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat. Commun., 2017, 8(1), 861.
[http://dx.doi.org/10.1038/s41467-017-00911-y] [PMID: 29021520]
[160]
Cudkowicz, M.E.; Andres, P.L.; Macdonald, S.A.; Bedlack, R.S.; Choudry, R.; Brown, R.H., Jr; Zhang, H.; Schoenfeld, D.A.; Shefner, J.; Matson, S.; Matson, W.R.; Ferrante, R.J. Northeast ALS and National VA ALS Research Consortiums. Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph. Lateral Scler., 2009, 10(2), 99-106.
[http://dx.doi.org/10.1080/17482960802320487] [PMID: 18688762]
[161]
Buonvicino, D.; Felici, R.; Ranieri, G.; Caramelli, R.; Lapucci, A.; Cavone, L.; Muzzi, M.; Di Pietro, L.; Bernardini, C.; Zwergel, C.; Valente, S.; Mai, A.; Chiarugi, A. Effects of class II-selective histone deacetylase inhibitor on neuromuscular function and disease progression in SOD1-ALS mice. Neuroscience, 2018, 379, 228-238.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.022] [PMID: 29588251]
[162]
Grozinger, C.M.; Hassig, C.A.; Schreiber, S.L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. USA, 1999, 96(9), 4868-4873.
[http://dx.doi.org/10.1073/pnas.96.9.4868] [PMID: 10220385]
[163]
Wu, L-P.; Wang, X.; Li, L.; Zhao, Y.; Lu, S.; Yu, Y.; Zhou, W.; Liu, X.; Yang, J.; Zheng, Z.; Zhang, H.; Feng, J.; Yang, Y.; Wang, H.; Zhu, W.G. Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and H3K9 methylation on the promoter. Mol. Cell. Biol., 2008, 28(10), 3219-3235.
[http://dx.doi.org/10.1128/MCB.01516-07] [PMID: 18332107]
[164]
Maxwell, P.H.; Wiesener, M.S.; Chang, G-W.; Clifford, S.C.; Vaux, E.C.; Cockman, M.E.; Wykoff, C.C.; Pugh, C.W.; Maher, E.R.; Ratcliffe, P.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 1999, 399(6733), 271-275.
[http://dx.doi.org/10.1038/20459] [PMID: 10353251]
[165]
Liu, Y.; Zhang, Y.; Zhu, K.; Chi, S.; Wang, C.; Xie, A. Emerging role of Sirtuin 2 in Parkinson’s disease. Front. Aging Neurosci., 2020, 11, 372.
[http://dx.doi.org/10.3389/fnagi.2019.00372] [PMID: 31998119]
[166]
Zhang, L.; Hou, X.; Ma, R.; Moley, K.; Schedl, T.; Wang, Q. Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. FASEB J., 2014, 28(3), 1435-1445.
[http://dx.doi.org/10.1096/fj.13-244111] [PMID: 24334550]
[167]
Meng, H.; Yan, W-Y.; Lei, Y-H.; Wan, Z.; Hou, Y-Y.; Sun, L-K.; Zhou, J.P. SIRT3 regulation of mitochondrial quality control in neurodegenerative diseases. Front. Aging Neurosci., 2019, 11, 313.
[http://dx.doi.org/10.3389/fnagi.2019.00313] [PMID: 31780922]
[168]
Zhang, J-Y.; Deng, Y-N.; Zhang, M.; Su, H.; Qu, Q-M. SIRT3 acts as a neuroprotective agent in rotenone-induced Parkinson cell model. Neurochem. Res., 2016, 41(7), 1761-1773.
[http://dx.doi.org/10.1007/s11064-016-1892-2] [PMID: 27053302]
[169]
Moraes, D.S.; Moreira, D.C.; Andrade, J.M.O.; Santos, S.H.S. Sirtuins, brain and cognition: A review of resveratrol effects. IBRO Rep., 2020, 9, 46-51.
[http://dx.doi.org/10.1016/j.ibror.2020.06.004] [PMID: 33336103]
[170]
Min, S-W.; Sohn, P.D.; Cho, S-H.; Swanson, R.A.; Gan, L. Sirtuins in neurodegenerative diseases: an update on potential mechanisms. Front. Aging Neurosci., 2013, 5, 53.
[http://dx.doi.org/10.3389/fnagi.2013.00053] [PMID: 24093018]
[171]
Kaluski, S.; Portillo, M.; Besnard, A.; Stein, D.; Einav, M.; Zhong, L.; Ueberham, U.; Arendt, T.; Mostoslavsky, R.; Sahay, A.; Toiber, D. Neuroprotective functions for the histone deacetylase SIRT6. Cell Rep., 2017, 18(13), 3052-3062.
[http://dx.doi.org/10.1016/j.celrep.2017.03.008] [PMID: 28355558]
[172]
Durham, B.S.; Grigg, R.; Wood, I.C. Inhibition of histone deacetylase 1 or 2 reduces induced cytokine expression in microglia through a protein synthesis independent mechanism. J. Neurochem., 2017, 143(2), 214-224.
[http://dx.doi.org/10.1111/jnc.14144] [PMID: 28796285]
[173]
Pirooznia, S.K.; Elefant, F. Targeting specific HATs for neurodegenerative disease treatment: translating basic biology to therapeutic possibilities. Front. Cell. Neurosci., 2013, 7, 30.
[http://dx.doi.org/10.3389/fncel.2013.00030] [PMID: 23543406]
[174]
Bournival, J.; Quessy, P.; Martinoli, M-G. Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell. Mol. Neurobiol., 2009, 29(8), 1169-1180.
[http://dx.doi.org/10.1007/s10571-009-9411-5] [PMID: 19466539]
[175]
Mochel, F.; Haller, R.G. Energy deficit in Huntington disease: why it matters. J. Clin. Invest., 2011, 121(2), 493-499.
[http://dx.doi.org/10.1172/JCI45691] [PMID: 21285522]
[176]
Chandramowlishwaran, P.; Vijay, A.; Abraham, D.; Li, G.; Mwangi, S.M.; Srinivasan, S. Role of Sirtuins in modulating neurodegeneration of the Enteric Nervous system and Central Nervous system. Front. Neurosci., 2020, 14614331
[http://dx.doi.org/10.3389/fnins.2020.614331] [PMID: 33414704]
[177]
Hildreth, K.L.; Van Pelt, R.E.; Schwartz, R.S. Obesity, insulin resistance, and Alzheimer’s disease. Obesity (Silver Spring), 2012, 20(8), 1549-1557.
[http://dx.doi.org/10.1038/oby.2012.19] [PMID: 22310232]
[178]
Singh, P.; Hanson, P.S.; Morris, C.M. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neurosci., 2017, 18(1), 46.
[http://dx.doi.org/10.1186/s12868-017-0364-1] [PMID: 28578695]
[179]
Qiao, Y.; Sun, J.; Xia, S.; Tang, X.; Shi, Y.; Le, G. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct., 2014, 5(6), 1241-1249.
[http://dx.doi.org/10.1039/c3fo60630a] [PMID: 24722352]
[180]
Green, K.N.; Steffan, J.S.; Martinez-Coria, H.; Sun, X.; Schreiber, S.S.; Thompson, L.M.; LaFerla, F.M. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci., 2008, 28(45), 11500-11510.
[http://dx.doi.org/10.1523/JNEUROSCI.3203-08.2008] [PMID: 18987186]
[181]
Donmez, G. The effects of SIRT1 on Alzheimer’s disease models. Int. J. Alzheimers Dis., 2012, 2012, 509-529.
[http://dx.doi.org/10.1155/2012/509529]
[182]
Cacabelos, R.; Carril, J.C.; Cacabelos, N.; Kazantsev, A.G.; Vostrov, A.V.; Corzo, L.; Cacabelos, P.; Goldgaber, D. Sirtuins in Alzheimer’s disease: SIRT2-related genophenotypes and implications for pharmacoepigenetics. Int. J. Mol. Sci., 2019, 20(5), 1249.
[http://dx.doi.org/10.3390/ijms20051249] [PMID: 30871086]
[183]
Lalla, R.; Donmez, G. The role of sirtuins in Alzheimer’s disease. Front. Aging Neurosci., 2013, 5, 16.
[http://dx.doi.org/10.3389/fnagi.2013.00016] [PMID: 23576985]
[184]
Herskovits, A.Z.; Guarente, L. SIRT1 in neurodevelopment and brain senescence. Neuron, 2014, 81(3), 471-483.
[http://dx.doi.org/10.1016/j.neuron.2014.01.028] [PMID: 24507186]
[185]
Duan, W. Targeting sirtuin-1 in Huntington’s disease: rationale and current status. CNS Drugs, 2013, 27(5), 345-352.
[http://dx.doi.org/10.1007/s40263-013-0055-0] [PMID: 23549885]
[186]
Naia, L.; Carmo, C.; Campesan, S.; Lopes, C.; Valero, J.; Rosenstock, T.R. SIRT3, a modifier of mitochondrial function in Huntington’s disease. Free Radic. Biol. Med., 2018, 120, S17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.072]
[187]
Pasinetti, G.M.; Bilski, A.E.; Zhao, W. Sirtuins as therapeutic targets of ALS.Cell Res.,, 2013, 23(9), 1073-1074.
[http://dx.doi.org/10.1038/cr.2013.94] [PMID: 23856645]

© 2024 Bentham Science Publishers | Privacy Policy