Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Efficacy of Cavern Isolates for Biodegradation of Synthetic Plastic

Author(s): Jamila Tabassum, Muhammad Luqman*, Fariha Hasan, Fariha Arooj, Saif Ur Rehman Kashif and Asma Yousafzai

Volume 19, Issue 3, 2022

Published on: 02 June, 2021

Page: [198 - 207] Pages: 10

DOI: 10.2174/1570178618666210602161857

Price: $65

Open Access Journals Promotions 2
Abstract

Synthetic plastic waste management is a tenacious environmental concern at global level. Although all types of synthetic plastics are a nuisance to the environment, however, versatility and one time use has made polyethylene (PE) a foremost environmental issue. Current study has investigated cavern bacterial strains isolated from PE samples from San Giovanni cave, Sardinia, Italy for their efficacy to biodegrade low density polyethylene (LDPE) film. It was an initial effort to use cavern bacteria in plastic biodegradation studies. Chemical and physical changes in the composition of LDPE were studied by Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) after incubation with the bacterial consortium for two months. Collected cavern PE plastic samples were also studied for biodegradation after incubation in nutrient broth for two months. FTIR revealed obvious signs of degradation with the appearance of two new peaks of functional groups, nitriles (C≡N) and amines (N-H) in LDPE film, which are intermediate metabolites of β-oxidation pathway. An increase in various existing peaks of several intermediate metabolites, including aldehydes, ketones, alcohols, and carboxylic acids, were also observed in experimental LDPE compared to control. Peaks of alkanes decreased significantly owing to cavern bacterial activity. SEM revealed biofilm formation on experimental LDPE surface with substantial mechanical damage. Similar signs of degradation were observed in the cavern PE samples. Four bacterial strains in the current consortium including Bacillus sonorensis, Bacillus subtilis, Aneurinibacillus spp., and Alcaligenes faecalis are first time reported to be linked with biodegradation of plastics. The cavern bacteria under study have the potential to biodegrade LDPE.

Keywords: Polyethylene, FTIR, SEM, LDPE, biodegradation, synthetic plastic.

Graphical Abstract
[1]
Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Marine pollution. Plastic waste inputs from land into the ocean. Science, 2015, 347(6223), 768-771.
[http://dx.doi.org/10.1126/science.1260352] [PMID: 25678662]
[2]
Geyer, R.; Jambeck, J.R.; Law, K.L. Sci. Adv., 2017, 3(7)e1700782
[http://dx.doi.org/10.1126/sciadv.1700782] [PMID: 28776036]
[3]
Prosvirin, O. Achievements and Prospects of Innovations and Technology. 9th All-Russian Scientific and Practical Conference of Students, Kruchina, A.G. Mikhailova, Russia2020, pp. 378-382.
[4]
Ahmed, T.; Sipra, H.F. Environmental and Health Implications of Plastic Pollution: A Pakistan Perspective. Handbook of Research on Environmental and Human Health Impacts of Plastic Pollution; IGI Global: India, 2020, pp. 38-58.
[http://dx.doi.org/10.4018/978-1-5225-9452-9.ch003]
[5]
Khanam, P.N.; AlMaadeed, M.A.A. Adv. Manuf.: Polym Compos. Sci., 2015, 1, 63-79.
[6]
Abdel, A.T.O.F.; Amin, M.R.; Ibrahim, M.M.; Abdel-Wahab, M.; Abd-El-Rahman, E.N.J. Waste Resour. Recycl., 2020, 1, 202.
[7]
Ghatge, S.; Yang, Y. Ahn. J. Appl. Biol. Chem., 2020, 63, 27.
[http://dx.doi.org/10.1186/s13765-020-00511-3]
[8]
Alabi, O.A.; Ologbonjaye, K.I.; Awosolu, O.; Alalade, O.E. J. Toxicol. Risk Assess., 2019, 5, 1-21.
[9]
Mumtaz, T.; Khan, M.R.; Hassan, M.A. Micron, 2010, 41(5), 430-438.
[http://dx.doi.org/10.1016/j.micron.2010.02.008] [PMID: 20207547]
[10]
Lobelle, D.; Cunliffe, M. Mar. Pollut. Bull., 2011, 62(1), 197-200.
[http://dx.doi.org/10.1016/j.marpolbul.2010.10.013] [PMID: 21093883]
[11]
Mukherjee, S. Roy, Chowdhuri, U.; Kundu, P.P. RSC Advances, 2016, 6, 2982-2992.
[http://dx.doi.org/10.1039/C5RA25128A]
[12]
Chiellini, E.; Corti, A.; Swift, G. Polym. Degrad. Stabil., 2003, 81, 341-351.
[http://dx.doi.org/10.1016/S0141-3910(03)00105-8]
[13]
Syranidou, E.; Karkanorachaki, K.; Amorotti, F.; Avgeropoulos, A.; Kolvenbach, B.; Zhou, N.Y.; Fava, F.; Corvini, P.F.X.; Kalogerakis, N. J. Hazard. Mater., 2019, 375, 33-42.
[http://dx.doi.org/10.1016/j.jhazmat.2019.04.078] [PMID: 31039462]
[14]
Danso, D.; Chow, J.; Streit, W.R. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl. Environ. Microbiol., 2019, 85(19), e01095-e19.
[http://dx.doi.org/10.1128/AEM.01095-19] [PMID: 31324632]
[15]
Restrepo-Florez, J.M.; Bassi, A.; Thompson, M.R. Int. Biodeter. Biodegr., 2014, 88, 83-90.
[http://dx.doi.org/10.1016/j.ibiod.2013.12.014]
[16]
Sen, S.K.; Raut, S. J. Environ. Chem. Eng., 2015, 3, 462-473.
[http://dx.doi.org/10.1016/j.jece.2015.01.003]
[17]
Pometto, A.L., III; Lee, B.T.; Johnson, K.E. Appl. Environ. Microbiol., 1992, 58(2), 731-733.
[http://dx.doi.org/10.1128/AEM.58.2.731-733.1992] [PMID: 1610196]
[18]
Albertsson, A.C.; Barenstedt, C.; Karlsson, S.; Lindberg, T. Polymer (Guildf.), 1995, 36, 3075-3083.
[http://dx.doi.org/10.1016/0032-3861(95)97868-G]
[19]
Hadad, D.; Geresh, S.; Sivan, A. J. Appl. Microbiol., 2005, 98(5), 1093-1100.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02553.x] [PMID: 15836478]
[20]
Koutny, M.; Lemaire, J.; Delort, A.M. Chemosphere, 2006, 64(8), 1243-1252.
[http://dx.doi.org/10.1016/j.chemosphere.2005.12.060] [PMID: 16487569]
[21]
Roy, P.K.; Titus, S.; Surekha, P.; Tulsi, E.; Deshmukh, C.; Rajagopal, C. Polym. Degrad. Stabil., 2008, 93, 1917-1922.
[http://dx.doi.org/10.1016/j.polymdegradstab.2008.07.016]
[22]
Sudhakar, M.; Doble, M.; Murthy, P.S.; Venkatesan, R. Int. Biodeter. Biodeg., 2008, 61, 203-213.
[http://dx.doi.org/10.1016/j.ibiod.2007.07.011]
[23]
Balasubramanian, V.; Natarajan, K.; Hemambika, B.; Ramesh, N.; Sumathi, C.S.; Kottaimuthu, R.; Rajesh Kannan, V. Lett. Appl. Microbiol., 2010, 51(2), 205-211.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02883.x] [PMID: 20586938]
[24]
Chatterjee, S.; Roy, B.; Roy, D.; Banerjee, R. Polym. Degrad. Stabil., 2010, 95, 195-200.
[http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.025]
[25]
Fontanella, S.; Bonhomme, S.; Koutny, M.; Husarova, L.; Brusson, J.M.; Courdavault, J.P.; Pitteri, S.; Samuel, G.; Pichon, G.; Lemaire, J.; Delort, A. Polym. Degrad. Stabil., 2010, 95, 1011-1021.
[http://dx.doi.org/10.1016/j.polymdegradstab.2010.03.009]
[26]
Nowak, B.; Paja, J.; Drozd-Bratkowicz, K.M.; Rymarz, G. Int. Biodeter. Biodegr., 2011, 65, 757-767.
[http://dx.doi.org/10.1016/j.ibiod.2011.04.007]
[27]
Rajandas, H.; Parimannan, S.; Sathasivam, K.; Ravichandran, M.; Yin, L.S. Polym. Test., 2012, 31, 1094-1099.
[http://dx.doi.org/10.1016/j.polymertesting.2012.07.015]
[28]
Santo, M.; Weitsman, R.; Sivan, A. Int. Biodeter. Biodeg., 2013, 84, 204-210.
[http://dx.doi.org/10.1016/j.ibiod.2012.03.001]
[29]
Awasthi, S.; Srivastava, P.; Singh, P.; Tiwary, D.; Mishra, P.K. Biotech, 2017, 7, 332.
[30]
Tribedi, P.; Sil, A.K. Envron. Sci. Pollut. R., 2013, 20, 4146-4153.
[http://dx.doi.org/10.1007/s11356-012-1378-y]
[31]
Braissant, O.; Decho, A.W.; Dupraz, C.; Glunk, C.; Przekop, K.M.; Visscher, P.T. Geobiology, 2007, 4, 401-411.
[http://dx.doi.org/10.1111/j.1472-4669.2007.00117.x]
[32]
Laiz, L.; Piñar, G.; Lubitz, W.; Saiz-Jimenez, C. Environ. Microbiol., 2003, 5(1), 72-74.
[http://dx.doi.org/10.1046/j.1462-2920.2003.00381.x] [PMID: 12542715]
[33]
Barton, H.A. J. Caves Karst Stud., 2006, 2, 43-54.
[34]
Ciferri, O. Appl. Environ. Microbiol., 1999, 65(3), 879-885.
[http://dx.doi.org/10.1128/AEM.65.3.879-885.1999] [PMID: 10049836]
[35]
Canevese, E.; Forti, P.; Naseddu, A.; Ottelli, L.; Tedeschi, R. Acta Carsol., 2011, 40, 65-77.
[36]
Kunlere, I.O.; Fagade, O.E.; Nwadike, B.I. Int. J. Environ. Stud., 2019, 76, 428-440.
[http://dx.doi.org/10.1080/00207233.2019.1579586]
[37]
Muhonja, C.N.; Makonde, H.; Magoma, G.; Imbuga, M. PloS one, 2018. 7, e0198446/17.
[38]
Albertsson, A.C.; Andersson, S.O.; Karlsson, S. Polym. Degrad. Stabil., 1987, 18, 73-87.
[http://dx.doi.org/10.1016/0141-3910(87)90084-X]
[39]
Sarker, R.K.; Chakraborty, P.; Paul, P.; Chatterjee, A.; Tribedi, P. Arch. Microbiol., 2020, 202(8), 2117-2125.
[http://dx.doi.org/10.1007/s00203-020-01926-8] [PMID: 32506149]
[40]
Ojha, N.; Pradhan, N.; Singh, S.; Barla, A.; Shrivastava, A.; Khatua, P.; Rai, V.; Bose, S. Sci. Rep., 2017, 7, 39515.
[http://dx.doi.org/10.1038/srep39515] [PMID: 28051105]
[41]
Linos, A.; Berekaa, M.M.; Reichelt, R.; Keller, U.; Schmitt, J.; Flemming, H-C.; Kroppenstedt, R.M.; Steinbüchel, A. Appl. Environ. Microbiol., 2000, 66(4), 1639-1645.
[http://dx.doi.org/10.1128/AEM.66.4.1639-1645.2000] [PMID: 10742254]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy