Research Article

ERM复合物,糖尿病诱导血管渗漏的治疗靶点

卷 29, 期 12, 2022

发表于: 17 August, 2021

页: [2189 - 2199] 页: 11

弟呕挨: 10.2174/0929867328666210526114417

conference banner
摘要

背景:Ezrin,radixin和moesin(ERM复合物)直接与膜蛋白相互作用,调节它们与肌动蛋白丝的附着。ERM蛋白活化可改变细胞骨架组织并改变内皮屏障功能,从而有利于血管渗漏。然而,关于ERM蛋白在糖尿病视网膜病变(DR)中的作用知之甚少。目的:探讨DB/db小鼠中ERM复合物是否存在过表达及其主要调节因子。 方法:分析9只雄性db/db小鼠和9只14周龄雄性db/+小鼠。通过免疫印迹和免疫组织化学评估ERM蛋白。血管渗漏由埃文斯蓝法确定。为了评估ERM调节,在含有5.5mM D-葡萄糖(模仿生理条件)和25 mM D-葡萄糖(模仿糖尿病患者发生的高血糖)的培养基中培养HREC。此外,用TNF-α,IL-1β或VEGF治疗被添加到高血糖条件下。通过RT-PCR定量ERM蛋白的表达。通过测量FITC-葡聚糖的运动来评估细胞通透性。 结果:与非糖尿病小鼠相比,观察到糖尿病小鼠ERM显着增加。单独使用高血糖状况对ERM表达没有任何影响。然而,TNF-α和IL-1β诱导ERM蛋白的显着增加。 结论:糖尿病诱导的ERM蛋白增加可能是血管渗漏的机制之一,可作为治疗靶点。此外,糖尿病对ERM复合物的上调是由炎症介质引起的,而不是由高葡萄糖本身引起的。

关键词: 依嗪素,萝卜毒素,蛋白酶,糖尿病视网膜病变,视网膜通透性,db / db小鼠,人视网膜内皮细胞。

« Previous
[1]
Simó, R.; Hernández, C. Neurodegeneration in the diabetic eye: New insights and therapeutic perspectives. Trends Endocrinol. Metab., 2014, 25(1), 23-33.
[http://dx.doi.org/10.1016/j.tem.2013.09.005] [PMID: 24183659]
[2]
Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic retinopathy: A position statement by the american diabetes association. Diabetes Care, 2017, 40(3), 412-418.
[http://dx.doi.org/10.2337/dc16-2641] [PMID: 28223445]
[3]
Gardner, T.W.; Davila, J.R. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol., 2017, 255(1), 1-6.
[http://dx.doi.org/10.1007/s00417-016-3548-y] [PMID: 27832340]
[4]
Simó, R.; Stitt, A.W.; Gardner, T.W. Neurodegeneration in diabetic retinopathy: Does it really matter? Diabetologia, 2018, 61(9), 1902-1912.
[http://dx.doi.org/10.1007/s00125-018-4692-1] [PMID: 30030554]
[5]
Antonetti, D.A.; Lieth, E.; Barber, A.J.; Gardner, T.W. Molecular mechanisms of vascular permeability in diabetic retinopathy. Semin. Ophthalmol., 1999, 14(4), 240-248.
[http://dx.doi.org/10.3109/08820539909069543] [PMID: 10758225]
[6]
Zhang, X.; Zeng, H.; Bao, S.; Wang, N.; Gillies, M.C. Diabetic macular edema: New concepts in patho-physiology and treatment. Cell Biosci., 2014, 4, 27.
[http://dx.doi.org/10.1186/2045-3701-4-27] [PMID: 24955234]
[7]
Bretscher, A.; Edwards, K.; Fehon, R.G. ERM proteins and merlin: Integrators at the cell cortex. Nat. Rev. Mol. Cell Biol., 2002, 3(8), 586-599.
[http://dx.doi.org/10.1038/nrm882] [PMID: 12154370]
[8]
Yonemura, S.; Matsui, T.; Tsukita, S.; Tsukita, S. Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: An essential role for polyphosphoinositides in vivo. J. Cell Sci., 2002, 115(Pt 12), 2569-2580.
[http://dx.doi.org/10.1242/jcs.115.12.2569] [PMID: 12045227]
[9]
Louvet-Vallée, S. ERM proteins: From cellular architecture to cell signaling. Biol. Cell, 2000, 92(5), 305-316.
[http://dx.doi.org/10.1016/S0248-4900(00)01078-9] [PMID: 11071040]
[10]
Simó-Servat, O.; Hernández, C.; Simó, R. The ERM complex: A new player involved in diabetes-induced vascular leakage. Curr. Med. Chem., 2020, 27(18), 3012-3022.
[http://dx.doi.org/10.2174/0929867325666181016162327] [PMID: 30332939]
[11]
Claesson-Welsh, L. Vascular permeability-the essentials. Ups. J. Med. Sci., 2015, 120(3), 135-143.
[http://dx.doi.org/10.3109/03009734.2015.1064501] [PMID: 26220421]
[12]
Prasain, N.; Stevens, T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc. Res., 2009, 77(1), 53-63.
[http://dx.doi.org/10.1016/j.mvr.2008.09.012] [PMID: 19028505]
[13]
Bogatcheva, N.V.; Verin, A.D. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc. Res., 2008, 76(3), 202-207.
[http://dx.doi.org/10.1016/j.mvr.2008.06.003] [PMID: 18657550]
[14]
Anderson, P.J.; Watts, H.; Hille, C.; Philpott, K.; Clark, P.; Gentleman, M.C.; Jen, L.S. Glial and endothelial blood-retinal barrier responses to amyloid-beta in the neural retina of the rat. Clin. Ophthalmol., 2008, 2(4), 801-816.
[http://dx.doi.org/10.2147/OPTH.S3967] [PMID: 19668434]
[15]
Hernández, C.; Bogdanov, P.; Corraliza, L.; García-Ramírez, M.; Solà-Adell, C.; Arranz, J.A.; Arroba, A.I.; Valverde, A.M.; Simó, R. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes, 2016, 65(1), 172-187.
[PMID: 26384381]
[16]
Hernández, C.; Bogdanov, P.; Solà-Adell, C.; Sampedro, J.; Valeri, M.; Genís, X.; Simó-Servat, O.; García-Ramírez, M.; Simó, R. Topical administration of DPP-IV inhibitors prevents retinal neurodegeneration in experimental diabetes. Diabetologia, 2017, 60(11), 2285-2298.
[http://dx.doi.org/10.1007/s00125-017-4388-y] [PMID: 28779212]
[17]
Bogdanov, P.; Simó-Servat, O.; Sampedro, J.; Solà-Adell, C.; Garcia-Ramírez, M.; Ramos, H.; Guerrero, M.; Suñé-Negre, J.M.; Ticó, J.R.; Montoro, B.; Durán, V.; Arias, L.; Hernández, C.; Simó, R. Topical administration of bosentan prevents retinal neurodegeneration in experimental diabetes. Int. J. Mol. Sci., 2018, 19(11), 3578.
[http://dx.doi.org/10.3390/ijms19113578] [PMID: 30428543]
[18]
Hernández, C.; Bogdanov, P.; Gómez-Guerrero, C.; Sampedro, J.; Solà-Adell, C.; Espejo, C.; García-Ramírez, M.; Prieto, I.; Egido, J.; Simó, R. SOCS1-derived peptide administered by eye drops prevents retinal neuroinflammation and vascular leakage in experimental diabetes. Int. J. Mol. Sci., 2019, 20(15), 3615.
[http://dx.doi.org/10.3390/ijms20153615] [PMID: 31344857]
[19]
Bogdanov, P.; Corraliza, L.; Villena, J.A.; Carvalho, A.R.; Garcia-Arumí, J.; Ramos, D.; Ruberte, J.; Simó, R.; Hernández, C. The db/db mouse: A useful model for the study of diabetic retinal neurodegeneration. PLoS One, 2014, 9(5), e97302.
[http://dx.doi.org/10.1371/journal.pone.0097302] [PMID: 24837086]
[20]
Adyshev, D.M.; Dudek, S.M.; Moldobaeva, N.; Kim, K.M.; Ma, S.F.; Kasa, A.; Garcia, J.G.; Verin, A.D. Ezrin/radixin/moesin proteins differentially regulate endothelial hyperpermeability after thrombin. Am. J. Physiol. Lung Cell. Mol. Physiol., 2013, 305(3), L240-L255.
[http://dx.doi.org/10.1152/ajplung.00355.2012] [PMID: 23729486]
[21]
Fei, L.; Sun, G.; Zhu, Z.; You, Q. Phosphorylated erm mediates lipopolysaccharide induced pulmonary microvascular endothelial cells permeability through negatively regulating rac1 activity. Arch. Bronconeumol., 2019, 55(6), 306-311.
[PMID: 30448045]
[22]
Guo, X.; Wang, L.; Chen, B.; Li, Q.; Wang, J.; Zhao, M.; Wu, W.; Zhu, P.; Huang, X.; Huang, Q. ERM protein moesin is phosphorylated by advanced glycation end products and modulates endothelial permeability. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(1), H238-H246.
[http://dx.doi.org/10.1152/ajpheart.00196.2009] [PMID: 19395553]
[23]
Li, Q.; Liu, H.; Du, J.; Chen, B.; Li, Q.; Guo, X.; Huang, X.; Huang, Q. Advanced glycation end products induce moesin phosphorylation in murine brain endothelium. Brain Res., 2011, 1373, 1-10.
[http://dx.doi.org/10.1016/j.brainres.2010.12.032] [PMID: 21167822]
[24]
Wang, L.; Li, Q.; Du, J.; Chen, B.; Li, Q.; Huang, X.; Guo, X.; Huang, Q. Advanced glycation end products induce moesin phosphorylation in murine retinal endothelium. Acta Diabetol., 2012, 49(1), 47-55.
[http://dx.doi.org/10.1007/s00592-011-0267-z] [PMID: 21327982]
[25]
Zhang, S.S.; Hu, J.Q.; Liu, X.H.; Chen, L.X.; Chen, H.; Guo, X.H.; Huang, Q.B. Role of moesin phosphorylation in retinal pericyte migration and detachment induced by advanced glycation endproducts. Front. Endocrinol. (Lausanne), 2020, 11, 603450.
[http://dx.doi.org/10.3389/fendo.2020.603450] [PMID: 33312163]
[26]
Koss, M.; Pfeiffer, G.R., II; Wang, Y.; Thomas, S.T.; Yerukhimovich, M.; Gaarde, W.A.; Doerschuk, C.M.; Wang, Q. Ezrin/radixin/moesin proteins are phosphorylated by TNF-alpha and modulate permeability increases in human pulmonary microvascular endothelial cells. J. Immunol., 2006, 176(2), 1218-1227.
[http://dx.doi.org/10.4049/jimmunol.176.2.1218] [PMID: 16394012]
[27]
Yao, Y.; Tsirka, S.E. Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood-brain barrier disruption. J. Cell Sci., 2011, 124(Pt 9), 1486-1495.
[http://dx.doi.org/10.1242/jcs.082834] [PMID: 21486949]
[28]
Lee, W.; Kwon, O.K.; Han, M.S.; Lee, Y.M.; Kim, S.W.; Kim, K.M.; Lee, T.; Lee, S.; Bae, J.S. Role of moesin in HMGB1-stimulated severe inflammatory responses. Thromb. Haemost., 2015, 114(2), 350-363.
[PMID: 25947626]
[29]
Mangialardi, G.; Katare, R.; Oikawa, A.; Meloni, M.; Reni, C.; Emanueli, C.; Madeddu, P. Diabetes causes bone marrow endothelial barrier dysfunction by activation of the RhoA-Rho-associated kinase signaling pathway. Arterioscler. Thromb. Vasc. Biol., 2013, 33(3), 555-564.
[http://dx.doi.org/10.1161/ATVBAHA.112.300424] [PMID: 23307872]
[30]
Pitocco, D.; Tesauro, M.; Alessandro, R.; Ghirlanda, G.; Cardillo, C. Oxidative stress in diabetes: Implications for vascular and other complications. Int. J. Mol. Sci., 2013, 14(11), 21525-21550.
[http://dx.doi.org/10.3390/ijms141121525] [PMID: 24177571]
[31]
Saharinen, P.; Ivaska, J. Blocking integrin inactivation as an anti-angiogenic therapy. EMBO J., 2015, 34(10), 1293-1295.
[http://dx.doi.org/10.15252/embj.201591504] [PMID: 25828097]
[32]
Vitorino, P.; Yeung, S.; Crow, A.; Bakke, J.; Smyczek, T.; West, K.; McNamara, E.; Eastham-Anderson, J.; Gould, S.; Harris, S.F.; Ndubaku, C.; Ye, W. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature, 2015, 519(7544), 425-430.
[http://dx.doi.org/10.1038/nature14323] [PMID: 25799996]

© 2024 Bentham Science Publishers | Privacy Policy