Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Immunotherapy for Breast Cancer Treatment: Current Evidence and Therapeutic Options

Author(s): Kavita Singh, Dhananjay Yadav, Meenu Jain, Pramod Kumar Singh and Jun-O Jin*

Volume 22, Issue 2, 2022

Published on: 19 January, 2022

Page: [212 - 224] Pages: 13

DOI: 10.2174/1871530321666210426125904

Price: $65

Abstract

Breast Cancer (BC) has the highest incidence among all forms of malignancies detected in women globally. The therapeutic approaches available for BC include chemotherapy, radiation therapy, hormonal therapy, and surgery. Recently, advanced immunology-based therapeutics with potential for BC treatment, including immune checkpoint blockades, vaccines, and combinations with other treatment strategies, have emerged. Although commonly used treatments such as trastuzumab/ pertuzumab for human epidermal growth factor receptor 2-positive BC and hormone therapy for estrogen receptor-positive and/or progesterone receptor-positive BC are specific, triple-negative BC cases remain a great challenge for treatment measures. Immune checkpoint inhibitors (anti- PD-1/anti-CTLA-4) and anti-cancer vaccines (NeuVax, MUC-1, AVX901, INO-1400, and CEA), either alone or in combination with other therapies, represent a new paradigm in cancer therapeutics. In this review, we highlight the current immunotherapeutic aspects and ongoing trials aimed at the development of better treatment regimens for BC.

Keywords: Immunotherapy, immune check point blockades, cancer vaccine, breast cancer, estrogen receptor, progesterone.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Malvia, S.; Bagadi, S.A.; Dubey, U.S.; Saxena, S. Epidemiology of breast cancer in Indian women. Asia Pac. J. Clin. Oncol., 2017, 13(4), 289-295.
[http://dx.doi.org/10.1111/ajco.12661] [PMID: 28181405]
[3]
Tremont, A.; Lu, J.; Cole, J.T. Endocrine therapy for early breast cancer: updated review. Ochsner J., 2017, 17(4), 405-411.
[PMID: 29230126]
[4]
Ignatiadis, M.; Van den Eynden, G.; Roberto, S.; Fornili, M.; Bareche, Y.; Desmedt, C.; Rothé, F.; Maetens, M.; Venet, D.; Holgado, E.; McNally, V.; Kiermaier, A.; Savage, H.M.; Wilson, T.R.; Cortes, J.; Schneeweiss, A.; Willard-Gallo, K.; Biganzoli, E.; Sotiriou, C. Tumor-infiltrating lymphocytes in patients receiving trastuzumab/pertuzumab-based chemotherapy: a TRYPHAENA substudy. J. Natl. Cancer Inst., 2019, 111(1), 69-77.
[http://dx.doi.org/10.1093/jnci/djy076] [PMID: 29788230]
[5]
Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol., 2016, 39(1), 98-106.
[http://dx.doi.org/10.1097/COC.0000000000000239] [PMID: 26558876]
[6]
Tsai, H.F.; Hsu, P.N. Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets. J. Biomed. Sci., 2017, 24(1), 35-35.
[http://dx.doi.org/10.1186/s12929-017-0341-0] [PMID: 28545567]
[7]
Milani, A.; Sangiolo, D.; Aglietta, M.; Valabrega, G. Recent advances in the development of breast cancer vaccines. Breast Cancer (Dove Med. Press), 2014, 6, 159-168.
[PMID: 25339848]
[8]
Li, X.; Bu, X. Translational research in breast cancer; Springer, 2017, pp. 315-330.
[http://dx.doi.org/10.1007/978-981-10-6020-5_15]
[9]
Kim, R.; Emi, M.; Tanabe, K. Cancer immunoediting from immune surveillance to immune escape. Immunology, 2007, 121(1), 1-14.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02587.x] [PMID: 17386080]
[10]
Standish, L.J.; Sweet, E.S.; Novack, J.; Wenner, C.A.; Bridge, C.; Nelson, A.; Martzen, M.; Torkelson, C. Breast cancer and the immune system. J. Soc. Integr. Oncol., 2008, 6(4), 158-168.
[PMID: 19134448]
[11]
Sharma, P.; Allison, J.P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell, 2015, 161(2), 205-214.
[http://dx.doi.org/10.1016/j.cell.2015.03.030] [PMID: 25860605]
[12]
Coussens, L.M.; Pollard, J.W. Leukocytes in mammary development and cancer. Cold Spring Harb. Perspect. Biol., 2011, 3(3), a003285.
[http://dx.doi.org/10.1101/cshperspect.a003285] [PMID: 21123394]
[13]
DeNardo, D.G.; Coussens, L.M. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res., 2007, 9(4), 212.
[http://dx.doi.org/10.1186/bcr1746] [PMID: 17705880]
[14]
Ribas, A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov., 2015, 5(9), 915-919.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0563] [PMID: 26272491]
[15]
Ho, P-C.; Kaech, S.M. Reenergizing T cell anti-tumor immunity by harnessing immunometabolic checkpoints and machineries. Curr. Opin. Immunol., 2017, 46, 38-44.
[http://dx.doi.org/10.1016/j.coi.2017.04.003] [PMID: 28458087]
[16]
Allard, B.; Beavis, P.A.; Darcy, P.K.; Stagg, J. Immunosuppressive activities of adenosine in cancer. Curr. Opin. Pharmacol., 2016, 29, 7-16.
[http://dx.doi.org/10.1016/j.coph.2016.04.001] [PMID: 27209048]
[17]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[18]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[19]
Smith, R.A.; Manassaram-Baptiste, D.; Brooks, D.; Doroshenk, M.; Fedewa, S.; Saslow, D.; Brawley, O.W.; Wender, R. Cancer screening in the United States, 2015: a review of current American cancer society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2015, 65(1), 30-54.
[http://dx.doi.org/10.3322/caac.21261] [PMID: 25581023]
[20]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[21]
Ferris, R.L.; Blumenschein, G., Jr; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; Worden, F.; Saba, N.F.; Iglesias Docampo, L.C.; Haddad, R.; Rordorf, T.; Kiyota, N.; Tahara, M.; Monga, M.; Lynch, M.; Geese, W.J.; Kopit, J.; Shaw, J.W.; Gillison, M.L. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med., 2016, 375(19), 1856-1867.
[http://dx.doi.org/10.1056/NEJMoa1602252] [PMID: 27718784]
[22]
Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; Waterhouse, D.; Ready, N.; Gainor, J.; Arén Frontera, O.; Havel, L.; Steins, M.; Garassino, M.C.; Aerts, J.G.; Domine, M.; Paz-Ares, L.; Reck, M.; Baudelet, C.; Harbison, C.T.; Lestini, B.; Spigel, D.R. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(2), 123-135.
[http://dx.doi.org/10.1056/NEJMoa1504627] [PMID: 26028407]
[23]
Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; Castellano, D.; Choueiri, T.K.; Gurney, H.; Donskov, F.; Bono, P.; Wagstaff, J.; Gauler, T.C.; Ueda, T.; Tomita, Y.; Schutz, F.A.; Kollmannsberger, C.; Larkin, J.; Ravaud, A.; Simon, J.S.; Xu, L.A.; Waxman, I.M.; Sharma, P. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med., 2015, 373(19), 1803-1813.
[http://dx.doi.org/10.1056/NEJMoa1510665] [PMID: 26406148]
[24]
Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; Carcereny, E.; Ahn, M.J.; Felip, E.; Lee, J.S.; Hellmann, M.D.; Hamid, O.; Goldman, J.W.; Soria, J.C.; Dolled-Filhart, M.; Rutledge, R.Z.; Zhang, J.; Lunceford, J.K.; Rangwala, R.; Lubiniecki, G.M.; Roach, C.; Emancipator, K.; Gandhi, L. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(21), 2018-2028.
[http://dx.doi.org/10.1056/NEJMoa1501824] [PMID: 25891174]
[25]
Fife, B.T.; Bluestone, J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev., 2008, 224(1), 166-182.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00662.x] [PMID: 18759926]
[26]
Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov., 2018, 8(9), 1069-1086.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0367] [PMID: 30115704]
[27]
Bischoff, J. Checkpoint inhibitors in breast cancer-current status and future directions. Breast Care (Basel), 2018, 13(1), 27-31.
[http://dx.doi.org/10.1159/000486706] [PMID: 29950964]
[28]
Greenwald, R.J.; Freeman, G.J.; Sharpe, A.H. The B7 family revisited. Annu. Rev. Immunol., 2005, 23, 515-548.
[http://dx.doi.org/10.1146/annurev.immunol.23.021704.115611] [PMID: 15771580]
[29]
Boussiotis, V.A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med., 2016, 375(18), 1767-1778.
[http://dx.doi.org/10.1056/NEJMra1514296] [PMID: 27806234]
[30]
Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, 26, 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[31]
Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol., 2018, 62, 29-39.
[http://dx.doi.org/10.1016/j.intimp.2018.06.001] [PMID: 29990692]
[32]
Nanda, R.; Chow, L.Q.; Dees, E.C.; Berger, R.; Gupta, S.; Geva, R.; Pusztai, L.; Pathiraja, K.; Aktan, G.; Cheng, J.D.; Karantza, V.; Buisseret, L. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J. Clin. Oncol., 2016, 34(21), 2460-2467.
[http://dx.doi.org/10.1200/JCO.2015.64.8931] [PMID: 27138582]
[33]
Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.; Akcakanat, A.; Chawla, A.; Curran, M.; Hwu, P.; Sharma, P.; Litton, J.K.; Molldrem, J.J.; Alatrash, G. PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res., 2014, 2(4), 361-370.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0127] [PMID: 24764583]
[34]
Emens, L.A.; Braiteh, F.S.; Cassier, P. AACR, 2015.
[35]
Lipson, E.J.; Forde, P.M.; Hammers, H-J.; Emens, L.A.; Taube, J.M.; Topalian, S.L. Antagonists of PD-1 and PD-L1 in cancer treatment Semin Oncol; Elsevier, 2015, pp. 587-600.
[36]
Beavis, P.A.; Henderson, M.A.; Giuffrida, L.; Davenport, A.J.; Petley, E.V.; House, I.G.; Lai, J.; Sek, K.; Milenkovski, N.; John, L.B.; Mardiana, S.; Slaney, C.Y.; Trapani, J.A.; Loi, S.; Kershaw, M.H.; Haynes, N.M.; Darcy, P.K. Dual PD-1 and CTLA-4 checkpoint blockade promotes antitumor immune responses through CD4+Foxp3- cell-mediated modulation of CD103+ dendritic cells. Cancer Immunol. Res., 2018, 6(9), 1069-1081.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0291] [PMID: 30018045]
[37]
Ehrich, E.W.; Devaux, B.; Rock, E.P.; Jorgensen, J.L.; Davis, M.M.; Chien, Y.H. T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen. J. Exp. Med., 1993, 178(2), 713-722.
[http://dx.doi.org/10.1084/jem.178.2.713] [PMID: 8393480]
[38]
Collins, A.V.; Brodie, D.W.; Gilbert, R.J.; Iaboni, A.; Manso-Sancho, R.; Walse, B.; Stuart, D.I.; van der Merwe, P.A.; Davis, S.J. The interaction properties of costimulatory molecules revisited. Immunity, 2002, 17(2), 201-210.
[http://dx.doi.org/10.1016/S1074-7613(02)00362-X] [PMID: 12196291]
[39]
Krummel, M.F.; Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med., 1996, 183(6), 2533-2540.
[http://dx.doi.org/10.1084/jem.183.6.2533] [PMID: 8676074]
[40]
Takahashi, T.; Tagami, T.; Yamazaki, S.; Uede, T.; Shimizu, J.; Sakaguchi, N.; Mak, T.W.; Sakaguchi, S. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med., 2000, 192(2), 303-310.
[http://dx.doi.org/10.1084/jem.192.2.303] [PMID: 10899917]
[41]
Jutel, M.; Akdis, M.; Budak, F.; Aebischer-Casaulta, C.; Wrzyszcz, M.; Blaser, K.; Akdis, C.A. IL-10 and TGF-β cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur. J. Immunol., 2003, 33(5), 1205-1214.
[http://dx.doi.org/10.1002/eji.200322919] [PMID: 12731045]
[42]
Wei, S.C.; Levine, J.H.; Cogdill, A.P. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell, 2017, 170(6), 1120-1133. e1117.
[http://dx.doi.org/10.1016/j.cell.2017.07.024]
[43]
Vonderheide, R.H.; LoRusso, P.M.; Khalil, M.; Gartner, E.M.; Khaira, D.; Soulieres, D.; Dorazio, P.; Trosko, J.A.; Rüter, J.; Mariani, G.L.; Usari, T.; Domchek, S.M. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin. Cancer Res., 2010, 16(13), 3485-3494.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0505] [PMID: 20479064]
[44]
McArthur, H.L.; Diab, A.; Page, D.B.; Yuan, J.; Solomon, S.B.; Sacchini, V.; Comstock, C.; Durack, J.C.; Maybody, M.; Sung, J.; Ginsberg, A.; Wong, P.; Barlas, A.; Dong, Z.; Zhao, C.; Blum, B.; Patil, S.; Neville, D.; Comen, E.A.; Morris, E.A.; Kotin, A.; Brogi, E.; Wen, Y.H.; Morrow, M.; Lacouture, M.E.; Sharma, P.; Allison, J.P.; Hudis, C.A.; Wolchok, J.D.; Norton, L. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling. Clin. Cancer Res., 2016, 22(23), 5729-5737.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0190] [PMID: 27566765]
[45]
Vikas, P.; Borcherding, N.; Zhang, W. The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Manag. Res., 2018, 10, 6823-6833.
[http://dx.doi.org/10.2147/CMAR.S185176] [PMID: 30573992]
[46]
Anders, C.K.; Abramson, V.; Tan, T.; Dent, R. The evolution of triple-negative breast cancer: from biology to novel therapeutics. Am. Soc. Clin. Oncol. Educ. Book, 2016, 35, 34-42.
[http://dx.doi.org/10.1200/EDBK_159135] [PMID: 27249684]
[47]
Kim, J.; Yu, D.; Kwon, Y.; Lee, K.S.; Sim, S.H.; Kong, S.Y.; Lee, E.S.; Park, I.H.; Park, C. Genomic characteristics of triple-negative breast cancer nominate molecular subtypes that predict chemotherapy response. Mol. Cancer Res., 2020, 18(2), 253-263.
[PMID: 31704731]
[48]
Tutt, A.; Robson, M.; Garber, J.E.; Domchek, S.M.; Audeh, M.W.; Weitzel, J.N.; Friedlander, M.; Arun, B.; Loman, N.; Schmutzler, R.K.; Wardley, A.; Mitchell, G.; Earl, H.; Wickens, M.; Carmichael, J. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet, 2010, 376(9737), 235-244.
[http://dx.doi.org/10.1016/S0140-6736(10)60892-6] [PMID: 20609467]
[49]
Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; Wu, W.; Goessl, C.; Runswick, S.; Conte, P. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med., 2017, 377(6), 523-533.
[http://dx.doi.org/10.1056/NEJMoa1706450] [PMID: 28578601]
[50]
Huang, Y.; Li, W.; Yan, W.; Wu, J.; Chen, L.; Yao, X.; Gu, F.; Lv, L.; Zhao, J.; Zhao, M.; Xia, T.; Han, Q.; Li, T.; Ying, X.; Li, T.; Xia, Q.; Li, A.; Zhang, X.; Chen, Y.; Zhou, T. Loss of PICH promotes chromosome instability and cell death in triple-negative breast cancer. Cell Death Dis., 2019, 10(6), 428.
[http://dx.doi.org/10.1038/s41419-019-1662-6] [PMID: 31160555]
[51]
Kaufmann, J.; Wentzensen, N.; Brinker, T.J.; Grabe, N. Large-scale in-silico identification of a tumor-specific antigen pool for targeted immunotherapy in triple-negative breast cancer. Oncotarget, 2019, 10(26), 2515-2529.
[http://dx.doi.org/10.18632/oncotarget.26808] [PMID: 31069014]
[52]
Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; Henschel, V.; Molinero, L.; Chui, S.Y.; Funke, R.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med., 2018, 379(22), 2108-2121.
[http://dx.doi.org/10.1056/NEJMoa1809615] [PMID: 30345906]
[53]
Tolaney, S.; Kalinsky, K.; Kaklamani, V.; Savulsky, C.; Olivo, M.; Aktan, G. Phase 1b/2 study to evaluate eribulin mesylate in combination with pembrolizumab in patients with metastatic triple-negative breast cancer. Cancer Res, 2018, 78(4), Abstract nr PD6-13..
[54]
Wang, X.; Qi, Y.; Kong, X.; Zhai, J.; Li, Y.; Song, Y.; Wang, J.; Feng, X.; Fang, Y. Immunological therapy: a novel thriving area for triple-negative breast cancer treatment. Cancer Lett., 2019, 442, 409-428.
[http://dx.doi.org/10.1016/j.canlet.2018.10.042] [PMID: 30419345]
[55]
Liu, L.; Wang, Y.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther., 2018, 26(1), 45-55.
[http://dx.doi.org/10.1016/j.ymthe.2017.10.020] [PMID: 29258739]
[56]
Sun, T.; Zhang, W.; Li, Y.; Jin, Z.; Du, Y.; Tian, J.; Xue, H. Combination immunotherapy with cytotoxic T-lymphocyte-associated antigen-4 and programmed death protein-1 inhibitors prevents postoperative breast tumor recurrence and metastasis. Mol. Cancer Ther., 2020, 19(3), 802-811.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0495] [PMID: 31796506]
[57]
Natoli, G. Maintaining cell identity through global control of genomic organization. Immunity, 2010, 33(1), 12-24.
[http://dx.doi.org/10.1016/j.immuni.2010.07.006] [PMID: 20643336]
[58]
Jochems, C.; Schlom, J. Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp. Biol. Med. (Maywood), 2011, 236(5), 567-579.
[http://dx.doi.org/10.1258/ebm.2011.011007] [PMID: 21486861]
[59]
Savas, P.; Salgado, R.; Denkert, C.; Sotiriou, C.; Darcy, P.K.; Smyth, M.J.; Loi, S. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat. Rev. Clin. Oncol., 2016, 13(4), 228-241.
[http://dx.doi.org/10.1038/nrclinonc.2015.215] [PMID: 26667975]
[60]
Chang, K.; Pastan, I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc. Natl. Acad. Sci. USA, 1996, 93(1), 136-140.
[http://dx.doi.org/10.1073/pnas.93.1.136] [PMID: 8552591]
[61]
Hollingsworth, R.E.; Jansen, K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines, 2019, 4, 7-7.
[http://dx.doi.org/10.1038/s41541-019-0103-y] [PMID: 30774998]
[62]
Miller, J.D.; van der Most, R.G.; Akondy, R.S.; Glidewell, J.T.; Albott, S.; Masopust, D.; Murali-Krishna, K.; Mahar, P.L.; Edupuganti, S.; Lalor, S.; Germon, S.; Del Rio, C.; Mulligan, M.J.; Staprans, S.I.; Altman, J.D.; Feinberg, M.B.; Ahmed, R. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity, 2008, 28(5), 710-722.
[http://dx.doi.org/10.1016/j.immuni.2008.02.020] [PMID: 18468462]
[63]
Gulley, J.L.; Arlen, P.M.; Madan, R.A.; Tsang, K.Y.; Pazdur, M.P.; Skarupa, L.; Jones, J.L.; Poole, D.J.; Higgins, J.P.; Hodge, J.W.; Cereda, V.; Vergati, M.; Steinberg, S.M.; Halabi, S.; Jones, E.; Chen, C.; Parnes, H.; Wright, J.J.; Dahut, W.L.; Schlom, J. Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol. Immunother., 2010, 59(5), 663-674.
[http://dx.doi.org/10.1007/s00262-009-0782-8] [PMID: 19890632]
[64]
Avigan, D.; Vasir, B.; Gong, J.; Borges, V.; Wu, Z.; Uhl, L.; Atkins, M.; Mier, J.; McDermott, D.; Smith, T.; Giallambardo, N.; Stone, C.; Schadt, K.; Dolgoff, J.; Tetreault, J.C.; Villarroel, M.; Kufe, D. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin. Cancer Res., 2004, 10(14), 4699-4708.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0347] [PMID: 15269142]
[65]
Mohebtash, M.; Tsang, K.Y.; Madan, R.A.; Huen, N.Y.; Poole, D.J.; Jochems, C.; Jones, J.; Ferrara, T.; Heery, C.R.; Arlen, P.M.; Steinberg, S.M.; Pazdur, M.; Rauckhorst, M.; Jones, E.C.; Dahut, W.L.; Schlom, J.; Gulley, J.L. A pilot study of MUC-1/CEA/TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer. Clin. Cancer Res., 2011, 17(22), 7164-7173.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0649] [PMID: 22068656]
[66]
Czerniecki, B.J.; Koski, G.K.; Koldovsky, U.; Xu, S.; Cohen, P.A.; Mick, R.; Nisenbaum, H.; Pasha, T.; Xu, M.; Fox, K.R.; Weinstein, S.; Orel, S.G.; Vonderheide, R.; Coukos, G.; DeMichele, A.; Araujo, L.; Spitz, F.R.; Rosen, M.; Levine, B.L.; June, C.; Zhang, P.J. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res., 2007, 67(4), 1842-1852.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4038] [PMID: 17293384]
[67]
Svane, I.M.; Pedersen, A.E.; Johnsen, H.E.; Nielsen, D.; Kamby, C.; Gaarsdal, E.; Nikolajsen, K.; Buus, S.; Claesson, M.H. Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol. Immunother., 2004, 53(7), 633-641.
[http://dx.doi.org/10.1007/s00262-003-0493-5] [PMID: 14985857]
[68]
Miles, D.; Roché, H.; Martin, M.; Perren, T.J.; Cameron, D.A.; Glaspy, J.; Dodwell, D.; Parker, J.; Mayordomo, J.; Tres, A.; Murray, J.L.; Ibrahim, N.K. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist, 2011, 16(8), 1092-1100.
[http://dx.doi.org/10.1634/theoncologist.2010-0307] [PMID: 21572124]
[69]
Mittendorf, E.A.; Lu, B.; Melisko, M.; Price Hiller, J.; Bondarenko, I.; Brunt, A.M.; Sergii, G.; Petrakova, K.; Peoples, G.E. Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase III clinical trial. Clin. Cancer Res., 2019, 25(14), 4248-4254.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2867] [PMID: 31036542]
[70]
Generali, D.; Bates, G.; Berruti, A.; Brizzi, M.P.; Campo, L.; Bonardi, S.; Bersiga, A.; Allevi, G.; Milani, M.; Aguggini, S.; Dogliotti, L.; Banham, A.H.; Harris, A.L.; Bottini, A.; Fox, S.B. Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin. Cancer Res., 2009, 15(3), 1046-1051.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1507] [PMID: 19188178]
[71]
Dieci, M.V.; Griguolo, G.; Miglietta, F.; Guarneri, V. The immune system and hormone-receptor positive breast cancer: is it really a dead end? Cancer Treat. Rev., 2016, 46, 9-19.
[http://dx.doi.org/10.1016/j.ctrv.2016.03.011] [PMID: 27055087]
[72]
Emens, L.A.; Reilly, R.T.; Jaffee, E.M. Breast cancer vaccines: maximizing cancer treatment by tapping into host immunity. Endocr. Relat. Cancer, 2005, 12(1), 1-17.
[http://dx.doi.org/10.1677/erc.1.00671] [PMID: 15788636]
[73]
Swain, S.M.; Kim, S.B.; Cortés, J.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J.M.; Schneeweiss, A.; Knott, A.; Clark, E.; Ross, G.; Benyunes, M.C.; Baselga, J. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol., 2013, 14(6), 461-471.
[http://dx.doi.org/10.1016/S1470-2045(13)70130-X] [PMID: 23602601]
[74]
Schneble, E.; Jinga, D-C.; Peoples, G. Breast cancer immunotherapy. Maedica (Buchar.), 2015, 10(2), 185-191.
[PMID: 28275416]
[75]
Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; Baselga, J.; Norton, L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med., 2001, 344(11), 783-792.
[http://dx.doi.org/10.1056/NEJM200103153441101] [PMID: 11248153]
[76]
Ishihara, Y.; Harada, M.; Azuma, K.; Tamura, M.; Shomura, H.; Fujii, T.; Itoh, K.; Shichijo, S. HER2/neu-derived peptides recognized by both cellular and humoral immune systems in HLA-A2+ cancer patients. Int. J. Oncol., 2004, 24(4), 967-975.
[http://dx.doi.org/10.3892/ijo.24.4.967] [PMID: 15010837]
[77]
Ladjemi, M.Z.; Jacot, W.; Chardès, T.; Pèlegrin, A.; Navarro-Teulon, I. Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol. Immunother., 2010, 59(9), 1295-1312.
[http://dx.doi.org/10.1007/s00262-010-0869-2] [PMID: 20532501]
[78]
Clifton, G.T.; Mittendorf, E.A.; Peoples, G.E. Adjuvant HER2/neu peptide cancer vaccines in breast cancer. Immunotherapy, 2015, 7(11), 1159-1168.
[http://dx.doi.org/10.2217/imt.15.81] [PMID: 26567563]
[79]
Peoples, G.E.; Gurney, J.M.; Hueman, M.T.; Woll, M.M.; Ryan, G.B.; Storrer, C.E.; Fisher, C.; Shriver, C.D.; Ioannides, C.G.; Ponniah, S. Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients. J. Clin. Oncol., 2005, 23(30), 7536-7545.
[http://dx.doi.org/10.1200/JCO.2005.03.047] [PMID: 16157940]
[80]
Schneble, E.J.; Berry, J.S.; Trappey, F.A.; Clifton, G.T.; Ponniah, S.; Mittendorf, E.; Peoples, G.E. The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax™) in breast cancer patients at risk for recurrence: correlation of immunologic data with clinical response. Immunotherapy, 2014, 6(5), 519-531.
[http://dx.doi.org/10.2217/imt.14.22] [PMID: 24896623]
[81]
Peoples, G.E.; Holmes, J.P.; Hueman, M.T.; Mittendorf, E.A.; Amin, A.; Khoo, S.; Dehqanzada, Z.A.; Gurney, J.M.; Woll, M.M.; Ryan, G.B.; Storrer, C.E.; Craig, D.; Ioannides, C.G.; Ponniah, S. Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin. Cancer Res., 2008, 14(3), 797-803.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1448] [PMID: 18245541]
[82]
Solinas, C.; Aiello, M.; Migliori, E.; Willard-Gallo, K.; Emens, L.A. Breast cancer vaccines: Heeding the lessons of the past to guide a path forward. Cancer Treat. Rev., 2020, 84, 101947.
[http://dx.doi.org/10.1016/j.ctrv.2019.101947] [PMID: 31926403]
[83]
Holmes, J.P.; Gates, J.D.; Benavides, L.C.; Hueman, M.T.; Carmichael, M.G.; Patil, R.; Craig, D.; Mittendorf, E.A.; Stojadinovic, A.; Ponniah, S.; Peoples, G.E. Optimal dose and schedule of an HER-2/neu (E75) peptide vaccine to prevent breast cancer recurrence: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer, 2008, 113(7), 1666-1675.
[http://dx.doi.org/10.1002/cncr.23772] [PMID: 18726994]
[84]
Mittendorf, E.A.; Clifton, G.T.; Holmes, J.P.; Schneble, E.; van Echo, D.; Ponniah, S.; Peoples, G.E. Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in high-risk breast cancer patients. Ann. Oncol., 2014, 25(9), 1735-1742.
[http://dx.doi.org/10.1093/annonc/mdu211] [PMID: 24907636]
[85]
Murray, J.L.; Gillogly, M.E.; Przepiorka, D.; Brewer, H.; Ibrahim, N.K.; Booser, D.J.; Hortobagyi, G.N.; Kudelka, A.P.; Grabstein, K.H.; Cheever, M.A.; Ioannides, C.G. Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369-377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin. Cancer Res., 2002, 8(11), 3407-3418.
[PMID: 12429628]
[86]
Benedetti, R.; Dell’Aversana, C.; Giorgio, C.; Astorri, R.; Altucci, L. Breast cancer vaccines: new insights. Front. Endocrinol. (Lausanne), 2017, 8, 270.
[http://dx.doi.org/10.3389/fendo.2017.00270] [PMID: 29081765]
[87]
Yang, E.; Hu, X.F.; Xing, P.X. Advances of MUC1 as a target for breast cancer immunotherapy. Histol. Histopathol., 2007, 22(8), 905-922.
[PMID: 17503348]
[88]
Apostolopoulos, V.; Xing, P.X.; McKenzie, I.F. Murine immune response to cells transfected with human MUC1: immunization with cellular and synthetic antigens. Cancer Res., 1994, 54(19), 5186-5193.
[PMID: 7923138]
[89]
Zhang, S.; Graeber, L.A.; Helling, F.; Ragupathi, G.; Adluri, S.; Lloyd, K.O.; Livingston, P.O. Augmenting the immunogenicity of synthetic MUC1 peptide vaccines in mice. Cancer Res., 1996, 56(14), 3315-3319.
[PMID: 8764127]
[90]
Acres, R.B.; Hareuveni, M.; Balloul, J-M.; Kieny, M-P. Vaccinia virus MUC1 immunization of mice: immune response and protection against the growth of murine tumors bearing the MUC1 antigen. J Immunother Emphasis Tumor Immunol, 1993, 14(2), 136-143.
[http://dx.doi.org/10.1097/00002371-199308000-00009] [PMID: 8280702]
[91]
Goydos, J.S.; Elder, E.; Whiteside, T.L.; Finn, O.J.; Lotze, M.T. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J. Surg. Res., 1996, 63(1), 298-304.
[http://dx.doi.org/10.1006/jsre.1996.0264] [PMID: 8667619]
[92]
Ramanathan, R.K.; Lee, K.M.; McKolanis, J.; Hitbold, E.; Schraut, W.; Moser, A.J.; Warnick, E.; Whiteside, T.; Osborne, J.; Kim, H.; Day, R.; Troetschel, M.; Finn, O.J. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol. Immunother., 2005, 54(3), 254-264.
[http://dx.doi.org/10.1007/s00262-004-0581-1] [PMID: 15372205]
[93]
Adluri, S.; Gilewski, T.; Zhang, S.; Ramnath, V.; Ragupathi, G.; Livingston, P. Specificity analysis of sera from breast cancer patients vaccinated with MUC1-KLH plus QS-21. Br. J. Cancer, 1999, 79(11-12), 1806-1812.
[http://dx.doi.org/10.1038/sj.bjc.6990288] [PMID: 10206297]
[94]
Gilewski, T.; Adluri, S.; Ragupathi, G.; Zhang, S.; Yao, T.J.; Panageas, K.; Moynahan, M.; Houghton, A.; Norton, L.; Livingston, P.O. Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin. Cancer Res., 2000, 6(5), 1693-1701.
[PMID: 10815887]
[95]
Palmer, M.; Parker, J.; Modi, S.; Butts, C.; Smylie, M.; Meikle, A.; Kehoe, M.; MacLean, G.; Longenecker, M. Phase I study of the BLP25 (MUC1 peptide) liposomal vaccine for active specific immunotherapy in stage IIIB/IV non-small-cell lung cancer. Clin. Lung Cancer, 2001, 3(1), 49-57.
[http://dx.doi.org/10.3816/CLC.2001.n.018] [PMID: 14656392]
[96]
Miles, D.W.; Towlson, K.E.; Graham, R.; Reddish, M.; Longenecker, B.M.; Taylor-Papadimitriou, J.; Rubens, R.D. A randomised phase II study of sialyl-Tn and DETOX-B adjuvant with or without cyclophosphamide pretreatment for the active specific immunotherapy of breast cancer. Br. J. Cancer, 1996, 74(8), 1292-1296.
[http://dx.doi.org/10.1038/bjc.1996.532] [PMID: 8883420]
[97]
Karanikas, V.; Lodding, J.; Maino, V.C.; McKenzie, I.F.C. Flow cytometric measurement of intracellular cytokines detects immune responses in MUC1 immunotherapy. Clin. Cancer Res., 2000, 6(3), 829-837.
[PMID: 10741704]
[98]
Karanikas, V; Thynne, G; Mitchell, P; Ong, C-S.; Gunawardana, D.; Blum, R.; Pearson, J.; Lodding, J.; Pietersz, G.; Broadbent, R.; Tait, B; McKenzie, I.F.C. Mannan mucin-1 peptide immunization: influence of cyclophosphamide and the route of injection. J Immunother (1991), 2001, 24(2), 172-183.
[PMID: 11449074]
[99]
Vassilaros, S.; Tsibanis, A.; Tsikkinis, A.; Pietersz, G.A.; McKenzie, I.F.; Apostolopoulos, V. Up to 15-year clinical follow-up of a pilot Phase III immunotherapy study in stage II breast cancer patients using oxidized mannan-MUC1. Immunotherapy, 2013, 5(11), 1177-1182.
[http://dx.doi.org/10.2217/imt.13.126] [PMID: 24188672]
[100]
Wang, X.; Wang, J.P.; Maughan, M.F.; Lachman, L.B. Alphavirus replicon particles containing the gene for HER2/neu inhibit breast cancer growth and tumorigenesis. Breast Cancer Res., 2005, 7(1), R145-R155.
[http://dx.doi.org/10.1186/bcr962] [PMID: 15642163]
[101]
Lindencrona, J.A.; Preiss, S.; Kammertoens, T.; Schüler, T.; Piechocki, M.; Wei, W.Z.; Seliger, B.; Blankenstein, T.; Kiessling, R. CD4+ T cell-mediated HER-2/neu-specific tumor rejection in the absence of B cells. Int. J. Cancer, 2004, 109(2), 259-264.
[http://dx.doi.org/10.1002/ijc.11654] [PMID: 14750178]
[102]
Ren, X-R.; Wei, J.; Lei, G.; Wang, J.; Lu, J.; Xia, W.; Spector, N.; Barak, L.S.; Clay, T.M.; Osada, T.; Hamilton, E.; Blackwell, K.; Hobeika, A.C.; Morse, M.A.; Lyerly, H.K.; Chen, W. Polyclonal HER2-specific antibodies induced by vaccination mediate receptor internalization and degradation in tumor cells. Breast Cancer Res., 2012, 14(3), R89.
[http://dx.doi.org/10.1186/bcr3204] [PMID: 22676470]
[103]
Wolpoe, M.E.; Lutz, E.R.; Ercolini, A.M.; Murata, S.; Ivie, S.E.; Garrett, E.S.; Emens, L.A.; Jaffee, E.M.; Reilly, R.T. HER-2/neu-specific monoclonal antibodies collaborate with HER-2/neu-targeted granulocyte macrophage colony-stimulating factor secreting whole cell vaccination to augment CD8+ T cell effector function and tumor-free survival in Her-2/neu-transgenic mice. J. Immunol., 2003, 171(4), 2161-2169.
[http://dx.doi.org/10.4049/jimmunol.171.4.2161] [PMID: 12902523]
[104]
Yan, J.; Pankhong, P.; Shin, T.H.; Obeng-Adjei, N.; Morrow, M.P.; Walters, J.N.; Khan, A.S.; Sardesai, N.Y.; Weiner, D.B. Highly optimized DNA vaccine targeting human telomerase reverse transcriptase stimulates potent antitumor immunity. Cancer Immunol. Res., 2013, 1(3), 179-189.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0001] [PMID: 24777680]
[105]
Turriziani, M.; Fantini, M.; Benvenuto, M.; Izzi, V.; Masuelli, L.; Sacchetti, P.; Modesti, A.; Bei, R. Carcinoembryonic antigen (CEA)-based cancer vaccines: recent patents and antitumor effects from experimental models to clinical trials. Recent Patents Anticancer Drug Discov., 2012, 7(3), 265-296.
[http://dx.doi.org/10.2174/157489212801820020] [PMID: 22630596]
[106]
Curigliano, G.; Rescigno, M.; Goldhirsch, A. Immunology and breast cancer: therapeutic cancer vaccines. Breast, 2007, 16(Suppl. 2), S20-S26.
[http://dx.doi.org/10.1016/j.breast.2007.07.004] [PMID: 17706425]
[107]
Heery, C.R.; Ibrahim, N.K.; Arlen, P.M.; Mohebtash, M.; Murray, J.L.; Koenig, K.; Madan, R.A.; McMahon, S.; Marté, J.L.; Steinberg, S.M.; Donahue, R.N.; Grenga, I.; Jochems, C.; Farsaci, B.; Folio, L.R.; Schlom, J.; Gulley, J.L. Docetaxel alone or in combination with a therapeutic cancer vaccine (PANVAC) in patients with metastatic breast cancer: a randomized clinical trial. JAMA Oncol., 2015, 1(8), 1087-1095.
[http://dx.doi.org/10.1001/jamaoncol.2015.2736] [PMID: 26291768]
[108]
Madan, R.A.; Arlen, P.M.; Gulley, J.L. PANVAC-VF: poxviral-based vaccine therapy targeting CEA and MUC1 in carcinoma. Expert Opin. Biol. Ther., 2007, 7(4), 543-554.
[http://dx.doi.org/10.1517/14712598.7.4.543] [PMID: 17373905]
[109]
Gulley, J.L.; Arlen, P.M.; Tsang, K-Y.; Yokokawa, J.; Palena, C.; Poole, D.J.; Remondo, C.; Cereda, V.; Jones, J.L.; Pazdur, M.P.; Higgins, J.P.; Hodge, J.W.; Steinberg, S.M.; Kotz, H.; Dahut, W.L.; Schlom, J. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin. Cancer Res., 2008, 14(10), 3060-3069.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0126] [PMID: 18483372]
[110]
Coveler, A.L.; Bates, N.E.; Disis, M.L. Progress in the development of a therapeutic vaccine for breast cancer. Breast Cancer (Dove Med. Press), 2010, 2, 25-36.
[PMID: 24367164]
[111]
Vonderheide, R.H.; Domchek, S.M.; Schultze, J.L.; George, D.J.; Hoar, K.M.; Chen, D.Y.; Stephans, K.F.; Masutomi, K.; Loda, M.; Xia, Z.; Anderson, K.S.; Hahn, W.C.; Nadler, L.M. Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clin. Cancer Res., 2004, 10(3), 828-839.
[http://dx.doi.org/10.1158/1078-0432.CCR-0620-3] [PMID: 14871958]
[112]
Adams, S.; Diamond, J.R.; Hamilton, E.; Pohlmann, P.R.; Tolaney, S.M.; Chang, C.W.; Zhang, W.; Iizuka, K.; Foster, P.G.; Molinero, L.; Funke, R.; Powderly, J. Atezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-year survival follow-up: a phase 1b clinical trial. JAMA Oncol., 2019, 5(3), 334-342.
[http://dx.doi.org/10.1001/jamaoncol.2018.5152] [PMID: 30347025]
[113]
Emens, L.A. Breast cancer immunotherapy: facts and hopes. Clin. Cancer Res., 2018, 24(3), 511-520.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3001] [PMID: 28801472]
[114]
Emens, L.; Esteva, F.; Beresford, M. AACR, 2019.
[115]
Emens, L.; Esteva, F.; Beresford, M. 305O Overall survival (OS) in KATE2, a phase II study of programmed death ligand 1 (PD-L1) inhibitor atezolizumab (atezo)+ trastuzumab emtansine (T-DM1) vs placebo (pbo)+ T-DM1 in previously treated HER2+ advanced breast cancer (BC). Ann. Oncol., 2019, 30(Suppl. 5), mdz242.
[http://dx.doi.org/10.1093/annonc/mdz242]
[116]
Dirix, L.Y.; Takacs, I.; Jerusalem, G.; Nikolinakos, P.; Arkenau, H.T.; Forero-Torres, A.; Boccia, R.; Lippman, M.E.; Somer, R.; Smakal, M.; Emens, L.A.; Hrinczenko, B.; Edenfield, W.; Gurtler, J.; von Heydebreck, A.; Grote, H.J.; Chin, K.; Hamilton, E.P. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res. Treat., 2018, 167(3), 671-686.
[http://dx.doi.org/10.1007/s10549-017-4537-5] [PMID: 29063313]
[117]
Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; Maiya, V.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2020, 21(1), 44-59.
[http://dx.doi.org/10.1016/S1470-2045(19)30689-8] [PMID: 31786121]
[118]
Charlebois, R.; Allard, B.; Allard, D.; Buisseret, L.; Turcotte, M.; Pommey, S.; Chrobak, P.; Stagg, J.; Poly, I. C and CpG synergize with anti-ErbB2 mAb for treatment of breast tumors resistant to immune checkpoint inhibitors. Cancer Res., 2017, 77(2), 312-319.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1873] [PMID: 27872096]
[119]
Lee, A.; Djamgoz, M.B.A. Triple negative breast cancer: emerging therapeutic modalities and novel combination therapies. Cancer Treat. Rev., 2018, 62, 110-122.
[http://dx.doi.org/10.1016/j.ctrv.2017.11.003] [PMID: 29202431]
[120]
Yagata, H.; Kajiura, Y.; Yamauchi, H. Current strategy for triple-negative breast cancer: appropriate combination of surgery, radiation, and chemotherapy. Breast Cancer, 2011, 18(3), 165-173.
[http://dx.doi.org/10.1007/s12282-011-0254-9] [PMID: 21290263]
[121]
Page, D.B.; Bear, H.; Prabhakaran, S.; Gatti-Mays, M.E.; Thomas, A.; Cobain, E.; McArthur, H.; Balko, J.M.; Gameiro, S.R.; Nanda, R.; Gulley, J.L.; Kalinsky, K.; White, J.; Litton, J.; Chmura, S.J.; Polley, M.Y.; Vincent, B.; Cescon, D.W.; Disis, M.L.; Sparano, J.A.; Mittendorf, E.A.; Adams, S. Two may be better than one: PD-1/PD-L1 blockade combination approaches in metastatic breast cancer. NPJ Breast Cancer, 2019, 5(1), 34.
[http://dx.doi.org/10.1038/s41523-019-0130-x] [PMID: 31602395]
[122]
Mittendorf, E.A.; Ardavanis, A.; Litton, J.K.; Shumway, N.M.; Hale, D.F.; Murray, J.L.; Perez, S.A.; Ponniah, S.; Baxevanis, C.N.; Papamichail, M.; Peoples, G.E. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget, 2016, 7(40), 66192-66201.
[http://dx.doi.org/10.18632/oncotarget.11751] [PMID: 27589688]
[123]
Mougel, A.; Terme, M.; Tanchot, C. Therapeutic cancer vaccine and combinations with antiangiogenic therapies and immune checkpoint blockade. Front. Immunol., 2019, 10, 467.
[http://dx.doi.org/10.3389/fimmu.2019.00467] [PMID: 30923527]
[124]
Crosby, E.J.; Gwin, W.; Blackwell, K.; Marcom, P.K.; Chang, S.; Maecker, H.T.; Broadwater, G.; Hyslop, T.; Kim, S.; Rogatko, A.; Lubkov, V.; Snyder, J.C.; Osada, T.; Hobeika, A.C.; Morse, M.A.; Lyerly, H.K.; Hartman, Z.C. Vaccine-induced Memory CD8+ T cells provide clinical benefit in HER2 expressing breast cancer: a mouse to human translational study. Clin. Cancer Res., 2019, 25(9), 2725-2736.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3102] [PMID: 30635338]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy