Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

In Silico Investigations on the Probable Macromolecular Drug Targets Involved in the Anti-Schizophrenia Activity of Terminalia bellerica

Author(s): Lim Chiew Fei, Anand Gaurav* and Mayasah Al-Nema

Volume 19, Issue 1, 2022

Published on: 15 March, 2021

Page: [83 - 92] Pages: 10

DOI: 10.2174/1570178618666210315152721

Price: $65

conference banner
Abstract

Background: Schizophrenia is a severe mental disorder that affects around 1% of the population worldwide. The available antipsychotics alleviate the positive symptoms of the illness. However, their effect on the negative and cognitive symptoms is limited. The fruit powder of Terminalia bellerica has been found to possess antipsychotic activity, which might be useful in treating the symptoms of schizophrenia.

Objective: The present study was performed to evaluate the affinity of the active constituents of Terminalia bellerica towards macromolecular drug targets involved in the pathophysiology of schizophrenia and, thereby, determine the structural features of the ligands involved in the interactions with the proposed targets.

Methods: A molecular docking study was carried out on ten active constituents of Terminalia bellerica with four-drug targets involved in the aetiology of schizophrenia. These targets are dopamine, N-methyl- D-aspartate, Gamma-aminobutyric acid, and phosphodiesterase 10A receptors. The binding interactions between the target proteins and the ligands with the highest affinities were studied thoroughly. Results: β-sitosterol, ellagic acid, and quercetin displayed high binding affinity toward all the macromolecular drug targets.

Results: β-sitosterol, ellagic acid, and quercetin displayed high binding affinity toward all the macromolecular drug targets. β-sitosterol possesses a high binding affinity for the dopamine receptor, while quercetin has high binding affinities for both dopamine and N-methyl-D-aspartate receptor. On the other hand, ellagic acid formed stronger binding interactions with Gamma-aminobutyric acid and phosphodiesterase 10A.

Conclusion: Terminalia bellerica can serve as a new anti-psychotic drug from natural sources with more promising development.

Keywords: Schizophrenia, Terminalia bellerica, molecular docking, β-sitosterol, ellagic acid, quercetin.

« Previous
Graphical Abstract
[1]
Walker, R.; Whittlesea, C. Clinical Pharmacy and Therapeutics, 5th ed; Elsever: Churchill Livingstone, 2012.
[2]
Sham, P.C.; MacLean, C.J.; Kendler, K.S. Acta Psychiatr. Scand., 1994, 89(2), 135-141.
[http://dx.doi.org/10.1111/j.1600-0447.1994.tb01501.x] [PMID: 8178665]
[3]
Kapur, S.; Zipursky, R.; Jones, C.; Remington, G. Houle, S. Am. J. Psychiatry, 2000, 157(4), 514-520.
[http://dx.doi.org/10.1176/appi.ajp.157.4.514] [PMID: 10739409]
[4]
Ho, G.D.; Yang, S-W.; Smotryski, J.; Bercovici, A.; Nechuta, T.; Smith, E.M.; McElroy, W.; Tan, Z.; Tulshian, D.; McKittrick, B.; Greenlee, W.J.; Hruza, A.; Xiao, L.; Rindgen, D.; Mullins, D.; Guzzi, M.; Zhang, X.; Bleickardt, C.; Hodgson, R. Bioorg. Med. Chem. Lett., 2012, 22(2), 1019-1022.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.127] [PMID: 22222034]
[5]
Kumar, A.; Yadav, M.; Parle, M.; Dhingra, S.; Dhull, D.K. Inflammopharmacology, 2017, 25(3), 277-292.
[http://dx.doi.org/10.1007/s10787-017-0340-5] [PMID: 28353125]
[6]
Grabley, S.; Thiericke, R. Drug discovery from nature; Springer Science & Business Media, 1998.
[7]
Saraswathi Motamarri, N.; Karthikeyan, M.; Kannan, M.; Rajasekar, S. Int. J. Res. Pharm. Biomed. Sci., 2012, 3, 96-99.
[8]
Kadian, R.; Parle, M. Int. J. Pharm. Sci. Rev. Res., 2015, 30(1), 247-252.
[9]
Dr. Duke's Phytochemical and Ethnobotanical Databases, 2017 [January, 2020];
[10]
Kumari, S.; Mythili Krishna, J.; Joshi, A.B.; Gurav, S.; Bhandarkar, A.V.; Agarwal, A.; Deepak, M.; Gururaj, G. J Pharmacogn Phytochem, 2017, 6(5), 368-376.
[11]
Gupta, S.; Black, D.W.; Smith, D.A. Ann. Clin. Psychiatry, 1994, 6(3), 173-180.
[http://dx.doi.org/10.3109/10401239409149000] [PMID: 7533585]
[12]
Ostopovici-Halip, L.; Rad-Curpan, R. J. Serb. Chem. Soc., 2014, 79(2), 175-183.
[http://dx.doi.org/10.2298/JSC130208046O]
[13]
Barbee, J.G.; Mancuso, D.M.; Freed, C.R.; Todorov, A.A. Am. J. Psychiatry, 1992, 149(4), 506-510.
[PMID: 1348161]
[14]
Banks, W.A. BMC Neurol., 2009(Suppl. 1), S3.
[15]
Mikitsh, J. L.; Chacko, A.-M. Perspect Medicin Chem,, 2014, 6(PMC), S13384.
[http://dx.doi.org/10.4137/PMC.S13384]
[16]
Pajouhesh, H.; Lenz, G.R. NeuroRx, 2005, 2(4), 541-553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[17]
Wang, S.; Che, T.; Levit, A.; Shoichet, B.K.; Wacker, D.; Roth, B.L. Nature, 2018, 555(7695), 269-273.
[http://dx.doi.org/10.1038/nature25758] [PMID: 29466326]
[18]
Zhu, S.; Noviello, C.M.; Teng, J.; Walsh, R.M., Jr; Kim, J.J.; Hibbs, R.E. Nature, 2018, 559(7712), 67-72.
[http://dx.doi.org/10.1038/s41586-018-0255-3] [PMID: 29950725]
[19]
Romero-Hernandez, A.; Furukawa, H. Mol. Pharmacol., 2017, 92(1), 22-29.
[http://dx.doi.org/10.1124/mol.116.107912] [PMID: 28468946]
[20]
Fujishige, K.; Kotera, J.; Michibata, H.; Yuasa, K.; Takebayashi, S.; Okumura, K.; Omori, K. J. Biol. Chem., 1999, 274(26), 18438-18445.
[http://dx.doi.org/10.1074/jbc.274.26.18438] [PMID: 10373451]
[21]
Walsh, E.J.; Hunter, A.D. J. Chem. Educ., 1997, 74(8), 905.
[http://dx.doi.org/10.1021/ed074p905]
[22]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[23]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[24]
Biovia, D.S. [Computer program]. Discovery studio visualizer, 2016.
[25]
Trott, O.; Olson, A.J. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy