Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

The Putative Adverse Effects of Bisphenol A on Autoimmune Diseases

Author(s): Kassem Sharif, Adam Kurnick, Louis Coplan, Matthew Alexander, Abdulla Watad, Howard Amital and Yehuda Shoenfeld*

Volume 22, Issue 7, 2022

Published on: 10 February, 2021

Page: [665 - 676] Pages: 12

DOI: 10.2174/1871530321666210210154309

Price: $65

Open Access Journals Promotions 2
Abstract

Bisphenol A (BPA) is a monomer that is widely used in the manufacturing of polycarbonate plastics (including storage plastics and baby bottles) and is considered to be one of the most widely used synthetic compounds in the manufacturing industry. Exposure to BPA mainly occurs after oral ingestion and results from leaks into food and water from plastic containers. According to epidemiological data, exposure is widespread and estimated to occur in 90% of individuals. BPA exhibits pleiotropic and estrogen-like effects; thus, it is considered an endocrine-disrupting chemical. A growing body of evidence highlights the role of BPA in modulating immune responses and signaling pathways, which results in a proinflammatory response by enhancing the differential polarization of immune cells and cytokine production profile to one that is consistent with proinflammation. Indeed, epidemiological studies have uncovered associations between several autoimmune diseases and BPA exposure. Data from animal models provided consistent evidence, which highlighted the role of BPA in the pathogenesis, exacerbation, and perpetuation of various autoimmune phenomena including neuroinflammation in the context of multiple sclerosis, colitis in inflammatory bowel disease, nephritis in systemic lupus erythematosus, and insulitis in type 1 diabetes mellitus. Owing to the widespread use of BPA and its effects on immune system dysregulation, a call for careful assessment of patients’ risks and public health measures are needed to limit exposure and subsequent deleterious effects. The purpose of this study is to explore the autoimmune triggering mechanisms and present the current literature supporting the role of BPA in the pathogenesis of autoimmune diseases.

Keywords: Bisphenol A, autoimmunity, proinflammation, Multiple sclerosis, Systemic lupus erythematosus, plastics.

[1]
Calafat, A.M.; Ye, X.; Wong, L-Y.; Reidy, J.A.; Needham, L.L. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ. Health Perspect., 2008, 116(1), 39-44.
[http://dx.doi.org/10.1289/ehp.10753] [PMID: 18197297]
[2]
Almeida, S.; Raposo, A.; Almeida-González, M.; Carrascosa, C.; Bisphenol, A. Bisphenol A: Food Exposure and Impact on Human Health. Compr. Rev. Food Sci. Food Saf., 2018, 17(6), 1503-1517.
[http://dx.doi.org/10.1111/1541-4337.12388] [PMID: 33350146]
[3]
Mendonca, K.; Hauser, R.; Calafat, A.M.; Arbuckle, T.E.; Duty, S. Bisphenol A concentrations in maternal breast milk and infant urine. Int. Arch. Occup. Environ. Health, 2012, 87, 13-20.
[PMID: 23212895]
[4]
Thayer, K.A.; Doerge, D.R.; Hunt, D.; Schurman, S.H.; Twaddle, N.C.; Churchwell, M.I.; Garantziotis, S.; Kissling, G.E.; Easterling, M.R.; Bucher, J.R.; Birnbaum, L.S. Pharmacokinetics of bisphenol A in humans following a single oral administration. Environ. Int., 2015, 83, 107-115.
[http://dx.doi.org/10.1016/j.envint.2015.06.008] [PMID: 26115537]
[5]
Tillett, T.; Bisphenol, A. Chapter 2: new data shed light on exposure, potential bioaccumulation. Environ. Health Perspect., 2009, 117, p. (5)A210.
[6]
Ohore, O.E.; Zhang, S. Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review. Sci. Am., 2019, 5, e00135.
[7]
Kazemi, S.; Feizi, F.; Aghapour, F.; Joorsaraee, G.A.; Moghadamnia, A.A. Histopathology and Histomorphometric Investigation of Bisphenol A and Nonylphenol on the Male Rat Reproductive System. N. Am. J. Med. Sci., 2016, 8(5), 215-221.
[http://dx.doi.org/10.4103/1947-2714.183012] [PMID: 27298816]
[8]
Negri-Cesi, P.; Bisphenol, A. Bisphenol A Interaction With Brain Development and Functions. Dose Response, 2015, 13(2), 1559325815590394.
[http://dx.doi.org/10.1177/1559325815590394] [PMID: 26672480]
[9]
Kim, K.; Son, T.G.; Park, H.R.; Kim, S.J.; Kim, H.S.; Kim, H.S.; Kim, T.S.; Jung, K.K.; Han, S.Y.; Lee, J. Potencies of bisphenol A on the neuronal differentiation and hippocampal neurogenesis. J. Toxicol. Environ. Health A, 2009, 72(21-22), 1343-1351.
[http://dx.doi.org/10.1080/15287390903212501] [PMID: 20077206]
[10]
Sharif, K.; Watad, A.; Coplan, L.; Lichtbroun, B.; Krosser, A.; Lichtbroun, M.; Bragazzi, N.L.; Amital, H.; Afek, A.; Shoenfeld, Y. The role of stress in the mosaic of autoimmunity: An overlooked association. Autoimmun. Rev., 2018, 17(10), 967-983.
[http://dx.doi.org/10.1016/j.autrev.2018.04.005] [PMID: 30118900]
[11]
Sharif, K.; Watad, A.; Bragazzi, N.L.; Lichtbroun, M.; Amital, H.; Shoenfeld, Y. Physical activity and autoimmune diseases: Get moving and manage the disease. Autoimmun. Rev., 2018, 17(1), 53-72.
[http://dx.doi.org/10.1016/j.autrev.2017.11.010] [PMID: 29108826]
[12]
Antonini, L.; Le Mauff, B.; Marcelli, C.; Aouba, A.; de Boysson, H. Rhupus: a systematic literature review. Autoimmun. Rev., 2020, 19(9), 102612.
[http://dx.doi.org/10.1016/j.autrev.2020.102612] [PMID: 32668290]
[13]
Mohammadian Haftcheshmeh, S.; Momtazi-Borojeni, A.A. Immunomodulatory therapeutic effects of curcumin in rheumatoid arthritis. Autoimmun. Rev., 2020, 19(8), 102593.
[http://dx.doi.org/10.1016/j.autrev.2020.102593] [PMID: 32540449]
[14]
Blank, M.; Shoenfeld, Y. Helminth-Related Tuftsin-Phosphorylcholine Compound and its Interplay with Autoimmune Diseases. Isr. Med. Assoc. J., 2019, 21(3), 158-162.
[PMID: 30905098]
[15]
Watad, A.; Bragazzi, N.L.; Amital, H.; Shoenfeld, Y. Hyperstimulation of Adaptive Immunity as the Common Pathway for Silicone Breast Implants, Autoimmunity, and Lymphoma of the Breast. Isr. Med. Assoc. J., 2019, 21(8), 517-519.
[PMID: 31474010]
[16]
Villar-Pazos, S.; Martinez-Pinna, J.; Castellano-Muñoz, M.; Alonso-Magdalena, P.; Marroqui, L.; Quesada, I.; Gustafsson, J.A.; Nadal, A. Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on ca2+ entry in mouse pancreatic β-cells. Sci. Rep., 2017, 7(1), 11770.
[http://dx.doi.org/10.1038/s41598-017-11995-3] [PMID: 28924161]
[17]
Rezg, R.; El-Fazaa, S.; Gharbi, N.; Mornagui, B. Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environ. Int., 2014, 64, 83-90.
[http://dx.doi.org/10.1016/j.envint.2013.12.007] [PMID: 24382480]
[18]
Lang, I.A.; Galloway, T.S.; Scarlett, A.; Henley, W.E.; Depledge, M.; Wallace, R.B.; Melzer, D. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA, 2008, 300(11), 1303-1310.
[http://dx.doi.org/10.1001/jama.300.11.1303] [PMID: 18799442]
[19]
Krieter, D.H.; Canaud, B.; Lemke, H.D.; Rodriguez, A.; Morgenroth, A.; von Appen, K.; Dragoun, G.P.; Wanner, C. Bisphenol A in chronic kidney disease. Artif. Organs, 2013, 37(3), 283-290.
[http://dx.doi.org/10.1111/j.1525-1594.2012.01556.x] [PMID: 23145999]
[20]
Spanier, A.J.; Kahn, R.S.; Kunselman, A.R.; Hornung, R.; Xu, Y.; Calafat, A.M.; Lanphear, B.P. Prenatal exposure to bisphenol A and child wheeze from birth to 3 years of age. Environ. Health Perspect., 2012, 120(6), 916-920.
[http://dx.doi.org/10.1289/ehp.1104175] [PMID: 22334053]
[21]
Braun, J.M.; Kalkbrenner, A.E.; Calafat, A.M.; Yolton, K.; Ye, X.; Dietrich, K.N.; Lanphear, B.P. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics, 2011, 128(5), 873-882.
[http://dx.doi.org/10.1542/peds.2011-1335] [PMID: 22025598]
[22]
Yang, M.; Ryu, J-H.; Jeon, R.; Kang, D.; Yoo, K-Y. Effects of bisphenol A on breast cancer and its risk factors. Arch. Toxicol., 2009, 83(3), 281-285.
[http://dx.doi.org/10.1007/s00204-008-0364-0] [PMID: 18843480]
[23]
Borba, V.V.; Zandman-Goddard, G.; Shoenfeld, Y. Prolactin and Autoimmunity. Front. Immunol., 2018, 9(73), 73.
[http://dx.doi.org/10.3389/fimmu.2018.00073] [PMID: 29483903]
[24]
Hao, L.; Zhang, J.; Zhang, Y.; Hu, H.; Shao, W.; Zhang, X.; Geng, C.; Wang, Y.; Jiang, L. Effect of bisphenol a on occurrence and progression of prolactinoma and its underlying mechanisms. Am. J. Transl. Res., 2016, 8(10), 4195-4204.
[PMID: 27830003]
[25]
Youn, J.Y.; Park, H.Y.; Lee, J.W.; Jung, I.O.; Choi, K.H.; Kim, K.; Cho, K.H. Evaluation of the immune response following exposure of mice to bisphenol A: induction of Th1 cytokine and prolactin by BPA exposure in the mouse spleen cells. Arch. Pharm. Res., 2002, 25(6), 946-953.
[http://dx.doi.org/10.1007/BF02977018] [PMID: 12510852]
[26]
Yan, H.; Takamoto, M.; Sugane, K. Exposure to Bisphenol A prenatally or in adulthood promotes T(H)2 cytokine production associated with reduction of CD4CD25 regulatory T cells. Environ. Health Perspect., 2008, 116(4), 514-519.
[http://dx.doi.org/10.1289/ehp.10829] [PMID: 18414636]
[27]
Holladay, S.D.; Xiao, S.; Diao, H.; Barber, J.; Nagy, T.; Ye, X.; Gogal, R.M., Jr Perinatal bisphenol A exposure in C57B6/129svj male mice: potential altered cytokine/chemokine production in adulthood. Int. J. Environ. Res. Public Health, 2010, 7(7), 2845-2852.
[http://dx.doi.org/10.3390/ijerph7072845] [PMID: 20717544]
[28]
Camarca, A.; Gianfrani, C.; Ariemma, F.; Cimmino, I.; Bruzzese, D.; Scerbo, R.; Picascia, S.; D’Esposito, V.; Beguinot, F.; Formisano, P.; Valentino, R. Human Peripheral Blood Mononuclear Cell Function and Dendritic Cell Differentiation Are Affected by Bisphenol-A Exposure. PLoS One, 2016, 11(8), e0161122.
[http://dx.doi.org/10.1371/journal.pone.0161122] [PMID: 27509021]
[29]
Cernadas, M.; Lu, J.; Watts, G.; Brenner, M.B. CD1a expression defines an interleukin-12 producing population of human dendritic cells. Clin. Exp. Immunol., 2009, 155(3), 523-533.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03853.x] [PMID: 19220838]
[30]
Pisapia, L.; Del Pozzo, G.; Barba, P.; Caputo, L.; Mita, L.; Viggiano, E.; Russo, G.L.; Nicolucci, C.; Rossi, S.; Bencivenga, U.; Mita, D.G.; Diano, N. Effects of some endocrine disruptors on cell cycle progression and murine dendritic cell differentiation. Gen. Comp. Endocrinol., 2012, 178(1), 54-63.
[http://dx.doi.org/10.1016/j.ygcen.2012.04.005] [PMID: 22531466]
[31]
Liu, Y.; Mei, C.; Liu, H.; Wang, H.; Zeng, G.; Lin, J.; Xu, M. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A. Biochem. Biophys. Res. Commun., 2014, 451(4), 592-598.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.031] [PMID: 25128825]
[32]
McKinney, J.D.; Waller, C.L. Molecular determinants of hormone mimicry: halogenated aromatic hydrocarbon environmental agents. J. Toxicol. Environ. Health B Crit. Rev., 1998, 1(1), 27-58.
[http://dx.doi.org/10.1080/10937409809524542] [PMID: 9487092]
[33]
Canesi, L.; Betti, M.; Lorusso, L.C.; Ciacci, C.; Gallo, G. ‘In vivo’ effects of Bisphenol A in Mytilus hemocytes: modulation of kinase-mediated signalling pathways. Aquat. Toxicol., 2005, 71(1), 73-84.
[http://dx.doi.org/10.1016/j.aquatox.2004.10.011] [PMID: 15642633]
[34]
Kharrazian, D. The Potential Roles of Bisphenol A (BPA) Pathogenesis in Autoimmunity. Autoimmune Dis., 2014, 2014, 743616.
[http://dx.doi.org/10.1155/2014/743616] [PMID: 24804084]
[35]
Khan, D.; Ahmed, S.A. Epigenetic Regulation of Non-Lymphoid Cells by Bisphenol A, a Model Endocrine Disrupter: Potential Implications for Immunoregulation. Front. Endocrinol. (Lausanne), 2015, 6(91), 91.
[http://dx.doi.org/10.3389/fendo.2015.00091] [PMID: 26097467]
[36]
Doshi, T.; D’Souza, C.; Dighe, V.; Vanage, G. Effect of neonatal exposure on male rats to bisphenol A on the expression of DNA methylation machinery in the postimplantation embryo. J. Biochem. Mol. Toxicol., 2012, 26(9), 337-343.
[http://dx.doi.org/10.1002/jbt.21425] [PMID: 22730197]
[37]
Miao, M.; Zhou, X.; Li, Y.; Zhang, O.; Zhou, Z.; Li, T.; Yuan, W.; Li, R.; Li, D.K. LINE-1 hypomethylation in spermatozoa is associated with Bisphenol A exposure. Andrology, 2014, 2(1), 138-144.
[http://dx.doi.org/10.1111/j.2047-2927.2013.00166.x] [PMID: 24293158]
[38]
Wazir, U.; Mokbel, K.; Bisphenol, A. Bisphenol A: A Concise Review of Literature and a Discussion of Health and Regulatory Implications. In Vivo, 2019, 33(5), 1421-1423.
[http://dx.doi.org/10.21873/invivo.11619] [PMID: 31471387]
[39]
O’Gorman, C.; Lucas, R.; Taylor, B. Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int. J. Mol. Sci., 2012, 13(9), 11718-11752.
[http://dx.doi.org/10.3390/ijms130911718] [PMID: 23109880]
[40]
Brinkmeyer-Langford, C.; Rodrigues, A.; Kochan, K.J.; Haney, R.; Rassu, F.; Steelman, A.J.; Young, C.; Riggs, P.; Storts, R.; Meagher, M.W.; Welsh, C.J. Consequences of perinatal bisphenol A exposure in a mouse model of multiple sclerosis. Autoimmunity, 2014, 47(1), 57-66.
[http://dx.doi.org/10.3109/08916934.2013.832220] [PMID: 24191696]
[41]
Billon, N.; Tokumoto, Y.; Forrest, D.; Raff, M. Role of thyroid hormone receptors in timing oligodendrocyte differentiation. Dev. Biol., 2001, 235(1), 110-120.
[http://dx.doi.org/10.1006/dbio.2001.0293] [PMID: 11412031]
[42]
Knipper, M.; Bandtlow, C.; Gestwa, L.; Köpschall, I.; Rohbock, K.; Wiechers, B.; Zenner, H.P.; Zimmermann, U. Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function. Development, 1998, 125(18), 3709-3718.
[PMID: 9716536]
[43]
Seiwa, C.; Nakahara, J.; Komiyama, T.; Katsu, Y.; Iguchi, T.; Asou, H. Bisphenol A exerts thyroid-hormone-like effects on mouse oligodendrocyte precursor cells. Neuroendocrinology, 2004, 80(1), 21-30.
[http://dx.doi.org/10.1159/000080663] [PMID: 15345905]
[44]
Tiwari, S.K.; Agarwal, S.; Chauhan, L.K.; Mishra, V.N.; Chaturvedi, R.K. Bisphenol-A impairs myelination potential during development in the hippocampus of the rat brain. Mol. Neurobiol., 2015, 51(3), 1395-1416.
[http://dx.doi.org/10.1007/s12035-014-8817-3] [PMID: 25084756]
[45]
Rispoli, P.; Carzino, R.; Svaldo-Lanero, T.; Relini, A.; Cavalleri, O.; Fasano, A.; Liuzzi, G.M.; Carlone, G.; Riccio, P.; Gliozzi, A.; Rolandi, R. A thermodynamic and structural study of myelin basic protein in lipid membrane models. Biophys. J., 2007, 93(6), 1999-2010.
[http://dx.doi.org/10.1529/biophysj.106.103820] [PMID: 17513373]
[46]
Oka, T.; Adati, N.; Shinkai, T.; Sakuma, K.; Nishimura, T.; Kurose, K. Bisphenol A induces apoptosis in central neural cells during early development of Xenopus laevis. Biochem. Biophys. Res. Commun., 2003, 312(4), 877-882.
[http://dx.doi.org/10.1016/j.bbrc.2003.10.199] [PMID: 14651953]
[47]
Masuo, Y.; Ishido, M. Neurotoxicity of endocrine disruptors: possible involvement in brain development and neurodegeneration. J. Toxicol. Environ. Health B Crit. Rev., 2011, 14(5-7), 346-369.
[http://dx.doi.org/10.1080/10937404.2011.578557] [PMID: 21790316]
[48]
Moriyama, K.; Tagami, T.; Akamizu, T.; Usui, T.; Saijo, M.; Kanamoto, N.; Hataya, Y.; Shimatsu, A.; Kuzuya, H.; Nakao, K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab., 2002, 87(11), 5185-5190.
[http://dx.doi.org/10.1210/jc.2002-020209] [PMID: 12414890]
[49]
Astapova, I.; Lee, L.J.; Morales, C.; Tauber, S.; Bilban, M.; Hollenberg, A.N. The nuclear corepressor, NCoR, regulates thyroid hormone action in vivo. Proc. Natl. Acad. Sci. USA, 2008, 105(49), 19544-19549.
[http://dx.doi.org/10.1073/pnas.0804604105] [PMID: 19052228]
[50]
Wang, T.; Lu, J.; Xu, M.; Xu, Y.; Li, M.; Liu, Y.; Tian, X.; Chen, Y.; Dai, M.; Wang, W.; Lai, S.; Bi, Y.; Ning, G. Urinary bisphenol a concentration and thyroid function in Chinese adults. Epidemiology, 2013, 24(2), 295-302.
[http://dx.doi.org/10.1097/EDE.0b013e318280e02f] [PMID: 23337242]
[51]
Meeker, J.D.; Calafat, A.M.; Hauser, R. Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ. Sci. Technol., 2010, 44(4), 1458-1463.
[http://dx.doi.org/10.1021/es9028292] [PMID: 20030380]
[52]
Andrianou, XD; Gängler, S; Piciu, A; Charisiadis, P; Zira, C; Aristidou, K Human Exposures to Bisphenol A, Bisphenol F and Chlorinated Bisphenol A Derivatives and Thyroid Function. PLoS One., 2016, 11(10), e0155237.
[53]
Zhou, Z.; Zhang, J.; Jiang, F.; Xie, Y.; Zhang, X.; Jiang, L. Higher urinary bisphenol A concentration and excessive iodine intake are associated with nodular goiter and papillary thyroid carcinoma. Biosci. Rep., 2017, 37(4), BSR20170678.
[http://dx.doi.org/10.1042/BSR20170678] [PMID: 28684549]
[54]
Zhang, Y.; Wei, F.; Zhang, J.; Hao, L.; Jiang, J.; Dang, L.; Mei, D.; Fan, S.; Yu, Y.; Jiang, L. Bisphenol A and estrogen induce proliferation of human thyroid tumor cells via an estrogen-receptor-dependent pathway. Arch. Biochem. Biophys., 2017, 633, 29-39.
[http://dx.doi.org/10.1016/j.abb.2017.09.002] [PMID: 28882636]
[55]
Fernandez, M.O.; Bourguignon, N.S.; Arocena, P.; Rosa, M.; Libertun, C.; Lux-Lantos, V. Neonatal exposure to bisphenol A alters the hypothalamic-pituitary-thyroid axis in female rats. Toxicol. Lett., 2018, 285, 81-86.
[http://dx.doi.org/10.1016/j.toxlet.2017.12.029] [PMID: 29305326]
[56]
Chailurkit, L-O.; Aekplakorn, W.; Ongphiphadhanakul, B. The Association of Serum Bisphenol A with Thyroid Autoimmunity. Int. J. Environ. Res. Public Health, 2016, 13(11), 1153.
[http://dx.doi.org/10.3390/ijerph13111153] [PMID: 27869686]
[57]
Lee, S.; Kim, C.; Shin, H.; Kho, Y.; Choi, K. Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryo-larval zebrafish. Chemosphere, 2019, 221, 115-123.
[http://dx.doi.org/10.1016/j.chemosphere.2019.01.019] [PMID: 30639807]
[58]
Berto-Júnior, C.; Santos-Silva, A.P.; Ferreira, A.C.F.; Graceli, J.B.; de Carvalho, D.P.; Soares, P.; Romeiro, N.C.; Miranda-Alves, L. Unraveling molecular targets of bisphenol A and S in the thyroid gland. Environ. Sci. Pollut. Res. Int., 2018, 25(27), 26916-26926.
[http://dx.doi.org/10.1007/s11356-018-2419-y] [PMID: 30006815]
[59]
Lee, S; Kim, C; Youn, H; Choi, K Thyroid hormone disrupting potentials of bisphenol A and its analogues - In vitro, comparison study employing rat pituitary (GH3) and thyroid follicular (FRTL-5) cells. Toxicol. In vitro., 2017, 40, 297-304.
[60]
Zoeller, R.T.; Bansal, R.; Parris, C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology, 2005, 146(2), 607-612.
[http://dx.doi.org/10.1210/en.2004-1018] [PMID: 15498886]
[61]
Abegunde, A.T.; Muhammad, B.H.; Bhatti, O.; Ali, T. Environmental risk factors for inflammatory bowel diseases: Evidence based literature review. World J. Gastroenterol., 2016, 22(27), 6296-6317.
[http://dx.doi.org/10.3748/wjg.v22.i27.6296] [PMID: 27468219]
[62]
Sharif, K.; Amital, H.; Shoenfeld, Y. The role of dietary sodium in autoimmune diseases: The salty truth. Autoimmun. Rev., 2018, 17(11), 1069-1073.
[http://dx.doi.org/10.1016/j.autrev.2018.05.007] [PMID: 30213699]
[63]
DeLuca, J.A.; Allred, K.F.; Menon, R.; Riordan, R.; Weeks, B.R.; Jayaraman, A.; Allred, C.D. Bisphenol-A alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis. Exp. Biol. Med. (Maywood), 2018, 243(10), 864-875.
[http://dx.doi.org/10.1177/1535370218782139] [PMID: 29874946]
[64]
Verdú, E.F.; Deng, Y.; Bercik, P.; Collins, S.M. Modulatory effects of estrogen in two murine models of experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 283(1), G27-G36.
[http://dx.doi.org/10.1152/ajpgi.00460.2001] [PMID: 12065288]
[65]
Lai, KP; Chung, YT; Li, R; Wan, HT; Wong, CK Bisphenol A alters gut microbiome: Comparative metagenomics analysis. Environmental pollution (Barking, Essex : 1987)., 2016, 218, 923-30.
[66]
Bansal, T.; Alaniz, R.C.; Wood, T.K.; Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 228-233.
[http://dx.doi.org/10.1073/pnas.0906112107] [PMID: 19966295]
[67]
Nikolaus, S.; Schulte, B.; Al-Massad, N.; Thieme, F.; Schulte, D.M.; Bethge, J.; Rehman, A.; Tran, F.; Aden, K.; Häsler, R.; Moll, N.; Schütze, G.; Schwarz, M.J.; Waetzig, G.H.; Rosenstiel, P.; Krawczak, M.; Szymczak, S.; Schreiber, S. Increased Tryptophan Metabolism Is Associated With Activity of Inflammatory Bowel Diseases. Gastroenterology, 2017, 153(6), 1504-1516.e2.
[http://dx.doi.org/10.1053/j.gastro.2017.08.028] [PMID: 28827067]
[68]
Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F.; Carvalho, A.; Puccetti, P.; Romani, L. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 2013, 39(2), 372-385.
[http://dx.doi.org/10.1016/j.immuni.2013.08.003] [PMID: 23973224]
[69]
Qu, W.; Zhao, Z.; Chen, S.; Zhang, L.; Wu, D.; Chen, Z. Bisphenol A suppresses proliferation and induces apoptosis in colonic epithelial cells through mitochondrial and MAPK/AKT pathways. Life Sci., 2018, 208, 167-174.
[http://dx.doi.org/10.1016/j.lfs.2018.07.040] [PMID: 30036487]
[70]
Reddivari, L.; Veeramachaneni, D.N.R.; Walters, W.A.; Lozupone, C.; Palmer, J.; Hewage, M.K.K.; Bhatnagar, R.; Amir, A.; Kennett, M.J.; Knight, R.; Vanamala, J.K.P. Perinatal Bisphenol A Exposure Induces Chronic Inflammation in Rabbit Offspring via Modulation of Gut Bacteria and Their Metabolites. mSystems, 2017, 2(5), e00093-e17.
[http://dx.doi.org/10.1128/mSystems.00093-17] [PMID: 29034330]
[71]
Braniste, V.; Jouault, A.; Gaultier, E.; Polizzi, A.; Buisson-Brenac, C.; Leveque, M.; Martin, P.G.; Theodorou, V.; Fioramonti, J.; Houdeau, E. Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 448-453.
[http://dx.doi.org/10.1073/pnas.0907697107] [PMID: 20018722]
[72]
Yen, E.Y.; Singh, R.R. Brief Report: Lupus-An Unrecognized Leading Cause of Death in Young Females: A Population-Based Study Using Nationwide Death Certificates, 2000-2015. Arthritis Rheumatol., 2018, 70(8), 1251-1255.
[http://dx.doi.org/10.1002/art.40512] [PMID: 29671279]
[73]
Maroz, N.; Segal, M.S. Lupus nephritis and end-stage kidney disease. Am. J. Med. Sci., 2013, 346(4), 319-323.
[http://dx.doi.org/10.1097/MAJ.0b013e31827f4ee3] [PMID: 23370533]
[74]
Miranda-Hernández, D.; Cruz-Reyes, C.; Angeles, U.; Jara, L.J.; Saavedra, M.A. Prognostic factors for treatment response in patients with lupus nephritis. Reumatol. Clin., 2014, 10(3), 164-169.
[http://dx.doi.org/10.1016/j.reumae.2013.12.010] [PMID: 24269071]
[75]
Li, M.; Bi, Y.; Qi, L.; Wang, T.; Xu, M.; Huang, Y.; Xu, Y.; Chen, Y.; Lu, J.; Wang, W.; Ning, G. Exposure to bisphenol A is associated with low-grade albuminuria in Chinese adults. Kidney Int., 2012, 81(11), 1131-1139.
[http://dx.doi.org/10.1038/ki.2012.6] [PMID: 22398408]
[76]
Anders, H.J.; Schaefer, L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J. Am. Soc. Nephrol., 2014, 25(7), 1387-1400.
[http://dx.doi.org/10.1681/ASN.2014010117] [PMID: 24762401]
[77]
Zheng, L.; Sinniah, R.; Hsu, S.I. In situ glomerular expression of activated NF-kappaB in human lupus nephritis and other non-proliferative proteinuric glomerulopathy. Virchows Arch., 2006, 448(2), 172-83.
[78]
Dong, Y.; Zhang, Z.; Liu, H.; Jia, L.; Qin, M.; Wang, X. Exacerbating lupus nephritis following BPA exposure is associated with abnormal autophagy in MRL/lpr mice. Am. J. Transl. Res., 2020, 12(2), 649-659.
[PMID: 32194912]
[79]
Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663), 1532-1535.
[http://dx.doi.org/10.1126/science.1092385] [PMID: 15001782]
[80]
Tong, S.; Yang, S.; Li, T.; Gao, R.; Hu, J.; Luo, T.; Qing, H.; Zhen, Q.; Hu, R.; Li, X.; Yang, Y.; Peng, C.; Li, Q. Role of neutrophil extracellular traps in chronic kidney injury induced by bisphenol-A. J. Endocrinol., 2019, JOE-18-0608.R2.
[http://dx.doi.org/10.1530/JOE-18-0608] [PMID: 30798321]
[81]
Panchanathan, R.; Liu, H.; Leung, Y-K.; Ho, S.M.; Choubey, D.; Bisphenol, A. Bisphenol A (BPA) stimulates the interferon signaling and activates the inflammasome activity in myeloid cells. Mol. Cell. Endocrinol., 2015, 415, 45-55.
[http://dx.doi.org/10.1016/j.mce.2015.08.003] [PMID: 26277401]
[82]
Esposito, S.; Toni, G.; Tascini, G.; Santi, E.; Berioli, M.G.; Principi, N. Environmental Factors Associated With Type 1 Diabetes. Front. Endocrinol. (Lausanne), 2019, 10, 592.
[http://dx.doi.org/10.3389/fendo.2019.00592] [PMID: 31555211]
[83]
Rewers, M.; Ludvigsson, J. Environmental risk factors for type 1 diabetes. Lancet, 2016, 387(10035), 2340-2348.
[http://dx.doi.org/10.1016/S0140-6736(16)30507-4] [PMID: 27302273]
[84]
İnce, T.; Balcı, A.; Yalçın, S.S.; Özkemahlı, G.; Erkekoglu, P.; Kocer-Gumusel, B.; Yurdakök, K. Urinary bisphenol-A levels in children with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab., 2018, 31(8), 829-836.
[http://dx.doi.org/10.1515/jpem-2018-0141] [PMID: 29975667]
[85]
Bodin, J.; Bølling, A.K.; Samuelsen, M.; Becher, R.; Løvik, M.; Nygaard, U.C. Long-term bisphenol A exposure accelerates insulitis development in diabetes-prone NOD mice. Immunopharmacol. Immunotoxicol., 2013, 35(3), 349-358.
[http://dx.doi.org/10.3109/08923973.2013.772195] [PMID: 23496298]
[86]
Cetkovic-Cvrlje, M.; Thinamany, S.; Bruner, K.A.; Bisphenol, A. Bisphenol A (BPA) aggravates multiple low-dose streptozotocin-induced Type 1 diabetes in C57BL/6 mice. J. Immunotoxicol., 2017, 14(1), 160-168.
[http://dx.doi.org/10.1080/1547691X.2017.1334722] [PMID: 28707492]
[87]
Xu, J.; Huang, G.; Nagy, T.; Teng, Q.; Guo, T.L. Sex-dependent effects of bisphenol A on type 1 diabetes development in non-obese diabetic (NOD) mice. Arch. Toxicol., 2019, 93(4), 997-1008.
[http://dx.doi.org/10.1007/s00204-018-2379-5] [PMID: 30600366]
[88]
Bodin, J.; Kocbach Bølling, A.; Wendt, A.; Eliasson, L.; Becher, R.; Kuper, F.; Løvik, M.; Nygaard, U.C. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice. Toxicol. Rep., 2015, 2, 99-110.
[http://dx.doi.org/10.1016/j.toxrep.2015.02.010] [PMID: 28962342]
[89]
Ahn, C.; An, B-S.; Jeung, E-B. Streptozotocin induces endoplasmic reticulum stress and apoptosis via disruption of calcium homeostasis in mouse pancreas. Mol. Cell. Endocrinol., 2015, 412, 302-308.
[http://dx.doi.org/10.1016/j.mce.2015.05.017] [PMID: 26003140]
[90]
Ahn, C.; Kang, H.S.; Lee, J.H.; Hong, E.J.; Jung, E.M.; Yoo, Y.M.; Jeung, E.B. Bisphenol A and octylphenol exacerbate type 1 diabetes mellitus by disrupting calcium homeostasis in mouse pancreas. Toxicol. Lett., 2018, 295, 162-172.
[http://dx.doi.org/10.1016/j.toxlet.2018.06.1071] [PMID: 29935216]
[91]
Szafran, A.T.; Stossi, F.; Mancini, M.G.; Walker, C.L.; Mancini, M.A. Characterizing properties of non-estrogenic substituted bisphenol analogs using high throughput microscopy and image analysis. PLoS One, 2017, 12(7), e0180141.
[http://dx.doi.org/10.1371/journal.pone.0180141] [PMID: 28704378]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy