Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Histone Deacetylase Inhibitors and Papillary Thyroid Cancer

Author(s): Eleftherios Spartalis*, Konstantinos Kotrotsios, Dimosthenis Chrysikos, Michael Spartalis, Stavroula A. Paschou, Dimitrios Schizas, Konstantinos Tsamakis, Dimitrios Dimitroulis, Theodore Troupis and Nikolaos Nikiteas

Volume 27, Issue 18, 2021

Published on: 11 December, 2020

Page: [2199 - 2208] Pages: 10

DOI: 10.2174/1381612826666201211112234

Price: $65

Open Access Journals Promotions 2
Abstract

Background/Aim: Papillary Thyroid Cancer (PTC) is the most common type of endocrine malignancy. Although PTC has an excellent prognosis, the recurrent or metastatic disease could affect patients' survival. Recent studies show that Histone Deacetylase Inhibitors (HDACIs) might be promising anticancer agents against PTC. The aim of this review is to evaluate the role of HDACIs as an additional modality in PTC treatment and to depict the latest trends of current research on this field.

Materials and Methods: This literature review was performed using the MEDLINE database. The search strategy included terms: “thyroid cancer”, “papillary”, “HDAC”, “histone”, and “deacetylase”.

Results: Agents, such as Suberoyl Anilide Hydroxamic Acid, Trichostatin A, Valproic Acid, Sodium butyrate, Panobinostat, Belinostat, Romidepsin, CUDC907 and N-Hydroxy-7-(2-naphthylthio)-Hepanomide have shown promising anti-cancer effects on PTC cell lines but fail to trigger a major response in clinical trials.

Conclusion: HDACIs have no significant effect as monotherapy against PTC, but further research needs to be conducted in order to investigate their potential effect when used as an additional modality.

Keywords: Papillary thyroid cancer, histone, deacetylase, inhibitors, HDAC, thyroid cancer.

[1]
Limaiem F, Rehman A, Mazzonni T. Cancer, Papillary Thyroid Carcinoma (PTC). StatPearls 2019.
[2]
Jemal A, Simard EP, Dorell C, et al. Annual Report to the Nation on the Status of Cancer, 1975-2009, featuring the burden and trends in human papillomavirus(HPV)-associated cancers and HPV vaccination coverage levels. J Natl Cancer Inst 2013; 105(3): 175-201.
[http://dx.doi.org/10.1093/jnci/djs491] [PMID: 23297039]
[3]
Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994; 97(5): 418-28.
[http://dx.doi.org/10.1016/0002-9343(94)90321-2] [PMID: 7977430]
[4]
Altekruse S, Das A, Cho H, Petkov V, Yu M. Do US thyroid cancer incidence rates increase with socioeconomic status among people with health insurance? An observational study using SEER population-based data. BMJ Open 2015; 5(12)
[http://dx.doi.org/10.1136/bmjopen-2015-009843] [PMID: 26644126]
[5]
Davies L, Welch G. Increasing Incidence of Thyroid Cancer in the United States, 1973-2002 JAMA. 2006; 295(18): 2164-7.
[6]
Ito Y, Miyauchi A, Kihara M, Fukushima M, Higashiyama T, Miya A. Overall survival of papillary thyroid carcinoma patients: a single-institution long-term follow-up of 5897 patients. World J Surg 2018; 42(3): 615-22.
[http://dx.doi.org/10.1007/s00268-018-4479-z] [PMID: 29349484]
[7]
Spartalis ED, Karatzas T, Charalampoudis P, Vergadis C, Dimitroulis D. Neglected papillary thyroid carcinoma seven years after initial diagnosis. Case Rep Oncol Med 2013; 2013: 148973.
[http://dx.doi.org/10.1155/2013/148973] [PMID: 23401818]
[8]
Spartalis E, Moris D, Tomos P. Sternal metastasis as first presentation of a well-differentiated papillary thyroid carcinoma. Surgery 2017; 162(6): 1336-7.
[http://dx.doi.org/10.1016/j.surg.2017.01.016] [PMID: 28237641]
[9]
Schlumberger M, Tubiana M, De Vathaire F, et al. Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab 1986; 63(4): 960-7.
[http://dx.doi.org/10.1210/jcem-63-4-960] [PMID: 3745409]
[10]
Nixon IJ, Whitcher MM, Palmer FL, et al. The impact of distant metastases at presentation on prognosis in patients with differentiated carcinoma of the thyroid gland. Thyroid 2012; 22(9): 884-9.
[http://dx.doi.org/10.1089/thy.2011.0535] [PMID: 22827579]
[11]
Haq M, Harmer C. Differentiated thyroid carcinoma with distant metastases at presentation: prognostic factors and outcome. Clin Endocrinol (Oxf) 2005; 63(1): 87-93.
[12]
Sampson E, Brierley JD, Le LW, Rotstein L, Tsang RW. Clinical management and outcome of papillary and follicular (differentiated) thyroid cancer presenting with distant metastasis at diagnosis. Cancer 2007; 110(7): 1451-6.
[http://dx.doi.org/10.1002/cncr.22956] [PMID: 17705176]
[13]
Lim H, Devesa S, Sosa J, Check D, Kitahara C. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974-2013 JAMA. 2017; 317(13): 1338-48.
[14]
Albano D, Panarotto MB, Durmo R, Rodella C, Bertagna F, Giubbini R. Clinical and prognostic role of detection timing of distant metastases in patients with differentiated thyroid cancer. Endocrine 2019; 63(1): 79-86.
[http://dx.doi.org/10.1007/s12020-018-1713-2] [PMID: 30112608]
[15]
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26(1): 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[16]
Gosain R, Alexander JS, Gill A, Perez C. Radioactive iodine-refractory differentiated thyroid cancer in the elderly. Curr Oncol Rep 2018; 20(10): 82.
[http://dx.doi.org/10.1007/s11912-018-0736-4] [PMID: 30206719]
[17]
Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006; 91(8): 2892-9.
[http://dx.doi.org/10.1210/jc.2005-2838] [PMID: 16684830]
[18]
Zhu X, Cheng SY. Epigenetic modifications: novel therapeutic approach for thyroid cancer. Endocrinol Metab (Seoul) 2017; 32(3): 326-31.
[http://dx.doi.org/10.3803/EnM.2017.32.3.326] [PMID: 28956361]
[19]
Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet 2012; 81(4): 303-11.
[http://dx.doi.org/10.1111/j.1399-0004.2011.01809.x] [PMID: 22082348]
[20]
Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37(4): 391-400.
[http://dx.doi.org/10.1038/ng1531] [PMID: 15765097]
[21]
Chi P, Allis CD, Wang GG. Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 2010; 10(7): 457-69.
[http://dx.doi.org/10.1038/nrc2876] [PMID: 20574448]
[22]
Parbin S, Kar S, Shilpi A, et al. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem 2014; 62(1): 11-33.
[http://dx.doi.org/10.1369/0022155413506582] [PMID: 24051359]
[23]
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21(3): 381-95.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[24]
Lombardi PM, Cole KE, Dowling DP, Christianson DW. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr Opin Struct Biol 2011; 21(6): 735-43.
[http://dx.doi.org/10.1016/j.sbi.2011.08.004] [PMID: 21872466]
[25]
Uba Aİ, Yelekçi K. Exploration of the binding pocket of histone deacetylases: the design of potent and isoform-selective inhibitors. Turk J Biol 2017; 41(6): 901-18.
[http://dx.doi.org/10.3906/biy-1701-26] [PMID: 30814855]
[26]
Puppin C, Passon N, Lavarone E, et al. Levels of histone acetylation in thyroid tumors. Biochem Biophys Res Commun 2011; 411(4): 679-83.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.182] [PMID: 21763277]
[27]
Marks PA. Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochim Biophys Acta 2010; 1799(10-12): 717-25.
[http://dx.doi.org/10.1016/j.bbagrm.2010.05.008] [PMID: 20594930]
[28]
Zhang H, Shang YP, Chen HY, Li J. Histone deacetylases function as novel potential therapeutic targets for cancer. Hepatol Res 2017; 47(2): 149-59.
[http://dx.doi.org/10.1111/hepr.12757] [PMID: 27457249]
[29]
Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 2016; 6(10): a026831.
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[30]
Yoon S, Eom GH. HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J 2016; 52(1): 1-11.
[http://dx.doi.org/10.4068/cmj.2016.52.1.1] [PMID: 26865995]
[31]
Sipos JA, Shah MH. Thyroid cancer: emerging role for targeted therapies. Ther Adv Med Oncol 2010; 2(1): 3-16.
[http://dx.doi.org/10.1177/1758834009352667] [PMID: 21789122]
[32]
Fernandez AF, Assenov Y, Martin-Subero JI, et al. A DNA methylation fingerprint of 1628 human samples. Genome Res 2012; 22(2): 407-19.
[http://dx.doi.org/10.1101/gr.119867.110] [PMID: 21613409]
[33]
Zafon C, Gil J, Pérez-González B, Jordà M. DNA methylation in thyroid cancer. Endocr Relat Cancer 2019; 26(7): R415-39.
[http://dx.doi.org/10.1530/ERC-19-0093] [PMID: 31035251]
[34]
Sarkar S, Abujamra AL, Loew JE, Forman LW, Perrine SP, Faller DV. Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Res 2011; 31(9): 2723-32.
[PMID: 21868513]
[35]
Li CT, Hsiao YM, Wu TC, Lin YW, Yeh KT, Ko JL. Vorinostat, SAHA, represses telomerase activity via epigenetic regulation of telomerase reverse transcriptase in non-small cell lung cancer cells. J Cell Biochem 2011; 112(10): 3044-53.
[http://dx.doi.org/10.1002/jcb.23229] [PMID: 21678477]
[36]
Zhou X, Yang XY, Popescu NC. Preclinical evaluation of combined antineoplastic effect of DLC1 tumor suppressor protein and suberoylanilide hydroxamic acid on prostate cancer cells. Biochem Biophys Res Commun 2012; 420(2): 325-30.
[http://dx.doi.org/10.1016/j.bbrc.2012.02.158] [PMID: 22425986]
[37]
Batty N, Malouf GG, Issa JP. Histone deacetylase inhibitors as anti-neoplastic agents. Cancer Lett 2009; 280(2): 192-200.
[http://dx.doi.org/10.1016/j.canlet.2009.03.013] [PMID: 19345475]
[38]
Russo D, Durante C, Bulotta S, et al. Targeting histone deacetylase in thyroid cancer. Expert Opin Ther Targets 2013; 17(2): 179-93.
[http://dx.doi.org/10.1517/14728222.2013.740013] [PMID: 23234477]
[39]
Yang H, Hoshino K, Sanchez-Gonzalez B, Kantarjian H, Garcia-Manero G. Antileukemia activity of the combination of 5-aza-2¢-deoxycytidine with valproic acid. Leuk Res 2005; 29(7): 739-48.
[http://dx.doi.org/10.1016/j.leukres.2004.11.022] [PMID: 15927669]
[40]
Rudek MA, Zhao M, He P, et al. Pharmacokinetics of 5-azacitidine administered with phenylbutyrate in patients with refractory solid tumors or hematologic malignancies. J Clin Oncol 2005; 23(17): 3906-11.
[http://dx.doi.org/10.1200/JCO.2005.07.450] [PMID: 15851763]
[41]
Serena T. Wong. Emerging treatment combinations: integrating therapy into clinical practice. Am J Health Syst Pharm 2009; 66(23) (Suppl. 6).
[42]
Luong QT, O’Kelly J, Braunstein GD, Hershman JM, Koeffler HP. Antitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo. Clin Cancer Res 2006; 12(18): 5570-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0367] [PMID: 17000694]
[43]
Wächter S, Damanakis AI, Elxnat M, et al. Epigenetic modifications in thyroid cancer cells restore NIS and radio-iodine uptake and promote cell death. J Clin Med 2018; 7(4): 61.
[http://dx.doi.org/10.3390/jcm7040061] [PMID: 29561759]
[44]
Akagi T, Luong QT, Gui D, et al. Induction of sodium iodide symporter gene and molecular characterisation of HNF3 beta/FoxA2, TTF-1 and C/EBP beta in thyroid carcinoma cells. Br J Cancer 2008; 99(5): 781-8.
[http://dx.doi.org/10.1038/sj.bjc.6604544] [PMID: 18682709]
[45]
Hou P, Bojdani E, Xing M. Induction of thyroid gene expression and radioiodine uptake in thyroid cancer cells by targeting major signaling pathways. J Clin Endocrinol Metab 2010; 95(2): 820-8.
[http://dx.doi.org/10.1210/jc.2009-1888] [PMID: 20008023]
[46]
Kelly WK, O’Connor OA, Krug LM, et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 2005; 23(17): 3923-31.
[http://dx.doi.org/10.1200/JCO.2005.14.167] [PMID: 15897550]
[47]
Ramalingam SS, Kummar S, Sarantopoulos J, et al. Phase I study of vorinostat in patients with advanced solid tumors and hepatic dysfunction: a National Cancer Institute Organ Dysfunction Working Group study. J Clin Oncol 2010; 28(29): 4507-12.
[http://dx.doi.org/10.1200/JCO.2010.30.2307] [PMID: 20837947]
[48]
Woyach JA, Kloos RT, Ringel MD, et al. Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma. J Clin Endocrinol Metab 2009; 94(1): 164-70.
[http://dx.doi.org/10.1210/jc.2008-1631] [PMID: 18854394]
[49]
Puppin C, D’Aurizio F, D’Elia AV, et al. Effects of histone acetylation on sodium iodide symporter promoter and expression of thyroid-specific transcription factors. Endocrinology 2005; 146(9): 3967-74.
[http://dx.doi.org/10.1210/en.2005-0128] [PMID: 15919754]
[50]
Zarnegar R, Brunaud L, Kanauchi H, et al. Increasing the effectiveness of radioactive iodine therapy in the treatment of thyroid cancer using Trichostatin A, a histone deacetylase inhibitor. Surgery 2002; 132(6): 984-90.
[http://dx.doi.org/10.1067/msy.2002.128690] [PMID: 12490845]
[51]
Brest P, Lassalle S, Hofman V, et al. MiR-129-5p is required for histone deacetylase inhibitor-induced cell death in thyroid cancer cells. Endocr Relat Cancer 2011; 18(6): 711-9.
[http://dx.doi.org/10.1530/ERC-10-0257] [PMID: 21946411]
[52]
Puppin C, Passon N, Franzoni A, Russo D, Damante G. Histone deacetylase inhibitors control the transcription and alternative splicing of prohibitin in thyroid tumor cells. Oncol Rep 2011; 25(2): 393-7.
[PMID: 21152868]
[53]
Dong X, Korch C, Meinkoth JL. Histone deacetylase inhibitors upregulate Rap1GAP and inhibit Rap activity in thyroid tumor cells. Endocr Relat Cancer 2011; 18(3): 301-10.
[http://dx.doi.org/10.1530/ERC-10-0320] [PMID: 21367844]
[54]
Mitmaker EJ, Griff NJ, Grogan RH, et al. Modulation of matrix metalloproteinase activity in human thyroid cancer cell lines using demethylating agents and histone deacetylase inhibitors. Surgery 2011; 149(4): 504-11.
[http://dx.doi.org/10.1016/j.surg.2010.10.007] [PMID: 21193210]
[55]
Cheng SP, Liu CL, Hsu YC, Chang YC, Huang SY, Lee JJ. Regulation of leptin receptor expression in human papillary thyroid cancer cells. Biomed Pharmacother 2012; 66(6): 469-73.
[http://dx.doi.org/10.1016/j.biopha.2012.03.008] [PMID: 22560341]
[56]
Catalano MG, Fortunati N, Pugliese M, et al. Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells. J Clin Endocrinol Metab 2005; 90(3): 1383-9.
[http://dx.doi.org/10.1210/jc.2004-1355] [PMID: 15585556]
[57]
Xiao X, Ning L, Chen H. Notch1 mediates growth suppression of papillary and follicular thyroid cancer cells by histone deacetylase inhibitors. Mol Cancer Ther 2009; 8(2): 350-6.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0585] [PMID: 19190121]
[58]
Shen WT, Wong TS, Chung WY, et al. Valproic acid inhibits growth, induces apoptosis, and modulates apoptosis-regulatory and differentiation gene expression in human thyroid cancer cells. Surgery 2005; 138(6): 979-84.
[http://dx.doi.org/10.1016/j.surg.2005.09.019] [PMID: 16360381]
[59]
Fortunati N, Catalano MG, Arena K, Brignardello E, Piovesan A, Boccuzzi G. Valproic acid induces the expression of the Na+/I- symporter and iodine uptake in poorly differentiated thyroid cancer cells. J Clin Endocrinol Metab 2004; 89(2): 1006-9.
[http://dx.doi.org/10.1210/jc.2003-031407] [PMID: 14764827]
[60]
Cha HY, Lee BS, Chang JW, et al. Downregulation of Nrf2 by the combination of TRAIL and Valproic acid induces apoptotic cell death of TRAIL-resistant papillary thyroid cancer cells via suppression of Bcl-xL. Cancer Lett 2016; 372(1): 65-74.
[http://dx.doi.org/10.1016/j.canlet.2015.12.016] [PMID: 26721202]
[61]
Nilubol N, Merkel R, Yang L, et al. A phase II trial of valproic acid in patients with advanced, radioiodine-resistant thyroid cancers of follicular cell origin. Clin Endocrinol (Oxf) 2017; 86(1): 128-33.
[http://dx.doi.org/10.1111/cen.13154] [PMID: 27392538]
[62]
Perona M, Thomasz L, Rossich L, et al. Radiosensitivity enhancement of human thyroid carcinoma cells by the inhibitors of histone deacetylase sodium butyrate and valproic acid. Mol Cell Endocrinol 2018; 478: 141-50.
[http://dx.doi.org/10.1016/j.mce.2018.08.007] [PMID: 30125607]
[63]
Chan D, Zheng Y, Tyner JW, et al. Belinostat and panobinostat (HDACI): in vitro and in vivo studies in thyroid cancer. J Cancer Res Clin Oncol 2013; 139(9): 1507-14.
[http://dx.doi.org/10.1007/s00432-013-1465-6] [PMID: 23824064]
[64]
Fu H, Cheng L, Jin Y, Cheng L, Liu M, Chen L. MAPK Inhibitors Enhance HDAC Inhibitor-Induced Redifferentiation in Papillary Thyroid Cancer Cells Harboring BRAFV600E: An In Vitro Study. Mol Ther Oncolytics 2019; 12: 235-45.
[http://dx.doi.org/10.1016/j.omto.2019.01.007] [PMID: 30847387]
[65]
Kim SH, Kang JG, Kim CS, et al. Gemigliptin, a novel dipeptidyl peptidase-IV inhibitor, exerts a synergistic cytotoxicity with the histone deacetylase inhibitor PXD101 in thyroid carcinoma cells. J Endocrinol Invest 2018; 41(6): 677-89.
[http://dx.doi.org/10.1007/s40618-017-0792-x] [PMID: 29147952]
[66]
Lin SF, Lin JD, Chou TC, Huang YY, Wong RJ. Utility of a histone deacetylase inhibitor (PXD101) for thyroid cancer treatment. PLoS One 2013; 8(10): e77684.
[http://dx.doi.org/10.1371/journal.pone.0077684] [PMID: 24155971]
[67]
Xu J, Hershman JM. Histone deacetylase inhibitor depsipeptide represses nicotinamide N-methyltransferase and hepatocyte nuclear factor-1beta gene expression in human papillary thyroid cancer cells. Thyroid 2006; 16(2): 151-60.
[http://dx.doi.org/10.1089/thy.2006.16.151] [PMID: 16676400]
[68]
Furuya F, Shimura H, Suzuki H, et al. Histone deacetylase inhibitors restore radioiodide uptake and retention in poorly differentiated and anaplastic thyroid cancer cells by expression of the sodium/iodide symporter thyroperoxidase and thyroglobulin. Endocrinology 2004; 145(6): 2865-75.
[http://dx.doi.org/10.1210/en.2003-1258] [PMID: 14976143]
[69]
Amiri-Kordestani L, Luchenko V, Peer CJ, et al. Phase I trial of a new schedule of romidepsin in patients with advanced cancers. Clin Cancer Res 2013; 19(16): 4499-507.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0095] [PMID: 23757352]
[70]
Sherman EJ, Su YB, Lyall A, et al. Evaluation of romidepsin for clinical activity and radioactive iodine reuptake in radioactive iodine-refractory thyroid carcinoma. Thyroid •••; 23(5): 593-9.
[http://dx.doi.org/10.1089/thy.2012.0393]
[71]
Kotian S, Zhang L, Boufraqech M, et al. Dual Inhibition of HDAC and Tyrosine Kinase Signaling Pathways with CUDC-907 Inhibits Thyroid Cancer Growth and Metastases. Clin Cancer Res 2017; 23(17): 5044-54.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1043] [PMID: 28600475]
[72]
Kim SM, Park KC, Jeon JY, et al. Potential anti-cancer effect of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), a novel histone deacetylase inhibitor, for the treatment of thyroid cancer. BMC Cancer 2015; 15: 1003.
[http://dx.doi.org/10.1186/s12885-015-1982-6] [PMID: 26698299]
[73]
Lee YS, Kim SM, Kim BW, et al. Anti-cancer effects of HNHA and lenvatinib by the suppression of EMT-mediated drug resistance in cancer stem cells. Neoplasia 2018; 20(2): 197-206.
[http://dx.doi.org/10.1016/j.neo.2017.12.003] [PMID: 29331886]
[74]
Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001; 13(6): 477-83.
[http://dx.doi.org/10.1097/00001622-200111000-00010] [PMID: 11673688]
[75]
Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 2004; 101(52): 18030-5.
[http://dx.doi.org/10.1073/pnas.0408345102] [PMID: 15596714]
[76]
Garmpis N, Damaskos C, Garmpi A, et al. Targeting histone deacetylases in malignant melanoma: a future therapeutic agent or just great expectations? Anticancer Res 2017; 37(10): 5355-62.
[PMID: 28982843]
[77]
Schizas D, Mastoraki A, Naar L, et al. Concept of histone deacetylases in cancer: Reflections on esophageal carcinogenesis and treatment. World J Gastroenterol 2018; 24(41): 4635-42.
[http://dx.doi.org/10.3748/wjg.v24.i41.4635] [PMID: 30416311]
[78]
Damaskos C, Tomos I, Garmpis N, et al. Histone deacetylase inhibitors as a novel targeted therapy against non-small cell lung cancer: where are we now and what should we expect? Anticancer Res 2018; 38(1): 37-43.
[PMID: 29277754]
[79]
Tsilimigras DI, Ntanasis-Stathopoulos I, Moris D, Spartalis E, Pawlik TM. Histone deacetylase inhibitors in hepatocellular carcinoma: A therapeutic perspective. Surg Oncol 2018; 27(4): 611-8.
[http://dx.doi.org/10.1016/j.suronc.2018.07.015] [PMID: 30449480]
[80]
Garmpis N, Damaskos C, Garmpi A, et al. Histone deacetylases as new therapeutic targets in triple-negative breast cancer: progress and promises. Cancer Genomics Proteomics 2017; 14(5): 299-313.
[PMID: 28870998]
[81]
Damaskos C, Garmpis N, Valsami S, et al. Histone deacetylase inhibitors: a novel therapeutic weapon against medullary thyroid cancer? Anticancer Res 2016; 36(10): 5019-24.
[http://dx.doi.org/10.21873/anticanres.11070] [PMID: 27798860]
[82]
Spartalis E, Athanasiadis DI, Chrysikos D, et al. Histone deacetylase inhibitors and anaplastic thyroid carcinoma. Anticancer Res 2019; 39(3): 1119-27.
[http://dx.doi.org/10.21873/anticanres.13220] [PMID: 30842140]
[83]
Aashiq M, Silverman DA, Na’ara S, Takahashi H, Amit M. Radioiodine-refractory thyroid cancer: molecular basis of redifferentiation therapies, management, and novel therapies. Cancers (Basel) 2019; 11(9): 1382.
[http://dx.doi.org/10.3390/cancers11091382] [PMID: 31533238]
[84]
Zhang Z, Liu D, Murugan AK, Liu Z, Xing M. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocr Relat Cancer 2014; 21(2): 161-73.
[http://dx.doi.org/10.1530/ERC-13-0399] [PMID: 24243688]
[85]
Sciuto R, Romano L, Rea S, Marandino F, Sperduti I, Maini CL. Natural history and clinical outcome of differentiated thyroid carcinoma: a retrospective analysis of 1503 patients treated at a single institution. Ann Oncol 2009; 20(10): 1728-35.
[http://dx.doi.org/10.1093/annonc/mdp050] [PMID: 19773250]
[86]
Pacini F, Castagna MG. Approach to and treatment of differentiated thyroid carcinoma. Med Clin North Am 2012; 96(2): 369-83.
[http://dx.doi.org/10.1016/j.mcna.2012.01.002] [PMID: 22443981]
[87]
Xing M, Haugen BR, Schlumberger M. Progress in molecular-based management of differentiated thyroid cancer. Lancet 2013; 381(9871): 1058-69.
[http://dx.doi.org/10.1016/S0140-6736(13)60109-9] [PMID: 23668556]
[88]
Amin A, Badwey A, El-Fatah S. Differentiated thyroid carcinoma: an analysis of 249 patients undergoing therapy and aftercare at a single institution. Clin Nucl Med 2014; 39(2): 142-6.
[http://dx.doi.org/10.1097/RLU.0000000000000324] [PMID: 24368533]
[89]
Robbins RJ, Wan Q, Grewal RK, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006; 91(2): 498-505.
[http://dx.doi.org/10.1210/jc.2005-1534] [PMID: 16303836]
[90]
Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 1985; 56(9): 2155-60.
[http://dx.doi.org/10.1002/1097-0142(19851101)56:9<2155:AID-CNCR2820560903>3.0.CO;2-E] [PMID: 3902203]
[91]
Matuszczyk A, Petersenn S, Bockisch A, et al. Chemotherapy with doxorubicin in progressive medullary and thyroid carcinoma of the follicular epithelium. Horm Metab Res 2008; 40(3): 210-3.
[http://dx.doi.org/10.1055/s-2008-1046781] [PMID: 18348081]
[92]
Worden F. Treatment strategies for radioactive iodine-refractory differentiated thyroid cancer. Ther Adv Med Oncol 2014; 6(6): 267-79.
[http://dx.doi.org/10.1177/1758834014548188] [PMID: 25364392]
[93]
Brose MS, Nutting CM, Jarzab B, et al. DECISION investigators. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014; 384(9940): 319-28.
[http://dx.doi.org/10.1016/S0140-6736(14)60421-9] [PMID: 24768112]
[94]
Schlumberger M, Brose M, Elisei R, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol 2014; 2(5): 356-8.
[http://dx.doi.org/10.1016/S2213-8587(13)70215-8] [PMID: 24795243]
[95]
Sabra MM, Grewal RK, Tala H, Larson SM, Tuttle RM. Clinical outcomes following empiric radioiodine therapy in patients with structurally identifiable metastatic follicular cell-derived thyroid carcinoma with negative diagnostic but positive post-therapy 131I whole-body scans. Thyroid 2012; 22(9): 877-83.
[http://dx.doi.org/10.1089/thy.2011.0429] [PMID: 22827641]
[96]
Sgouros G, Kolbert KS, Sheikh A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004; 45(8): 1366-72.
[PMID: 15299063]
[97]
Leboulleux S, El Bez I, Borget I, et al. Postradioiodine treatment whole-body scan in the era of 18-fluorodeoxyglucose positron emission tomography for differentiated thyroid carcinoma with elevated serum thyroglobulin levels. Thyroid 2012; 22(8): 832-8.
[http://dx.doi.org/10.1089/thy.2012.0081] [PMID: 22853728]
[98]
Vaisman F, Tala H, Grewal R, Tuttle RM. In differentiated thyroid cancer, an incomplete structural response to therapy is associated with significantly worse clinical outcomes than only an incomplete thyroglobulin response. Thyroid 2011; 21(12): 1317-22.
[http://dx.doi.org/10.1089/thy.2011.0232] [PMID: 22136267]
[99]
Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006; 7(1): 21-33.
[http://dx.doi.org/10.1038/nrg1748] [PMID: 16369569]
[100]
Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4): 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[101]
Garmpis N, Damaskos C, Garmpi A, et al. Targeting histone deacetylases in endometrial cancer: a paradigm-shifting therapeutic strategy? Eur Rev Med Pharmacol Sci 2018; 22(4): 950-60.
[PMID: 29509243]
[102]
Damaskos C, Garmpis N, Valsami S, et al. Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. Anticancer Res 2017; 37(1): 35-46.
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy