Review Article

维生素D:一种可能具有精神活性的多效性激素

卷 28, 期 19, 2021

发表于: 10 December, 2020

页: [3843 - 3864] 页: 22

弟呕挨: 10.2174/0929867328666201210104701

价格: $65

conference banner
摘要

背景:18世纪末,人们认识到鱼肝油对佝偻病的疗效,并于1931年分离和合成脂溶性维生素D,此后,人们对其作用方式和功能进行了深入的探索。生化研究确定了维生素D的五种形式,称为D1、D2、D3、D4和D5,在超微结构构象和来源上不同,维生素D2(麦角钙化醇)和D3(胆钙化醇)代表活性形式。尤其是在过去的几十年里,越来越多的数据强调了维生素D是如何调节多种活动和过程的。 目的:本文的目的是综述有关维生素D的文献,并将重心聚焦于它在神经精神障碍的病理生理学中的可能作用。 讨论:现有文献表明,维生素D调节人类和中枢神经系统的多种过程。维生素D缺乏与促炎状态的增强和Aβ低聚物的形成有关,这可能导致老年人典型的认知能力下降,也许还会导致痴呆症。一般地说,维生素D被认为在神经炎症过程中起着至关重要的作用,目前假设神经炎症过程涉及不同精神疾病的病理生理学,如抑郁症、双相情感障碍、强迫症和精神病。 结论:可以想象,补充维生素D可能为广泛的神经精神障碍的“自然”治疗铺平道路,或者至少有助于在耐药病例中增强对精神药物的反应。

关键词: 维生素D,生化,生理,免疫系统,中枢神经系统,神经炎症,心境障碍,强迫症,谱系障碍,自闭症。

[1]
Holick, M.F. Vitamin D: a millenium perspective. J. Cell. Biochem., 2003, 88(2), 296-307.
[http://dx.doi.org/10.1002/jcb.10338] [PMID: 12520530]
[2]
Ovesen, L.; Brot, C.; Jakobsen, J. Food contents and biological activity of 25-hydroxyvitamin D: a vitamin D metabolite to be reckoned with? Ann. Nutr. Metab., 2003, 47(3-4), 107-113.
[http://dx.doi.org/10.1159/000070031] [PMID: 12743460]
[3]
Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium.Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Del Valle, H.B., Eds.; Dietary reference intakes for calcium and vitamin D; National Academies Press: Washington, DC, 2011.
[4]
Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; Ramos-Abad, L.; Ward, L.; DiMeglio, L.A.; Atapattu, N.; Cassinelli, H.; Braegger, C.; Pettifor, J.M.; Seth, A.; Idris, H.W.; Bhatia, V.; Fu, J.; Goldberg, G.; Sävendahl, L.; Khadgawat, R.; Pludowski, P.; Maddock, J.; Hyppönen, E.; Oduwole, A.; Frew, E.; Aguiar, M.; Tulchinsky, T.; Butler, G.; Högler, W. Global consensus recommendations on prevention and management of nutritional rickets. J. Clin. Endocrinol. Metab., 2016, 101(2), 394-415.
[http://dx.doi.org/10.1210/jc.2015-2175] [PMID: 26745253]
[5]
Chang, S.W.; Lee, H.C. Vitamin D and health - the missing vitamin in humans. Pediatr. Neonatol., 2019, 60(3), 237-244.
[http://dx.doi.org/10.1016/j.pedneo.2019.04.007] [PMID: 31101452]
[6]
Bi, W.G.; Nuyt, A.M.; Weiler, H.; Leduc, L.; Santamaria, C.; Wei, S.Q. Association between vitamin D supplementation during pregnancy and offspring growth, morbidity, and mortality: a systematic review and meta-analysis. JAMA Pediatr., 2018, 172(7), 635-645.
[http://dx.doi.org/10.1001/jamapediatrics.2018.0302] [PMID: 29813153]
[7]
Briones, T.L.; Darwish, H. Vitamin D mitigates age-related cognitive decline through the modulation of pro-inflammatory state and decrease in amyloid burden. J. Neuroinflammation, 2012, 9, 244.
[http://dx.doi.org/10.1186/1742-2094-9-244] [PMID: 23098125]
[8]
Collins, J.A.; Fauser, B.C.J.M. Balancing the strengths of systematic and narrative reviews. Hum. Reprod. Update, 2005, 11(2), 103-104.
[http://dx.doi.org/10.1093/humupd/dmh058] [PMID: 15618290]
[9]
Holick, M.F. The vitamin D epidemic and its health consequences. J. Nutr., 2005, 135(11), 2739S-2748S.
[http://dx.doi.org/10.1093/jn/135.11.2739S] [PMID: 16251641]
[10]
Lehmann, B.; Meurer, M. Vitamin D metabolism. Dermatol. Ther., 2010, 23(1), 2-12.
[http://dx.doi.org/10.1111/j.1529-8019.2009.01286.x] [PMID: 20136904]
[11]
Pérez-López, F.R. Vitamin D metabolism and cardiovascular risk factors in postmenopausal women. Maturitas, 2009, 62(3), 248-262.
[http://dx.doi.org/10.1016/j.maturitas.2008.12.020] [PMID: 19211206]
[12]
Jones, G.; Strugnell, S.A.; DeLuca, H.F. Current understanding of the molecular actions of vitamin D. Physiol. Rev., 1998, 78(4), 1193-1231.
[http://dx.doi.org/10.1152/physrev.1998.78.4.1193] [PMID: 9790574]
[13]
Kato, S. The function of vitamin D receptor in vitamin D action. J. Biochem., 2000, 127(5), 717-722.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022662] [PMID: 10788778]
[14]
DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr., 2004, 80(6)(Suppl.), 1689S-1696S.
[http://dx.doi.org/10.1093/ajcn/80.6.1689S] [PMID: 15585789]
[15]
Bover, J.; Egido, J.; Fernández-Giráldez, E.; Praga, M.; Solozábal-Campos, C.; Torregrosa, J.V.; Martínez-Castelao, A. Vitamin D receptor and the importance of its activation in patients with chronic kidney disease. Nefrologia, 2015, 35(1), 28-41.
[http://dx.doi.org/10.3265/Nefrologia.pre2014.Sep.11796] [PMID: 25611831]
[16]
Christiansen, C. The functions and metabolites of vitamin D and their possible implications in osteoporosis. Scand. J. Clin. Lab. Invest., 1988, 48(190), 86-88.
[http://dx.doi.org/10.1080/00365518809168519]
[17]
Kilim, H.P.; Rosen, H. Optimizing calcium and vitamin D intake through diet and supplements. Cleve. Clin. J. Med., 2018, 85(7), 543-550.
[http://dx.doi.org/10.3949/ccjm.85a.17106] [PMID: 30004379]
[18]
Gallieni, M.; Cozzolino, M.; Fallabrino, G.; Pasho, S.; Olivi, L.; Brancaccio, D. Vitamin D: physiology and pathophysiology. Int. J. Artif. Organs, 2009, 32(2), 87-94.
[http://dx.doi.org/10.1177/039139880903200205] [PMID: 19363780]
[19]
Hazell, T.J.; DeGuire, J.R.; Weiler, H.A. Vitamin D: an overview of its role in skeletal muscle physiology in children and adolescents. Nutr. Rev., 2012, 70(9), 520-533.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00510.x] [PMID: 22946852]
[20]
Kong, C.; Wang, C.; Shi, Y.; Yan, L.; Xu, J.; Qi, W. Active vitamin D activates chondrocyte autophagy to reduce osteoarthritis via mediating the AMPK-mTOR signaling pathway. Biochem. Cell Biol., 2020, 98(3), 434-442.
[http://dx.doi.org/10.1139/bcb-2019-0333] [PMID: 31815524]
[21]
Koundourakis, N.E.; Avgoustinaki, P.D.; Malliaraki, N.; Margioris, A.N. Muscular effects of vitamin D in young athletes and non-athletes and in the elderly. Hormones (Athens), 2016, 15(4), 471-488.
[http://dx.doi.org/10.14310/horm.2002.1705] [PMID: 28222403]
[22]
Jean, G.; Souberbielle, J.C.; Chazot, C. Vitamin D in chronic kidney disease and dialysis patients. Nutrients, 2017, 9(4), 328.
[http://dx.doi.org/10.3390/nu9040328] [PMID: 28346348]
[23]
Adami, S.; Romagnoli, E.; Carnevale, V.; Scillitani, A.; Giusti, A.; Rossini, M.; Gatti, D.; Nuti, R.; Minisola, S. Italian Society for Osteoporosis, Mineral Metabolism and Bone Diseases (SIOMMMS). Guidelines on prevention and treatment of vitamin D deficiency. Italian society for osteoporosis, mineral metabolism and bone diseases (SIOMMMS). Reumatismo, 2011, 63(3), 129-147.
[http://dx.doi.org/10.4081/reumatismo.2011.129] [PMID: 22257914]
[24]
Houston, D.K.; Cesari, M.; Ferrucci, L.; Cherubini, A.; Maggio, D.; Bartali, B.; Johnson, M.A.; Schwartz, G.G.; Kritchevsky, S.B. Association between vitamin D status and physical performance: the InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci., 2007, 62(4), 440-446.
[http://dx.doi.org/10.1093/gerona/62.4.440] [PMID: 17452740]
[25]
Zamboni, M.; Zoico, E.; Tosoni, P.; Zivelonghi, A.; Bortolani, A.; Maggi, S.; Di Francesco, V.; Bosello, O. Relation between vitamin D, physical performance, and disability in elderly persons. J. Gerontol. A Biol. Sci. Med. Sci., 2002, 57(1), M7-M11.
[http://dx.doi.org/10.1093/gerona/57.1.M7] [PMID: 11773206]
[26]
Li, Y.C.; Kong, J.; Wei, M.; Chen, Z.F.; Liu, S.Q.; Cao, L.P. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Invest., 2002, 110(2), 229-238.
[http://dx.doi.org/10.1172/JCI0215219] [PMID: 12122115]
[27]
Grant, W.B.; Garland, C.F. A critical review of studies on vitamin D in relation to colorectal cancer. Nutr. Cancer, 2004, 48(2), 115-123.
[http://dx.doi.org/10.1207/s15327914nc4802_1] [PMID: 15231446]
[28]
Holick, M.F. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am. J. Clin. Nutr., 2004, 79(3), 362-371.
[http://dx.doi.org/10.1093/ajcn/79.3.362] [PMID: 14985208]
[29]
Giovannucci, E.; Liu, Y.; Rimm, E.B.; Hollis, B.W.; Fuchs, C.S.; Stampfer, M.J.; Willett, W.C. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J. Natl. Cancer Inst., 2006, 98(7), 451-459.
[http://dx.doi.org/10.1093/jnci/djj101] [PMID: 16595781]
[30]
Zhou, W.; Heist, R.S.; Liu, G.; Asomaning, K.; Neuberg, D.S.; Hollis, B.W.; Wain, J.C.; Lynch, T.J.; Giovannucci, E.; Su, L.; Christiani, D.C. Circulating 25-hydroxyvitamin D levels predict survival in early-stage non-small-cell lung cancer patients. J. Clin. Oncol., 2007, 25(5), 479-485.
[http://dx.doi.org/10.1200/JCO.2006.07.5358] [PMID: 17290055]
[31]
Jeon, S.M.; Shin, E.A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med., 2018, 50(4), 1-14.
[http://dx.doi.org/10.1038/s12276-018-0038-9] [PMID: 29657326]
[32]
Fleet, J.C. Molecular actions of vitamin D contributing to cancer prevention. Mol. Aspects Med., 2008, 29(6), 388-396.
[http://dx.doi.org/10.1016/j.mam.2008.07.003] [PMID: 18755215]
[33]
Mai, X.M.; Chen, Y.; Camargo, C.A.Jr.; Langhammer, A. Cross-sectional and prospective cohort study of serum 25-hydroxyvitamin D level and obesity in adults: the HUNT study. Am. J. Epidemiol., 2012, 175(10), 1029-1036.
[http://dx.doi.org/10.1093/aje/kwr456] [PMID: 22312120]
[34]
Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and immune function. Nutrients, 2013, 5(7), 2502-2521.
[http://dx.doi.org/10.3390/nu5072502] [PMID: 23857223]
[35]
Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: nutrient, hormone, and immunomodulator. Nutrients, 2018, 10(11), 1656.
[http://dx.doi.org/10.3390/nu10111656] [PMID: 30400332]
[36]
Illescas-Montes, R.; Melguizo-Rodríguez, L.; Ruiz, C.; Costela-Ruiz, V.J. Vitamin D and autoimmune diseases. Life Sci., 2019, 233, 116744.
[http://dx.doi.org/10.1016/j.lfs.2019.116744] [PMID: 31401314]
[37]
Provvedini, D.M.; Tsoukas, C.D.; Deftos, L.J.; Manolagas, S.C. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science, 1983, 221(4616), 1181-1183.
[http://dx.doi.org/10.1126/science.6310748] [PMID: 6310748]
[38]
Takahashi, K.; Nakayama, Y.; Horiuchi, H.; Ohta, T.; Komoriya, K.; Ohmori, H.; Kamimura, T. Human neutrophils express messenger RNA of vitamin D receptor and respond to 1alpha,25-dihydroxyvitamin D3. Immunopharmacol. Immunotoxicol., 2002, 24(3), 335-347.
[http://dx.doi.org/10.1081/IPH-120014721] [PMID: 12375732]
[39]
Aranow, C. Vitamin D and the immune system. J. Investig. Med., 2011, 59(6), 881-886.
[http://dx.doi.org/10.2310/JIM.0b013e31821b8755] [PMID: 21527855]
[40]
Tokuda, N.; Mizuki, N.; Kasahara, M.; Levy, R.B. 1,25-Dihydroxyvitamin D3 down-regulation of HLA-DR on human peripheral blood monocytes. Immunology, 1992, 75(2), 349-354.
[PMID: 1551697]
[41]
Xu, H.; Soruri, A.; Gieseler, R.K.; Peters, J.H. 1,25-Dihydroxyvitamin D3 exerts opposing effects to IL-4 on MHC class-II antigen expression, accessory activity, and phagocytosis of human monocytes. Scand. J. Immunol., 1993, 38(6), 535-540.
[http://dx.doi.org/10.1111/j.1365-3083.1993.tb03237.x] [PMID: 8256111]
[42]
Heberden, C.; Denis, I.; Pointillart, A.; Mercier, T. TGF-β and calcitriol. Gen. Pharmacol., 1998, 30(2), 145-151.
[http://dx.doi.org/10.1016/S0306-3623(97)00271-1] [PMID: 9502167]
[43]
Provvedini, D.M.; Deftos, L.J.; Manolagas, S.C. 1,25-Dihydroxyvitamin D3 promotes in vitro morphologic and enzymatic changes in normal human monocytes consistent with their differentiation into macrophages. Bone, 1986, 7(1), 23-28.
[http://dx.doi.org/10.1016/8756-3282(86)90148-1] [PMID: 3083846]
[44]
Lemire, J.M. Immunomodulatory role of 1,25-dihydroxyvitamin D3. J. Cell. Biochem., 1992, 49(1), 26-31.
[http://dx.doi.org/10.1002/jcb.240490106] [PMID: 1644850]
[45]
Manolagas, S.C.; Hustmyer, F.G.; Yu, X.P. Immunomodulating properties of 1,25-dihydroxyvitamin D3. Kidney Int. Suppl., 1990, 29, S9-S16.
[PMID: 2170738]
[46]
Kreutz, M.; Andreesen, R. Induction of human monocyte to macrophage maturation in vitro by 1,25-dihydroxyvitamin D3. Blood, 1990, 76(12), 2457-2461.
[http://dx.doi.org/10.1182/blood.V76.12.2457.2457] [PMID: 2265241]
[47]
Orikasa, M.; Kawase, T.; Suzuki, A. Induction of macrophagic and granulocytic differentiation of murine bone marrow progenitor cells by 1,25-dihydroxyvitamin D3. Calcif. Tissue Int., 1993, 53(3), 193-200.
[http://dx.doi.org/10.1007/BF01321837] [PMID: 8242472]
[48]
Lemire, J.M.; Adams, J.S.; Kermani-Arab, V.; Bakke, A.C.; Sakai, R.; Jordan, S.C. 1,25-Dihydroxyvitamin D3 suppresses human T helper/inducer lymphocyte activity in vitro . J. Immunol., 1985, 134(5), 3032-3035.
[PMID: 3156926]
[49]
Sharifi, A.; Vahedi, H.; Nedjat, S.; Rafiei, H.; Hosseinzadeh-Attar, M.J. Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo-controlled trial. APMIS, 2019, 127(10), 681-687.
[http://dx.doi.org/10.1111/apm.12982] [PMID: 31274211]
[50]
Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients, 2020, 12(1), 236.
[http://dx.doi.org/10.3390/nu12010236] [PMID: 31963293]
[51]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[52]
Cantorna, M.T.; Snyder, L.; Lin, Y.D.; Yang, L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients, 2015, 7(4), 3011-3021.
[http://dx.doi.org/10.3390/nu7043011] [PMID: 25912039]
[53]
Lei, G.S.; Zhang, C.; Cheng, B.H.; Lee, C.H. Mechanisms of action of vitamin D as supplemental therapy for pneumocystis pneumonia. Antimicrob. Agents Chemother., 2017, 61(10), e01226-e17.
[http://dx.doi.org/10.1128/AAC.01226-17] [PMID: 28760906]
[54]
Wimalawansa, S.J. Vitamin D deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging. Biology (Basel), 2019, 8(2), 30.
[http://dx.doi.org/10.3390/biology8020030] [PMID: 31083546]
[55]
Canning, M.O.; Grotenhuis, K.; de Wit, H.; Ruwhof, C.; Drexhage, H.A. 1-alpha,25-Dihydroxyvitamin D3 (1,25(OH)(2)D(3)) hampers the maturation of fully active immature dendritic cells from monocytes. Eur. J. Endocrinol., 2001, 145(3), 351-357.
[http://dx.doi.org/10.1530/eje.0.1450351] [PMID: 11517017]
[56]
Grad, R. Cod and the consumptive: a brief history of cod-liver oil in the treatment of pulmonary tuberculosis. Pharm. Hist., 2004, 46(3), 106-120.
[PMID: 15712453]
[57]
Penna, G.; Adorini, L. 1 α,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol., 2000, 164(5), 2405-2411.
[http://dx.doi.org/10.4049/jimmunol.164.5.2405] [PMID: 10679076]
[58]
Piemonti, L.; Monti, P.; Sironi, M.; Fraticelli, P.; Leone, B.E.; Dal Cin, E.; Allavena, P.; Di Carlo, V. Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J. Immunol., 2000, 164(9), 4443-4451.
[http://dx.doi.org/10.4049/jimmunol.164.9.4443] [PMID: 10779743]
[59]
Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C. Vitamin D: modulator of the immune system. Curr. Opin. Pharmacol., 2010, 10(4), 482-496.
[http://dx.doi.org/10.1016/j.coph.2010.04.001] [PMID: 20427238]
[60]
Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Chen, S.; Lipsky, P.E. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol., 2007, 179(3), 1634-1647.
[http://dx.doi.org/10.4049/jimmunol.179.3.1634] [PMID: 17641030]
[61]
Mathieu, C.; Waer, M.; Casteels, K.; Laureys, J.; Bouillon, R. Prevention of type I diabetes in NOD mice by nonhypercalcemic doses of a new structural analog of 1,25-dihydroxyvitamin D3, KH1060. Endocrinology, 1995, 136(3), 866-872.
[http://dx.doi.org/10.1210/endo.136.3.7867594] [PMID: 7867594]
[62]
Mathieu, C.; Waer, M.; Laureys, J.; Rutgeerts, O.; Bouillon, R. Prevention of autoimmune diabetes in NOD mice by 1,25 dihydroxyvitamin D3. Diabetologia, 1994, 37(6), 552-558.
[http://dx.doi.org/10.1007/BF00403372] [PMID: 7926338]
[63]
Mathieu, C.; Laureys, J.; Sobis, H.; Vandeputte, M.; Waer, M.; Bouillon, R. 1,25-Dihydroxyvitamin D3 prevents insulitis in NOD mice. Diabetes, 1992, 41(11), 1491-1495.
[http://dx.doi.org/10.2337/diab.41.11.1491] [PMID: 1397723]
[64]
Lemire, J.M.; Archer, D.C. 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J. Clin. Invest., 1991, 87(3), 1103-1107.
[http://dx.doi.org/10.1172/JCI115072] [PMID: 1705564]
[65]
Antico, A.; Tampoia, M.; Tozzoli, R.; Bizzaro, N. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? a systematic review of the literature. Autoimmun. Rev., 2012, 12(2), 127-136.
[http://dx.doi.org/10.1016/j.autrev.2012.07.007] [PMID: 22776787]
[66]
Bock, G.; Pieber, T.R.; Prietl, B. Vitamin D: role in autoimmunity. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour., 2012, 7, 1-7.
[http://dx.doi.org/10.1079/PAVSNNR20127041]
[67]
Zittermann, A.; Tenderich, G.; Koerfer, R. Vitamin D and the adaptive immune system with special emphasis to allergic reactions and allograft rejection. Inflamm. Allergy Drug Targets, 2009, 8(2), 161-168.
[http://dx.doi.org/10.2174/187152809788462644] [PMID: 19537326]
[68]
Bach, J.F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med., 2002, 347(12), 911-920.
[http://dx.doi.org/10.1056/NEJMra020100] [PMID: 12239261]
[69]
Rondanelli, M.; Miccono, A.; Lamburghini, S.; Avanzato, I.; Riva, A.; Allegrini, P.; Faliva, M.A.; Peroni, G.; Nichetti, M.; Perna, S. Self-care for common colds: the pivotal role of vitamin D, vitamin C, zinc, and echinacea in three main immune interactive clusters (physical barriers, innate and adaptive immunity) involved during an episode of common colds-practical advice on dosages and on the time to take these nutrients/botanicals in order to prevent or treat common colds. Evid. Based Complement. Alternat. Med., 2018, 2018, 5813095.
[http://dx.doi.org/10.1155/2018/5813095] [PMID: 29853961]
[70]
Bearden, A.; Van Winden, K.; Frederick, T.; Kono, N.; Operskalski, E.; Pandian, R.; Barton, L.; Stek, A.; Kovacs, A. Low maternal vitamin D is associated with increased risk of congenital and peri/postnatal transmission of Cytomegalovirus in women with HIV. PLoS One, 2020, 15(2), e0228900.
[http://dx.doi.org/10.1371/journal.pone.0228900] [PMID: 32053638]
[71]
Hansdottir, S.; Monick, M.M.; Hinde, S.L.; Lovan, N.; Look, D.C.; Hunninghake, G.W. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J. Immunol., 2008, 181(10), 7090-7099.
[http://dx.doi.org/10.4049/jimmunol.181.10.7090] [PMID: 18981129]
[72]
Olliver, M.; Spelmink, L.; Hiew, J.; Meyer-Hoffert, U.; Henriques-Normark, B.; Bergman, P. Immunomodulatory effects of vitamin D on innate and adaptive immune responses to Streptococcus pneumoniae. J. Infect. Dis., 2013, 208(9), 1474-1481.
[http://dx.doi.org/10.1093/infdis/jit355] [PMID: 23922371]
[73]
Greiller, C.L.; Martineau, A.R. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients, 2015, 7(6), 4240-4270.
[http://dx.doi.org/10.3390/nu7064240] [PMID: 26035247]
[74]
Hewison, M. Antibacterial effects of vitamin D. Nat. Rev. Endocrinol., 2011, 7(6), 337-345.
[http://dx.doi.org/10.1038/nrendo.2010.226] [PMID: 21263449]
[75]
Laaksi, I. Vitamin D and respiratory infection in adults. Proc. Nutr. Soc., 2012, 71(1), 90-97.
[http://dx.doi.org/10.1017/S0029665111003351] [PMID: 22115013]
[76]
Wang, G.; Mishra, B.; Epand, R.F.; Epand, R.M. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim. Biophys. Acta, 2014, 1838(9), 2160-2172.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.016] [PMID: 24463069]
[77]
Cannell, J.J.; Vieth, R.; Umhau, J.C.; Holick, M.F.; Grant, W.B.; Madronich, S.; Garland, C.F.; Giovannucci, E. Epidemic influenza and vitamin D. Epidemiol. Infect., 2006, 134(6), 1129-1140.
[http://dx.doi.org/10.1017/S0950268806007175] [PMID: 16959053]
[78]
Jolliffe, D.A.; Griffiths, C.J.; Martineau, A.R. Vitamin D in the prevention of acute respiratory infection: systematic review of clinical studies. J. Steroid Biochem. Mol. Biol., 2013, 136, 321-329.
[http://dx.doi.org/10.1016/j.jsbmb.2012.11.017] [PMID: 23220552]
[79]
Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; Grant, C.C.; Griffiths, C.J.; Janssens, W.; Laaksi, I.; Manaseki-Holland, S.; Mauger, D.; Murdoch, D.R.; Neale, R.; Rees, J.R.; Simpson, S., Jr; Stelmach, I.; Kumar, G.T.; Urashima, M.; Camargo, C.A., Jr Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ, 2017, 356, i6583.
[http://dx.doi.org/10.1136/bmj.i6583] [PMID: 28202713]
[80]
Bergman, P.; Norlin, A.C.; Hansen, S.; Rekha, R.S.; Agerberth, B.; Björkhem-Bergman, L.; Ekström, L.; Lindh, J.D.; Andersson, J. Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study. BMJ Open, 2012, 2(6), e001663.
[http://dx.doi.org/10.1136/bmjopen-2012-001663] [PMID: 23242238]
[81]
Laaksi, I.; Ruohola, J.P.; Tuohimaa, P.; Auvinen, A.; Haataja, R.; Pihlajamäki, H.; Ylikomi, T. An association of serum vitamin D concentrations < 40 nmol/L with acute respiratory tract infection in young Finnish men. Am. J. Clin. Nutr., 2007, 86(3), 714-717.
[http://dx.doi.org/10.1093/ajcn/86.3.714] [PMID: 17823437]
[82]
Litonjua, A.A.; Weiss, S.T. Is vitamin D deficiency to blame for the asthma epidemic? J. Allergy Clin. Immunol., 2007, 120(5), 1031-1035.
[http://dx.doi.org/10.1016/j.jaci.2007.08.028] [PMID: 17919705]
[83]
Janssens, W.; Bouillon, R.; Claes, B.; Carremans, C.; Lehouck, A.; Buysschaert, I.; Coolen, J.; Mathieu, C.; Decramer, M.; Lambrechts, D. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax, 2010, 65(3), 215-220.
[http://dx.doi.org/10.1136/thx.2009.120659] [PMID: 19996341]
[84]
Gombart, A.F.; Bhan, I.; Borregaard, N.; Tamez, H.; Camargo, C.A.Jr.; Koeffler, H.P.; Thadhani, R. Low plasma level of cathelicidin antimicrobial peptide (hCAP18) predicts increased infectious disease mortality in patients undergoing hemodialysis. Clin. Infect. Dis., 2009, 48(4), 418-424.
[http://dx.doi.org/10.1086/596314] [PMID: 19133797]
[85]
Jeng, L.; Yamshchikov, A.V.; Judd, S.E.; Blumberg, H.M.; Martin, G.S.; Ziegler, T.R.; Tangpricha, V. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J. Transl. Med., 2009, 7, 28.
[http://dx.doi.org/10.1186/1479-5876-7-28] [PMID: 19389235]
[86]
Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 2020, 12(4), 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[87]
Misra, D.P.; Agarwal, V.; Gasparyan, A.Y.; Zimba, O. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin. Rheumatol., 2020, 39(7), 2055-2062.
[http://dx.doi.org/10.1007/s10067-020-05073-9] [PMID: 32277367]
[88]
Kakodkar, P.; Kaka, N.; Baig, M.N. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus, 2020, 12(4), e7560.
[http://dx.doi.org/10.7759/cureus.7560] [PMID: 32269893]
[89]
Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; Wang, Y.; Pan, S.; Zou, X.; Yuan, S.; Shang, Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med., 2020, 8(5), 475-481.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[90]
Ilie, P.C.; Stefanescu, S.; Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res., 2020, 32(7), 1195-1198.
[http://dx.doi.org/10.1007/s40520-020-01570-8] [PMID: 32377965]
[91]
Mitchell, F. Vitamin-D and COVID-19: do deficient risk a poorer outcome? Lancet Diabetes Endocrinol., 2020, 8(7), 570.
[http://dx.doi.org/10.1016/S2213-8587(20)30183-2] [PMID: 32445630]
[92]
Xue, Y.; Fleet, J.C. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology, 2009, 136(4), 1317-1327, e1-2.
[http://dx.doi.org/10.1053/j.gastro.2008.12.051] [PMID: 19254681]
[93]
Christakos, S.; Veldurthy, V.; Patel, N.; Wei, R. Intestinal regulation of calcium: vitamin D and bone physiology. Adv. Exp. Med. Biol., 2017, 1033, 3-12.
[http://dx.doi.org/10.1007/978-3-319-66653-2_1] [PMID: 29101648]
[94]
Jiang, P.; Zhang, L.H.; Cai, H.L.; Li, H.D.; Liu, Y.P.; Tang, M.M.; Dang, R.L.; Zhu, W.Y.; Xue, Y.; He, X. Neurochemical effects of chronic administration of calcitriol in rats. Nutrients, 2014, 6(12), 6048-6059.
[http://dx.doi.org/10.3390/nu6126048] [PMID: 25533012]
[95]
Jiang, P.; Zhang, W.Y.; Li, H.D.; Cai, H.L.; Liu, Y.P.; Chen, L.Y. Stress and vitamin D: altered vitamin D metabolism in both the hippocampus and myocardium of chronic unpredictable mild stress exposed rats. Psychoneuroendocrinology, 2013, 38(10), 2091-2098.
[http://dx.doi.org/10.1016/j.psyneuen.2013.03.017] [PMID: 23608137]
[96]
Dobson, R.; Cock, H.R.; Brex, P.; Giovannoni, G. Vitamin D supplementation. Pract. Neurol., 2018, 18(1), 35-42.
[http://dx.doi.org/10.1136/practneurol-2017-001720] [PMID: 28947637]
[97]
Thouvenot, É.; Camu, W. Vitamin D and neurology. Presse Med., 2013, 42(10), 1398-1404.
[http://dx.doi.org/10.1016/j.lpm.2013.07.012] [PMID: 24054766]
[98]
Lu’o’ng, K.V.; Nguyên, L.T. The beneficial role of vitamin D in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2011, 26(7), 511-520.
[http://dx.doi.org/10.1177/1533317511429321] [PMID: 22202127]
[99]
Mpandzou, G.; Aït Ben Haddou, E.; Regragui, W.; Benomar, A.; Yahyaoui, M. Vitamin D deficiency and its role in neurological conditions: a review. Rev. Neurol. (Paris), 2016, 172(2), 109-122.
[http://dx.doi.org/10.1016/j.neurol.2015.11.005] [PMID: 26867662]
[100]
Spanier, J.A.; Nashold, F.E.; Nelson, C.D.; Praska, C.E.; Hayes, C.E. Vitamin D3-mediated resistance to a multiple sclerosis model disease depends on myeloid cell 1,25-dihydroxyvitamin D3 synthesis and correlates with increased CD4+ T cell CTLA-4 expression. J. Neuroimmunol., 2020, 338, 577105.
[http://dx.doi.org/10.1016/j.jneuroim.2019.577105] [PMID: 31731231]
[101]
Li, A.; Zhang, W.; Zhang, H.; Yi, B. Vitamin D/vitamin D receptor, autophagy and inflammation relevant diseases. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2017, 42(8), 979-985.
[http://dx.doi.org/10.11817/j.issn.1672-7347.2017.08.017] [PMID: 28872092]
[102]
Wu, S.; Sun, J. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discov. Med., 2011, 11(59), 325-335.
[PMID: 21524386]
[103]
Garbossa, S.G.; Folli, F. Vitamin D, sub-inflammation and insulin resistance. A window on a potential role for the interaction between bone and glucose metabolism. Rev. Endocr. Metab. Disord., 2017, 18(2), 243-258.
[http://dx.doi.org/10.1007/s11154-017-9423-2] [PMID: 28409320]
[104]
Liu, F.R.; Yang, L.Y.; Zheng, H.F.; Zhou, Y.; Chen, B.B.; Xu, H.; Zhang, Y.W.; Shen, D.Y. Plasma levels of interleukin 18 but not amyloid-β or Tau are elevated in female depressive patients. Compr. Psychiatry, 2020, 97, 152159.
[http://dx.doi.org/10.1016/j.comppsych.2020.152159] [PMID: 31931428]
[105]
Spach, K.M.; Pedersen, L.B.; Nashold, F.E.; Kayo, T.; Yandell, B.S.; Prolla, T.A.; Hayes, C.E. Gene expression analysis suggests that 1,25-dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by stimulating inflammatory cell apoptosis. Physiol. Genomics, 2004, 18(2), 141-151.
[http://dx.doi.org/10.1152/physiolgenomics.00003.2004] [PMID: 15138306]
[106]
Szabó, A. Skeletal and extra-skeletal consequences of vitamin D deficiency. Orv. Hetil., 2011, 152(33), 1312-1319.
[http://dx.doi.org/10.1556/OH.2011.29186] [PMID: 21824858]
[107]
Weisman, Y. Vitamin D deficiency and insufficiency. Isr. Med. Assoc. J., 2013, 15(7), 377-378.
[PMID: 23943985]
[108]
Berg, A.O.; Jørgensen, K.N.; Nerhus, M.; Athanasiu, L.; Popejoy, A.B.; Bettella, F.; Norbom, L.C.B.; Gurholt, T.P.; Dahl, S.R.; Andreassen, O.A.; Djurovic, S.; Agartz, I.; Melle, I. Vitamin D levels, brain volume, and genetic architecture in patients with psychosis. PLoS One, 2018, 13(8), e0200250.
[http://dx.doi.org/10.1371/journal.pone.0200250] [PMID: 30142216]
[109]
de Oliveira, D.L.; Hirotsu, C.; Tufik, S.; Andersen, M.L. The interfaces between vitamin D, sleep and pain. J. Endocrinol., 2017, 234(1), R23-R36.
[http://dx.doi.org/10.1530/JOE-16-0514] [PMID: 28536294]
[110]
American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders; 5th ed.; American Psychiatric Association Press: Washington, DC, 2013, pp. 160-168.
[111]
Marazziti, D.; Rutigliano, G.; Baroni, S.; Landi, P.; Dell’Osso, L. Metabolic syndrome and major depression. CNS Spectr., 2014, 19(4), 293-304.
[http://dx.doi.org/10.1017/S1092852913000667] [PMID: 24103843]
[112]
Kaneko, I.; Sabir, M.S.; Dussik, C.M.; Whitfield, G.K.; Karrys, A.; Hsieh, J.C.; Haussler, M.R.; Meyer, M.B.; Pike, J.W.; Jurutka, P.W. 1,25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: Implication for behavioral influences of vitamin D. FASEB J., 2015, 29(9), 4023-4035.
[http://dx.doi.org/10.1096/fj.14-269811] [PMID: 26071405]
[113]
Sabir, M.S.; Haussler, M.R.; Mallick, S.; Kaneko, I.; Lucas, D.A.; Haussler, C.A.; Whitfield, G.K.; Jurutka, P.W. Optimal vitamin D spurs serotonin: 1,25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines. Genes Nutr., 2018, 13, 19.
[http://dx.doi.org/10.1186/s12263-018-0605-7] [PMID: 30008960]
[114]
Landel, V.; Stephan, D.; Cui, X.; Eyles, D.; Feron, F. Differential expression of vitamin D-associated enzymes and receptors in brain cell subtypes. J. Steroid Biochem. Mol. Biol., 2018, 177, 129-134.
[http://dx.doi.org/10.1016/j.jsbmb.2017.09.008] [PMID: 28893622]
[115]
Sapolsky, R.M. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry, 2000, 57(10), 925-935.
[http://dx.doi.org/10.1001/archpsyc.57.10.925] [PMID: 11015810]
[116]
Bremner, J.D. Stress and brain atrophy. CNS Neurol. Disord. Drug Targets, 2006, 5(5), 503-512.
[http://dx.doi.org/10.2174/187152706778559309] [PMID: 17073653]
[117]
Obradovic, D.; Gronemeyer, H.; Lutz, B.; Rein, T. Cross-talk of vitamin D and glucocorticoids in hippocampal cells. J. Neurochem., 2006, 96(2), 500-509.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03579.x] [PMID: 16336217]
[118]
Khairy, E.Y.; Attia, M.M. Protective effects of vitamin D on neurophysiologic alterations in brain aging: Role of brain-derived neurotrophic factor (BDNF). Nutr. Neurosci., 2019, 16, 1-10.
[http://dx.doi.org/10.1080/1028415X.2019.1665854] [PMID: 31524100]
[119]
Sedaghat, K.; Yousefian, Z.; Vafaei, A.A.; Rashidy-Pour, A.; Parsaei, H.; Khaleghian, A.; Choobdar, S. Mesolimbic dopamine system and its modulation by vitamin D in a chronic mild stress model of depression in the rat. Behav. Brain Res., 2019, 356, 156-169.
[http://dx.doi.org/10.1016/j.bbr.2018.08.020] [PMID: 30144460]
[120]
Geng, C.; Shaikh, A.S.; Han, W.; Chen, D.; Guo, Y.; Jiang, P. Vitamin D and depression: mechanisms, determination and application. Asia Pac. J. Clin. Nutr., 2019, 28(4), 689-694.
[http://dx.doi.org/10.6133/apjcn.201912_28(4).0003] [PMID: 31826364]
[121]
Gowda, U.; Mutowo, M.P.; Smith, B.J.; Wluka, A.E.; Renzaho, A.M. Vitamin D supplementation to reduce depression in adults: meta-analysis of randomized controlled trials. Nutrition, 2015, 31(3), 421-429.
[http://dx.doi.org/10.1016/j.nut.2014.06.017] [PMID: 25701329]
[122]
Berridge, M.J. Vitamin D and depression: Cellular and regulatory mechanisms. Pharmacol. Rev., 2017, 69(2), 80-92.
[http://dx.doi.org/10.1124/pr.116.013227] [PMID: 28202503]
[123]
Pereira, F.; Barbáchano, A.; Singh, P.K.; Campbell, M.J.; Muñoz, A.; Larriba, M.J. Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle, 2012, 11(6), 1081-1089.
[http://dx.doi.org/10.4161/cc.11.6.19508] [PMID: 22370479]
[124]
Guidotti, A.; Auta, J.; Chen, Y.; Davis, J.M.; Dong, E.; Gavin, D.P.; Grayson, D.R.; Matrisciano, F.; Pinna, G.; Satta, R.; Sharma, R.P.; Tremolizzo, L.; Tueting, P. Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology, 2011, 60(7-8), 1007-1016.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.021] [PMID: 21074545]
[125]
He, Y.; Wu, Z.; Lan, T.; Wang, Y.; Tian, Y.; Chen, X.; Li, Y.; Bai, M.; Liu, J.; Gong, X.; Cheng, K.; Xie, P. The 25(OH)D/VDR signaling may play a role in major depression. Biochem. Biophys. Res. Commun., 2020, 523(2), 405-410.
[http://dx.doi.org/10.1016/j.bbrc.2019.12.071] [PMID: 31866009]
[126]
Samad, N.; Yasmin, F.; Manzoor, N. Biomarkers in drug free subjects with depression: correlation with tryptophan. Psychiatry Investig., 2019, 16(12), 948-953.
[http://dx.doi.org/10.30773/pi.2019.0110] [PMID: 31711278]
[127]
Mohaddesi, H.; Naz, M.S.G.; Najarzadeh, M.; Yeganehpour, M.; Khalkhali, H. Correlation between depression with serum levels of vitamin D, calcium and magnesium in women of reproductive age. J. Caring Sci., 2019, 8(2), 117-119.
[http://dx.doi.org/10.15171/jcs.2019.017] [PMID: 31249822]
[128]
Black, L.J.; Jacoby, P.; Allen, K.L.; Trapp, G.S.; Hart, P.H.; Byrne, S.M.; Mori, T.A.; Beilin, L.J.; Oddy, W.H. Low vitamin D levels are associated with symptoms of depression in young adult males. Aust. N. Z. J. Psychiatry, 2014, 48(5), 464-471.
[http://dx.doi.org/10.1177/0004867413512383] [PMID: 24226892]
[129]
Anglin, R.E.; Samaan, Z.; Walter, S.D.; McDonald, S.D. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br. J. Psychiatry, 2013, 202, 100-107.
[http://dx.doi.org/10.1192/bjp.bp.111.106666] [PMID: 23377209]
[130]
Hoogendijk, W.J.; Lips, P.; Dik, M.G.; Deeg, D.J.; Beekman, A.T.; Penninx, B.W. Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch. Gen. Psychiatry, 2008, 65(5), 508-512.
[http://dx.doi.org/10.1001/archpsyc.65.5.508] [PMID: 18458202]
[131]
Kim, S.Y.; Jeon, S.W.; Lim, W.J.; Oh, K.S.; Shin, D.W.; Cho, S.J.; Park, J.H.; Shin, Y.C. The relationship between serum vitamin D levels, C-reactive protein, and anxiety symptoms. Psychiatry Investig., 2020, 17(4), 312-319.
[http://dx.doi.org/10.30773/pi.2019.0290] [PMID: 32213801]
[132]
Zhao, G.; Ford, E.S.; Li, C.; Balluz, L.S. No associations between serum concentrations of 25-hydroxyvitamin D and parathyroid hormone and depression among US adults. Br. J. Nutr., 2010, 104(11), 1696-1702.
[http://dx.doi.org/10.1017/S0007114510002588] [PMID: 20642877]
[133]
Pan, A.; Lu, L.; Franco, O.H.; Yu, Z.; Li, H.; Lin, X. Association between depressive symptoms and 25-hydroxyvitamin D in middle-aged and elderly Chinese. J. Affect. Disord., 2009, 118(1-3), 240-243.
[http://dx.doi.org/10.1016/j.jad.2009.02.002] [PMID: 19249103]
[134]
Nanri, A.; Mizoue, T.; Matsushita, Y.; Poudel-Tandukar, K.; Sato, M.; Ohta, M.; Mishima, N. Association between serum 25-hydroxyvitamin D and depressive symptoms in Japanese: analysis by survey season. Eur. J. Clin. Nutr., 2009, 63(12), 1444-1447.
[http://dx.doi.org/10.1038/ejcn.2009.96] [PMID: 19690578]
[135]
Fond, G.; Young, A.H.; Godin, O.; Messiaen, M.; Lançon, C.; Auquier, P.; Boyer, L. Improving diet for psychiatric patients: high potential benefits and evidence for safety. J. Affect. Disord., 2020, 265, 567-569.
[http://dx.doi.org/10.1016/j.jad.2019.11.092] [PMID: 31757621]
[136]
Spedding, S. Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients, 2014, 6(4), 1501-1518.
[http://dx.doi.org/10.3390/nu6041501] [PMID: 24732019]
[137]
Hatfield, D.P.; Sweeney, K.P.; Lau, J.; Lichtenstein, A.H. Critical assessment of high-circulation print newspaper coverage of the Institute of Medicine report dietary reference intakes for calcium and vitamin D. Public Health Nutr., 2014, 17(8), 1868-1876.
[http://dx.doi.org/10.1017/S1368980013002073] [PMID: 23902633]
[138]
Shaffer, J.A.; Edmondson, D.; Wasson, L.T.; Falzon, L.; Homma, K.; Ezeokoli, N.; Li, P.; Davidson, K.W. Vitamin D supplementation for depressive symptoms: a systematic review and meta-analysis of randomized controlled trials. Psychosom. Med., 2014, 76(3), 190-196.
[http://dx.doi.org/10.1097/PSY.0000000000000044] [PMID: 24632894]
[139]
Vellekkatt, F.; Menon, V. Efficacy of vitamin D supplementation in major depression: a meta-analysis of randomized controlled trials. J. Postgrad. Med., 2019, 65(2), 74-80.
[http://dx.doi.org/10.4103/jpgmM_571_17] [PMID: 29943744]
[140]
Alghamdi, S.; Alsulami, N.; Khoja, S.; Alsufiani, H.; Tayeb, H.O.; Tarazi, F.I. Vitamin D supplementation ameliorates severity of major depressive disorder. J. Mol. Neurosci., 2020, 70(2), 230-235.
[http://dx.doi.org/10.1007/s12031-019-01461-2] [PMID: 31836995]
[141]
Khoraminya, N.; Tehrani-Doost, M.; Jazayeri, S.; Hosseini, A.; Djazayery, A. Therapeutic effects of vitamin D as adjunctive therapy to fluoxetine in patients with major depressive disorder. Aust. N. Z. J. Psychiatry, 2013, 47(3), 271-275.
[http://dx.doi.org/10.1177/0004867412465022] [PMID: 23093054]
[142]
Cheng, Y.C.; Huang, Y.C.; Huang, W.L. The effect of vitamin D supplement on negative emotions: a systematic review and meta-analysis. Depress. Anxiety, 2020, 37(6), 549-564.
[http://dx.doi.org/10.1002/da.23025] [PMID: 32365423]
[143]
Stokes, C.S.; Grünhage, F.; Baus, C.; Volmer, D.A.; Wagenpfeil, S.; Riemenschneider, M.; Lammert, F. Vitamin D supplementation reduces depressive symptoms in patients with chronic liver disease. Clin. Nutr., 2016, 35(4), 950-957.
[http://dx.doi.org/10.1016/j.clnu.2015.07.004] [PMID: 26212170]
[144]
Kjærgaard, M.; Waterloo, K.; Wang, C.E.; Almås, B.; Figenschau, Y.; Hutchinson, M.S.; Svartberg, J.; Jorde, R. Effect of vitamin D supplement on depression scores in people with low levels of serum 25-hydroxyvitamin D: nested case-control study and randomised clinical trial. Br. J. Psychiatry, 2012, 201(5), 360-368.
[http://dx.doi.org/10.1192/bjp.bp.111.104349] [PMID: 22790678]
[145]
Jorde, R.; Kubiak, J. No improvement in depressive symptoms by vitamin D supplementation: results from a randomised controlled trial. J. Nutr. Sci., 2018, 7, e30.
[http://dx.doi.org/10.1017/jns.2018.19] [PMID: 30510695]
[146]
Stumpf, W.E.; Privette, T.H. Light, vitamin D and psychiatry. Role of 1,25 dihydroxyvitamin D3 (soltriol) in etiology and therapy of seasonal affective disorder and other mental processes. Psychopharmacology (Berl.), 1989, 97(3), 285-294.
[http://dx.doi.org/10.1007/BF00439440] [PMID: 2497477]
[147]
Humble, M.B. Vitamin D, light and mental health. J. Photochem. Photobiol. B, 2010, 101(2), 142-149.
[http://dx.doi.org/10.1016/j.jphotobiol.2010.08.003] [PMID: 20800506]
[148]
Melrose, S. Seasonal affective disorder: an overview of assessment and treatment approaches. Depress. Res. Treat., 2015, 2015, 178564.
[http://dx.doi.org/10.1155/2015/178564] [PMID: 26688752]
[149]
Rosenthal, N.E.; Sack, D.A.; Gillin, J.C.; Lewy, A.J.; Goodwin, F.K.; Davenport, Y.; Mueller, P.S.; Newsome, D.A.; Wehr, T.A. Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch. Gen. Psychiatry, 1984, 41(1), 72-80.
[http://dx.doi.org/10.1001/archpsyc.1984.01790120076010] [PMID: 6581756]
[150]
Donofry, S.D.; Roecklein, K.A.; Rohan, K.J.; Wildes, J.E.; Kamarck, M.L. Prevalence and correlates of binge eating in seasonal affective disorder. Psychiatry Res., 2014, 217(1-2), 47-53.
[http://dx.doi.org/10.1016/j.psychres.2014.03.012] [PMID: 24680872]
[151]
Westrin, A.; Lam, R.W. Seasonal affective disorder: a clinical update. Ann. Clin. Psychiatry, 2007, 19(4), 239-246.
[http://dx.doi.org/10.1080/10401230701653476] [PMID: 18058281]
[152]
Stewart, A.E.; Roecklein, K.A.; Tanner, S.; Kimlin, M.G. Possible contributions of skin pigmentation and vitamin D in a polyfactorial model of seasonal affective disorder. Med. Hypotheses, 2014, 83(5), 517-525.
[http://dx.doi.org/10.1016/j.mehy.2014.09.010] [PMID: 25270233]
[153]
Gloth, F.M.III.; Alam, W.; Hollis, B. Vitamin D vs. broad spectrum phototherapy in the treatment of seasonal affective disorder. J. Nutr. Health Aging, 1999, 3(1), 5-7.
[PMID: 10888476]
[154]
Kerr, D.C.; Zava, D.T.; Piper, W.T.; Saturn, S.R.; Frei, B.; Gombart, A.F. Associations between vitamin D levels and depressive symptoms in healthy young adult women. Psychiatry Res., 2015, 227(1), 46-51.
[http://dx.doi.org/10.1016/j.psychres.2015.02.016] [PMID: 25791903]
[155]
Frandsen, T.B.; Pareek, M.; Hansen, J.P.; Nielsen, C.T. Vitamin D supplementation for treatment of seasonal affective symptoms in healthcare professionals: a double-blind randomised placebo-controlled trial. BMC Res. Notes, 2014, 7, 528.
[http://dx.doi.org/10.1186/1756-0500-7-528] [PMID: 25125215]
[156]
Altunsoy, N.; Yüksel, R.N.; Yirun, M.C.; Kılıçarslan, A.; Aydemir, Ç. Exploring the relationship between vitamin D and mania: correlations between serum vitamin D levels and disease activity. Nord. J. Psychiatry, 2018, 72(3), 221-225.
[http://dx.doi.org/10.1080/08039488.2018.1424238] [PMID: 29308715]
[157]
Grande, I.; Berk, M.; Birmaher, B.; Vieta, E. Bipolar disorder. Lancet, 2016, 387(10027), 1561-1572.
[http://dx.doi.org/10.1016/S0140-6736(15)00241-X] [PMID: 26388529]
[158]
Müller, J.K.; Leweke, F.M. Bipolar disorder: clinical overview. Med. Monatsschr. Pharm., 2016, 39(9), 363-369.
[PMID: 29956510]
[159]
Łojko, D.; Stelmach-Mardas, M.; Suwalska, A. Is diet important in bipolar disorder? Psychiatr. Pol., 2018, 52(5), 783-795.
[http://dx.doi.org/10.12740/PP/OnlineFirst/78703] [PMID: 30584813]
[160]
Boerman, R.; Cohen, D.; Schulte, P.F.; Nugter, A. Prevalence of vitamin D deficiency in adult outpatients with bipolar disorder or schizophrenia. J. Clin. Psychopharmacol., 2016, 36(6), 588-592.
[http://dx.doi.org/10.1097/JCP.0000000000000580] [PMID: 27662458]
[161]
Sikoglu, E.M.; Navarro, A.A.; Starr, D.; Dvir, Y.; Nwosu, B.U.; Czerniak, S.M.; Rogan, R.C.; Castro, M.C.; Edden, R.A.; Frazier, J.A.; Moore, C.M. Vitamin D3 supplemental treatment for mania in youth with bipolar spectrum disorders. J. Child Adolesc. Psychopharmacol., 2015, 25(5), 415-424.
[http://dx.doi.org/10.1089/cap.2014.0110] [PMID: 26091195]
[162]
Marsh, W.K.; Penny, J.L.; Rothschild, A.J. Vitamin D supplementation in bipolar depression: a double blind placebo controlled trial. J. Psychiatr. Res., 2017, 95, 48-53.
[http://dx.doi.org/10.1016/j.jpsychires.2017.07.021] [PMID: 28777983]
[163]
Esnafoğlu, E.; Yaman, E. Vitamin B12, folic acid, homocysteine and vitamin D levels in children and adolescents with obsessive compulsive disorder. Psychiatry Res., 2017, 254, 232-237.
[http://dx.doi.org/10.1016/j.psychres.2017.04.032] [PMID: 28477545]
[164]
Kuygun Karcı, C.; Gül Celik, G. Nutritional and herbal supplements in the treatment of obsessive compulsive disorder. Gen. psychiatr., 2020, 33(2), 100159.
[http://dx.doi.org/10.1136/gpsych-2019-100159] [PMID: 32215361]
[165]
Marazziti, D.; Di Nasso, E. What pharmacology teaches us about the pathophysiology of obsessive-compulsive disorder. Rev. Bras. Psiquiatr., 2000, 22(4), 185-188.
[http://dx.doi.org/10.1590/S1516-44462000000400009]
[166]
Marazziti, D.; Albert, U.; Mucci, F.; Piccinni, A. The glutamate and the immune systems: new targets for the pharmacological treatment of OCD. Curr. Med. Chem., 2018, 25(41), 5731-5738.
[http://dx.doi.org/10.2174/0929867324666171108152035] [PMID: 29119912]
[167]
Marazziti, D.; Mucci, F.; Fontenelle, L.F. Immune system and obsessive-compulsive disorder. Psychoneuroendocrinology, 2018, 93, 39-44.
[http://dx.doi.org/10.1016/j.psyneuen.2018.04.013] [PMID: 29689421]
[168]
Swedo, S.E.; Leckman, J.F.; Rose, N.R. From research subgroup to clinical syndrome: modifying the PANDAS criteria to describe PANS (pediatric acute-onset neuropsychiatric syndrome). Pediatr. Therapeut., 2012, 2(2), 113.
[http://dx.doi.org/10.4172/2161-0665.1000113]
[169]
Çelik, G.; Taş, D.; Tahiroğlu, A.; Avci, A.; Yüksel, B.; Çam, P. Vitamin D deficiency in obsessive-compulsive disorder patients with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: a case control study. Noro Psikiyatri Arsivi, 2016, 53(1), 33-37.
[http://dx.doi.org/10.5152/npa.2015.8763] [PMID: 28360763]
[170]
Goodman, W.K.; Price, L.H.; Rasmussen, S.A.; Mazure, C.; Fleischmann, R.L.; Hill, C.L.; Heninger, G.R.; Charney, D.S. The yale-brown obsessive compulsive scale. I. development, use, and reliability. Arch. Gen. Psychiatry, 1989, 46(11), 1006-1011.
[http://dx.doi.org/10.1001/archpsyc.1989.01810110048007] [PMID: 2684084]
[171]
Stagi, S.; Lepri, G.; Rigante, D.; Matucci Cerinic, M.; Falcini, F. Cross-sectional evaluation of plasma vitamin D levels in a large cohort of Italian patients with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. J. Child Adolesc. Psychopharmacol., 2018, 28(2), 124-129.
[http://dx.doi.org/10.1089/cap.2016.0159] [PMID: 29112476]
[172]
Titus-Lay, E.; Eid, T.J.; Kreys, T.J.; Chu, B.X.J.; Malhotra, A. Trichotillomania associated with a 25-hydroxy vitamin D deficiency: a case report. Ment. Health Clin., 2020, 10(1), 38-43.
[http://dx.doi.org/10.9740/mhc.2020.01.038] [PMID: 31942278]
[173]
Constans, T.; Mondon, K.; Annweiler, C.; Hommet, C. Vitamin D and cognition in the elderly. Psychol. Neuropsychiatr. Vieil., 2010, 8(4), 255-262.
[http://dx.doi.org/10.1684/pnv.2010.0233] [PMID: 21147664]
[174]
Kechichian, E.; Ezzedine, K. Vitamin D and the skin: An update for dermatologists. Am. J. Clin. Dermatol., 2018, 19(2), 223-235.
[http://dx.doi.org/10.1007/s40257-017-0323-8] [PMID: 28994020]
[175]
Lee, B.K.; Eyles, D.W.; Magnusson, C.; Newschaffer, C.J.; McGrath, J.J.; Kvaskoff, D.; Ko, P.; Dalman, C.; Karlsson, H.; Gardner, R.M. Developmental vitamin D and autism spectrum disorders: findings from the Stockholm Youth Cohort. Mol. Psychiatry, 2021, 26(5), 1578-1588.
[http://dx.doi.org/10.1038/s41380-019-0578-y] [PMID: 31695167]
[176]
Harms, L.R.; Burne, T.H.; Eyles, D.W.; McGrath, J.J. Vitamin D and the brain. Best Pract. Res. Clin. Endocrinol. Metab., 2011, 25(4), 657-669.
[http://dx.doi.org/10.1016/j.beem.2011.05.009] [PMID: 21872806]
[177]
Reichrath, J.; Lehmann, B.; Carlberg, C.; Varani, J.; Zouboulis, C.C. Vitamins as hormones. Horm. Metab. Res., 2007, 39(2), 71-84.
[http://dx.doi.org/10.1055/s-2007-958715] [PMID: 17326003]
[178]
Ali, A.; Cui, X.; Eyles, D. Developmental vitamin D deficiency and autism: putative pathogenic mechanisms. J. Steroid Biochem. Mol. Biol., 2018, 175, 108-118.
[http://dx.doi.org/10.1016/j.jsbmb.2016.12.018] [PMID: 28027915]
[179]
Anjum, I.; Jaffery, S.S.; Fayyaz, M.; Samoo, Z.; Anjum, S. The role of vitamin D in brain health: a mini literature review. Cureus, 2018, 10(7), e2960.
[http://dx.doi.org/10.7759/cureus.2960] [PMID: 30214848]
[180]
Berridge, M.J. Vitamin D deficiency: infertility and neurodevelopmental diseases (attention deficit hyperactivity disorder, autism, and schizophrenia). Am. J. Physiol. Cell Physiol., 2018, 314(2), C135-C151.
[http://dx.doi.org/10.1152/ajpcell.00188.2017] [PMID: 29070492]
[181]
Cannell, J.J. Autism and vitamin D. Med. Hypotheses, 2008, 70(4), 750-759.
[http://dx.doi.org/10.1016/j.mehy.2007.08.016] [PMID: 17920208]
[182]
Máčová, L.; Bičíková, M.; Ostatníková, D.; Hill, M.; Stárka, L. Vitamin D, neurosteroids and autism. Physiol. Res., 2017, 66(Suppl. 3), S333-S340.
[http://dx.doi.org/10.33549/physiolres.933721] [PMID: 28948817]
[183]
Alzghoul, L. Role of vitamin D in autism spectrum disorder. Curr. Pharm. Des., 2019, 25(41), 4357-4367.
[http://dx.doi.org/10.2174/1381612825666191122092215] [PMID: 31755381]
[184]
Goksugur, S.B.; Tufan, A.E.; Semiz, M.; Gunes, C.; Bekdas, M.; Tosun, M.; Demircioglu, F. Vitamin D status in children with attention-deficit-hyperactivity disorder. Pediatr. Int., 2014, 56(4), 515-519.
[http://dx.doi.org/10.1111/ped.12286] [PMID: 24417979]
[185]
Guerini, F.R.; Bolognesi, E.; Chiappedi, M.; Mensi, M.M.; Fumagalli, O.; Rogantini, C.; Zanzottera, M.; Ghezzo, A.; Zanette, M.; Agliardi, C.; Costa, A.S.; Sotgiu, S.; Carta, A.; Al Daghri, N.; Clerici, M. Vitamin D receptor polymorphisms associated with autism spectrum disorder. Autism Res., 2020, 13(5), 680-690.
[http://dx.doi.org/10.1002/aur.2279] [PMID: 32083397]
[186]
Yang, H.; Wu, X. The correlation between vitamin D receptor (VDR) gene polymorphisms and autism: a meta-analysis. J. Mol. Neurosci., 2020, 70(2), 260-268.
[http://dx.doi.org/10.1007/s12031-019-01464-z] [PMID: 31900887]
[187]
Dehbokri, N.; Noorazar, G.; Ghaffari, A.; Mehdizadeh, G.; Sarbakhsh, P.; Ghaffary, S. Effect of vitamin D treatment in children with attention-deficit hyperactivity disorder. World J. Pediatr., 2019, 15(1), 78-84.
[http://dx.doi.org/10.1007/s12519-018-0209-8] [PMID: 30456564]
[188]
Gan, J.; Galer, P.; Ma, D.; Chen, C.; Xiong, T. The effect of vitamin D supplementation on attention-deficit/hyperactivity disorder: a systematic review and meta-analysis of randomized controlled trials. J. Child Adolesc. Psychopharmacol., 2019, 29(9), 670-687.
[http://dx.doi.org/10.1089/cap.2019.0059] [PMID: 31368773]
[189]
Mohammadpour, N.; Jazayeri, S.; Tehrani-Doost, M.; Djalali, M.; Hosseini, M.; Effatpanah, M.; Davari-Ashtiani, R.; Karami, E. Effect of vitamin D supplementation as adjunctive therapy to methylphenidate on ADHD symptoms: a randomized, double blind, placebo-controlled trial. Nutr. Neurosci., 2018, 21(3), 202-209.
[http://dx.doi.org/10.1080/1028415X.2016.1262097] [PMID: 27924679]
[190]
Cannell, J.J. Vitamin D and autism, what’s new? Rev. Endocr. Metab. Disord., 2017, 18(2), 183-193.
[http://dx.doi.org/10.1007/s11154-017-9409-0] [PMID: 28217829]
[191]
Pet, M.A.; Brouwer-Brolsma, E.M. The impact of maternal vitamin D status on offspring brain development and function: a systematic review. Adv. Nutr., 2016, 7(4), 665-678.
[http://dx.doi.org/10.3945/an.115.010330] [PMID: 27422502]
[192]
Vinkhuyzen, A.A.E.; Eyles, D.W.; Burne, T.H.J.; Blanken, L.M.E.; Kruithof, C.J.; Verhulst, F.; Jaddoe, V.W.; Tiemeier, H.; McGrath, J.J. Gestational vitamin D deficiency and autism-related traits: the generation R study. Mol. Psychiatry, 2018, 23(2), 240-246.
[http://dx.doi.org/10.1038/mp.2016.213] [PMID: 27895322]
[193]
Marotta, R.; Risoleo, M.C.; Messina, G.; Parisi, L.; Carotenuto, M.; Vetri, L.; Roccella, M. The neurochemistry of autism. Brain Sci., 2020, 10(3), 163.
[http://dx.doi.org/10.3390/brainsci10030163] [PMID: 32182969]
[194]
Patrick, R.P.; Ames, B.N. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J., 2014, 28(6), 2398-2413.
[http://dx.doi.org/10.1096/fj.13-246546] [PMID: 24558199]
[195]
Coentre, R.; da Silva, I.C. Symptomatic correlates of vitamin D deficiency in first-episode psychosis. Psychiatry J., 2019, 2019, 7839287.
[http://dx.doi.org/10.1155/2019/7839287] [PMID: 31187033]
[196]
Eyles, D.W.; Trzaskowski, M.; Vinkhuyzen, A.A.E.; Mattheisen, M.; Meier, S.; Gooch, H.; Anggono, V.; Cui, X.; Tan, M.C.; Burne, T.H.J.; Jang, S.E.; Kvaskoff, D.; Hougaard, D.M.; Nørgaard-Pedersen, B.; Cohen, A.; Agerbo, E.; Pedersen, C.B.; Børglum, A.D.; Mors, O.; Sah, P.; Wray, N.R.; Mortensen, P.B.; McGrath, J.J. The association between neonatal vitamin D status and risk of schizophrenia. Sci. Rep., 2018, 8(1), 17692.
[http://dx.doi.org/10.1038/s41598-018-35418-z] [PMID: 30523285]
[197]
Krivoy, A.; Onn, R.; Vilner, Y.; Hochman, E.; Weizman, S.; Paz, A.; Hess, S.; Sagy, R.; Kimhi-Nesher, S.; Kalter, E.; Friedman, T.; Friedman, Z.; Bormant, G.; Trommer, S.; Valevski, A.; Weizman, A. Vitamin D supplementation in chronic schizophrenia patients treated with clozapine: a randomized, double-blind, placebo-controlled clinical trial. EBioMedicine, 2017, 26, 138-145.
[http://dx.doi.org/10.1016/j.ebiom.2017.11.027] [PMID: 29226809]
[198]
Jarosz, A.C.; El-Sohemy, A. Association between vitamin D status and premenstrual symptoms. J. Acad. Nutr. Diet., 2019, 119(1), 115-123.
[http://dx.doi.org/10.1016/j.jand.2018.06.014] [PMID: 30177298]
[199]
McCarty, D.E. Resolution of hypersomnia following identification and treatment of vitamin d deficiency. J. Clin. Sleep Med., 2010, 6(6), 605-608.
[http://dx.doi.org/10.5664/jcsm.27996] [PMID: 21206551]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy