Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

EndMT: Potential Target of H2S against Atherosclerosis

Author(s): Hui-Ting Liu, Zhi-Xiang Zhou, Zhong Ren, Sai Yang, Lu-Shan Liu, Zuo Wang, Dang-Heng Wei, Xiao-Feng Ma, Yun Ma and Zhi-Sheng Jiang*

Volume 28, Issue 18, 2021

Published on: 16 November, 2020

Page: [3666 - 3680] Pages: 15

DOI: 10.2174/0929867327999201116194634

Price: $65

Open Access Journals Promotions 2
Abstract

Atherosclerosis is a chronic arterial wall illness that forms atherosclerotic plaques within the arteries. Plaque formation and endothelial dysfunction are atherosclerosis' characteristics. It is believed that the occurrence and development of atherosclerosis mainly include endothelial cell damage, lipoprotein deposition, inflammation and fibrous cap formation, but its molecular mechanism has not been elucidated. Therefore, protecting the vascular endothelium from damage is one of the key factors against atherosclerosis. The factors and processes involved in vascular endothelial injury are complex. Finding out the key factors and mechanisms of atherosclerosis caused by vascular endothelial injury is an important target for reversing and preventing atherosclerosis. Changes in cell adhesion are the early characteristics of EndMT, and cell adhesion is related to vascular endothelial injury and atherosclerosis. Recent researches have exhibited that endothelial-mesenchymal transition (EndMT) can urge atherosclerosis' progress, and it is expected that inhibition of EndMT will be an object for anti-atherosclerosis. We speculate whether inhibition of EndMT can become an effective target for reversing atherosclerosis by improving cell adhesion changes and vascular endothelial injury. Studies have shown that H2S has a strong cardiovascular protective effect. As H2S has anti- inflammatory, anti-oxidant, inhibiting foam cell formation, regulating ion channels and enhancing cell adhesion and endothelial functions, the current research on H2S in cardiovascular aspects is increasing, but anti-atherosclerosis's molecular mechanism and the function of H2S in EndMT have not been explicit. In order to explore the mechanism of H2S against atherosclerosis, to find an effective target to reverse atherosclerosis, we sum up the progress of EndMT promoting atherosclerosis, and Hydrogen sulfide's potential anti- EndMT effect is discussed in this review.

Keywords: H2S, atherosclerosis, endothelial-mesenchymal transition (EndMT), plaque formation, endothelial dysfunction, cardiovascular protective effect.

« Previous
[1]
Chae, I.G.; Yu, M.H.; Im, N.K.; Jung, Y.T.; Lee, J.; Chun, K.S.; Lee, I.S. Effect of Rosemarinus officinalis L. on MMP-9, MCP-1 levels, and cell migration in RAW 264.7 and smooth muscle cells. J. Med. Food, 2012, 15(10), 879-886.
[http://dx.doi.org/10.1089/jmf.2012.2162] [PMID: 22985398]
[2]
Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347), 317-325.
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[3]
Tabas, I.; García-Cardeña, G.; Owens, G.K. Recent insights into the cellular biology of atherosclerosis. J. Cell Biol., 2015, 209(1), 13-22.
[http://dx.doi.org/10.1083/jcb.201412052] [PMID: 25869663]
[4]
Chen, P.Y.; Qin, L.; Baeyens, N.; Li, G.; Afolabi, T.; Budatha, M.; Tellides, G.; Schwartz, M.A.; Simons, M. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest., 2015, 125(12), 4514-4528.
[http://dx.doi.org/10.1172/JCI82719] [PMID: 26517696]
[5]
Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(9), 2045-2051.
[http://dx.doi.org/10.1161/ATVBAHA.108.179705] [PMID: 22895665]
[6]
Bersi, M.R.; Khosravi, R.; Wujciak, A.J.; Harrison, D.G.; Humphrey, J.D. Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J. R. Soc. Interface, 2017, 14(136), 20170327.
[http://dx.doi.org/10.1098/rsif.2017.0327] [PMID: 29118111]
[7]
Souilhol, C.; Harmsen, M.C.; Evans, P.C.; Krenning, G. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 565-577.
[http://dx.doi.org/10.1093/cvr/cvx253] [PMID: 29309526]
[8]
Xiong, J.; Kawagishi, H.; Yan, Y.; Liu, J.; Wells, Q.S.; Edmunds, L.R.; Fergusson, M.M.; Yu, Z.X.; Rovira, I.I.; Brittain, E.L.; Wolfgang, M.J.; Jurczak, M.J.; Fessel, J.P.; Finkel, T. A metabolic basis for endothelial-to-mesenchymal transition. Mol. Cell, 2018, 69(4), 689-698.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.01.010] [PMID: 29429925]
[9]
Zeisberg, E.M.; Tarnavski, O.; Zeisberg, M.; Dorfman, A.L.; McMullen, J.R.; Gustafsson, E.; Chandraker, A.; Yuan, X.; Pu, W.T.; Roberts, A.B.; Neilson, E.G.; Sayegh, M.H.; Izumo, S.; Kalluri, R. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med., 2007, 13(8), 952-961.
[http://dx.doi.org/10.1038/nm1613] [PMID: 17660828]
[10]
Liu, J.; Dong, F.; Jeong, J.; Masuda, T.; Lobe, C.G. Constitutively active Notch1 signaling promotes endothelial‑mesenchymal transition in a conditional transgenic mouse model. Int. J. Mol. Med., 2014, 34(3), 669-676.
[http://dx.doi.org/10.3892/ijmm.2014.1818] [PMID: 24969754]
[11]
Aisagbonhi, O.; Rai, M.; Ryzhov, S.; Atria, N.; Feoktistov, I.; Hatzopoulos, A.K. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis. Model. Mech., 2011, 4(4), 469-483.
[http://dx.doi.org/10.1242/dmm.006510] [PMID: 21324930]
[12]
Xu, X.; Tan, X.; Tampe, B.; Sanchez, E.; Zeisberg, M.; Zeisberg, E.M. Snail is a direct target of hypoxia-inducible factor 1α(HIF1α) in hypoxia-induced endothelial to mesenchymal transition of human coronary endothelial cells. J. Biol. Chem., 2015, 290(27), 16653-16664.
[http://dx.doi.org/10.1074/jbc.M115.636944] [PMID: 25971970]
[13]
Xu, X.; Tan, X.; Hulshoff, M.S.; Wilhelmi, T.; Zeisberg, M.; Zeisberg, E.M. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett., 2016, 590(8), 1222-1233.
[http://dx.doi.org/10.1002/1873-3468.12158] [PMID: 27012941]
[14]
Chen, P.Y.; Simons, M. Fibroblast growth factor-transforming growth factor beta dialogues, endothelial cell to mesenchymal transition, and atherosclerosis. Curr. Opin. Lipidol., 2018, 29(5), 397-403.
[http://dx.doi.org/10.1097/MOL.0000000000000542] [PMID: 30080704]
[15]
Yang, Y.; Luo, N.S.; Ying, R.; Xie, Y.; Chen, J.Y.; Wang, X.Q.; Gu, Z.J.; Mai, J.T.; Liu, W.H.; Wu, M.X.; Chen, Z.T.; Fang, Y.B.; Zhang, H.F.; Zuo, Z.Y.; Wang, J.F.; Chen, Y.X. Macrophage-derived foam cells impair endothelial barrier function by inducing endothelial-mesenchymal transition via CCL-4. Int. J. Mol. Med., 2017, 40(2), 558-568.
[http://dx.doi.org/10.3892/ijmm.2017.3034] [PMID: 28656247]
[16]
Evrard, S.M.; Lecce, L.; Michelis, K.C.; Nomura-Kitabayashi, A.; Pandey, G.; Purushothaman, K.R.; d’Escamard, V.; Li, J.R.; Hadri, L.; Fujitani, K.; Moreno, P.R.; Benard, L.; Rimmele, P.; Cohain, A.; Mecham, B.; Randolph, G.J.; Nabel, E.G.; Hajjar, R.; Fuster, V.; Boehm, M.; Kovacic, J.C. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun., 2016, 7(24), 11853.
[http://dx.doi.org/10.1038/ncomms11853] [PMID: 27340017]
[17]
Lim, Y.; Hwang, W.; Kim, J.Y.; Lee, C.H.; Kim, Y.J.; Lee, D.; Kwon, O. Synergistic mechanisms of Sanghuang-Danshen phytochemicals on postprandial vascular dysfunction in healthy subjects: A network biology approach based on a clinical trial. Sci. Rep., 2019, 9(1), 9746.
[http://dx.doi.org/10.1038/s41598-019-46289-3] [PMID: 31278329]
[18]
Good, R.B.; Gilbane, A.J.; Trinder, S.L.; Denton, C.P.; Coghlan, G.; Abraham, D.J.; Holmes, A.M. Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am. J. Pathol., 2015, 185(7), 1850-1858.
[http://dx.doi.org/10.1016/j.ajpath.2015.03.019] [PMID: 25956031]
[19]
Monette, J.S.; Hutchins, P.M.; Ronsein, G.E.; Wimberger, J.; Irwin, A.D.; Tang, C.; Sara, J.D.; Shao, B.; Vaisar, T.; Lerman, A.; Heinecke, J.W. Patients with coronary endothelial dysfunction have impaired cholesterol efflux capacity and reduced HDL particle concentration. Circ. Res., 2016, 119(1), 83-90.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308357] [PMID: 27114438]
[20]
Hulshoff, M.S.; Xu, X.; Krenning, G.; Zeisberg, E.M. Epigenetic regulation of endothelial-to-mesenchymal transition in chronic heart disease. Arterioscler. Thromb. Vasc. Biol., 2018, 38(9), 1986-1996.
[http://dx.doi.org/10.1161/ATVBAHA.118.311276] [PMID: 30354260]
[21]
Mahmoud, M.M.; Serbanovic-Canic, J.; Feng, S.; Souilhol, C.; Xing, R.; Hsiao, S.; Mammoto, A.; Chen, J.; Ariaans, M.; Francis, S.E.; Van der Heiden, K.; Ridger, V.; Evans, P.C. Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail. Sci. Rep., 2017, 7(1), 3375.
[http://dx.doi.org/10.1038/s41598-017-03532-z] [PMID: 28611395]
[22]
Traub, O.; Berk, B.C. Laminar shear stress: Mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol., 1998, 18(5), 677-685.
[http://dx.doi.org/10.1161/01.ATV.18.5.677] [PMID: 9598824]
[23]
Sinha, S.; Heagerty, A.M.; Shuttleworth, C.A.; Kielty, C.M. Expression of latent TGF-beta binding proteins and association with TGF-beta 1 and fibrillin-1 following arterial injury. Cardiovasc. Res., 2002, 53(4), 971-983.
[http://dx.doi.org/10.1016/S0008-6363(01)00512-0] [PMID: 11922907]
[24]
Rohwedder, I.; Montanez, E.; Beckmann, K.; Bengtsson, E.; Dunér, P.; Nilsson, J.; Soehnlein, O.; Fässler, R. Plasma fibronectin deficiency impedes atherosclerosis progression and fibrous cap formation. EMBO Mol. Med., 2012, 4(7), 564-576.
[http://dx.doi.org/10.1002/emmm.201200237] [PMID: 22514136]
[25]
Moonen, J.R.; Lee, E.S.; Schmidt, M.; Maleszewska, M.; Koerts, J.A.; Brouwer, L.A.; van Kooten, T.G.; van Luyn, M.J.; Zeebregts, C.J.; Krenning, G.; Harmsen, M.C. Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovasc. Res., 2015, 108(3), 377-386.
[http://dx.doi.org/10.1093/cvr/cvv175] [PMID: 26084310]
[26]
Cooley, B.C.; Nevado, J.; Mellad, J.; Yang, D.; St Hilaire, C.; Negro, A.; Fang, F.; Chen, G.; San, H.; Walts, A.D.; Schwartzbeck, R.L.; Taylor, B.; Lanzer, J.D.; Wragg, A.; Elagha, A.; Beltran, L.E.; Berry, C.; Feil, R.; Virmani, R.; Ladich, E.; Kovacic, J.C.; Boehm, M. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci. Transl. Med., 2014, 6(227), 227ra34.
[http://dx.doi.org/10.1126/scitranslmed.3006927] [PMID: 24622514]
[27]
Vanchin, B.; Offringa, E.; Friedrich, J.; Brinker, M.G.; Kiers, B.; Pereira, A.C.; Harmsen, M.C.; Moonen, J.A.; Krenning, G. MicroRNA-374b induces endothelial-to-mesenchymal transition and early lesion formation through the inhibition of MAPK7 signaling. J. Pathol., 2019, 247(4), 456-470.
[http://dx.doi.org/10.1002/path.5204] [PMID: 30565701]
[28]
Yung, L.M.; Sánchez-Duffhues, G.; Ten Dijke, P.; Yu, P.B. Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells. Cardiovasc. Res., 2015, 108(2), 278-287.
[http://dx.doi.org/10.1093/cvr/cvv221] [PMID: 26410368]
[29]
Sorescu, G.P.; Song, H.; Tressel, S.L.; Hwang, J.; Dikalov, S.; Smith, D.A.; Boyd, N.L.; Platt, M.O.; Lassègue, B.; Griendling, K.K.; Jo, H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ. Res., 2004, 95(8), 773-779.
[http://dx.doi.org/10.1161/01.RES.0000145728.22878.45] [PMID: 15388638]
[30]
Zhu, M.; Tang, H.; Tang, X.; Ma, X.; Guo, D.; Chen, F. BMAL1 suppresses ROS-induced endothelial-to-mesenchymal transition and atherosclerosis plaque progression via BMP signaling. Am. J. Transl. Res., 2018, 10(10), 3150-3161.
[PMID: 30416657]
[31]
Sage, A.P.; Tintut, Y.; Demer, L.L. Regulatory mechanisms in vascular calcification. Nat. Rev. Cardiol., 2010, 7(9), 528-536.
[http://dx.doi.org/10.1038/nrcardio.2010.115] [PMID: 20664518]
[32]
Fishbein, M.C.; Fishbein, G.A. Arteriosclerosis: Facts and fancy. Cardiovasc. Pathol., 2015, 24(6), 335-342.
[http://dx.doi.org/10.1016/j.carpath.2015.07.007] [PMID: 26365806]
[33]
Yao, Y.; Bennett, B.J.; Wang, X.; Rosenfeld, M.E.; Giachelli, C.; Lusis, A.J.; Boström, K.I. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ. Res., 2010, 107(4), 485-494.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.219071] [PMID: 20576934]
[34]
Derwall, M.; Malhotra, R.; Lai, C.S.; Beppu, Y.; Aikawa, E.; Seehra, J.S.; Zapol, W.M.; Bloch, K.D.; Yu, P.B. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(3), 613-622.
[http://dx.doi.org/10.1161/ATVBAHA.111.242594] [PMID: 22223731]
[35]
Yao, Y.; Jumabay, M.; Ly, A.; Radparvar, M.; Cubberly, M.R.; Boström, K.I. A role for the endothelium in vascular calcification. Circ. Res., 2013, 113(5), 495-504.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301792] [PMID: 23852538]
[36]
Yao, J.; Guihard, P.J.; Blazquez-Medela, A.M.; Guo, Y.; Moon, J.H.; Jumabay, M.; Boström, K.I.; Yao, Y. Serine protease activation essential for endothelial-mesenchymal transition in vascular calcification. Circ. Res., 2015, 117(9), 758-769.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306751] [PMID: 26265629]
[37]
Chen, P.Y.; Qin, L.; Barnes, C.; Charisse, K.; Yi, T.; Zhang, X.; Ali, R.; Medina, P.P.; Yu, J.; Slack, F.J.; Anderson, D.G.; Kotelianski, V.; Wang, F.; Tellides, G.; Simons, M. FGF regulates TGF-β signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep., 2012, 2(6), 1684-1696.
[http://dx.doi.org/10.1016/j.celrep.2012.10.021] [PMID: 23200853]
[38]
Liu, F.; Liu, G.J.; Liu, N.; Zhang, G.; Zhang, J.X.; Li, L.F. Effect of hydrogen sulfide on inflammatory cytokines in acute myocardial ischemia injury in rats. Exp. Ther. Med., 2015, 9(3), 1068-1074.
[http://dx.doi.org/10.3892/etm.2015.2218] [PMID: 25667680]
[39]
Wang, R. Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous transmitter? FASEB J., 2002, 16(13), 1792-1798.
[http://dx.doi.org/10.1096/fj.02-0211hyp] [PMID: 12409322]
[40]
Peng, J.; Tang, Z.H.; Ren, Z.; He, B.; Zeng, Y.; Liu, L.S.; Wang, Z.; Wei, D.H.; Zheng, X.L.; Jiang, Z.S. TET2 protects against oxLDL-induced HUVEC dysfunction by upregulating the CSE/H2S system. Front. Pharmacol., 2017, 8, 486.
[http://dx.doi.org/10.3389/fphar.2017.00486] [PMID: 28798687]
[41]
Zhao, Z.Z.; Wang, Z.; Li, G.H.; Wang, R.; Tan, J.M.; Cao, X.; Suo, R.; Jiang, Z.S. Hydrogen sulfide inhibits macrophage-derived foam cell formation. Exp. Biol. Med. (Maywood), 2011, 236(2), 169-176.
[http://dx.doi.org/10.1258/ebm.2010.010308] [PMID: 21321313]
[42]
Polhemus, D.J.; Lefer, D.J. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ. Res., 2014, 114(4), 730-737.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300505] [PMID: 24526678]
[43]
Kimura, Y.; Goto, Y.; Kimura, H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal., 2010, 12(1), 1-13.
[http://dx.doi.org/10.1089/ars.2008.2282] [PMID: 19852698]
[44]
Xie, L.; Feng, H.; Li, S.; Meng, G.; Liu, S.; Tang, X.; Ma, Y.; Han, Y.; Xiao, Y.; Gu, Y.; Shao, Y.; Park, C.M.; Xian, M.; Huang, Y.; Ferro, A.; Wang, R.; Moore, P.K.; Wang, H.; Ji, Y. SIRT3 mediates the antioxidant effect of hydrogen sulfide in endothelial cells. Antioxid. Redox Signal., 2016, 24(6), 329-343.
[http://dx.doi.org/10.1089/ars.2015.6331] [PMID: 26422756]
[45]
Shi, Y.X.; Chen, Y.; Zhu, Y.Z.; Huang, G.Y.; Moore, P.K.; Huang, S.H.; Yao, T.; Zhu, Y.C. Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(4), H2093-H2100.
[http://dx.doi.org/10.1152/ajpheart.00088.2007] [PMID: 17630351]
[46]
Ou, X.; Lee, M.R.; Huang, X.; Messina-Graham, S.; Broxmeyer, H.E. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells, 2014, 32(5), 1183-1194.
[http://dx.doi.org/10.1002/stem.1641] [PMID: 24449278]
[47]
Li, X.; Jiang, Z.; Li, X.; Zhang, X. SIRT1 overexpression protects non-small cell lung cancer cells against osteopontin-induced epithelial-mesenchymal transition by suppressing NF-κB signaling. OncoTargets Ther., 2018, 11, 1157-1171.
[http://dx.doi.org/10.2147/OTT.S137146] [PMID: 29535539]
[48]
Guan, R.; Wang, J.; Cai, Z.; Li, Z.; Wang, L.; Li, Y.; Xu, J.; Li, D.; Yao, H.; Liu, W.; Deng, B.; Lu, W. Hydrogen sulfide attenuates cigarette smoke-induced airway remodeling by upregulating SIRT1 signaling pathway. Redox Biol., 2020, 28, 101356.
[http://dx.doi.org/10.1016/j.redox.2019.101356] [PMID: 31704583]
[49]
Kang, S.C.; Sohn, E.H.; Lee, S.R. Hydrogen sulfide as a potential alternative for the treatment of myocardial fibrosis. Oxid. Med. Cell. Longev., 2020, 2020, 4105382.
[http://dx.doi.org/10.1155/2020/4105382] [PMID: 32064023]
[50]
Desmoulière, A.; Geinoz, A.; Gabbiani, F.; Gabbiani, G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol., 1993, 122(1), 103-111.
[http://dx.doi.org/10.1083/jcb.122.1.103] [PMID: 8314838]
[51]
Xiao, J.; Bai, X.Q.; Liao, L.; Zhou, M.; Peng, J.; Xiang, Q.; Ren, Z.; Wen, H.Y.; Jiang, Z.S.; Tang, Z.H.; Wang, M.M.; Liu, L.S. Hydrogen sulfide inhibits PCSK9 expression through the PI3K/Akt‑SREBP‑2 signaling pathway to influence lipid metabolism in HepG2 cells. Int. J. Mol. Med., 2019, 43(5), 2055-2063.
[http://dx.doi.org/10.3892/ijmm.2019.4118] [PMID: 30864739]
[52]
Li, H.; Feng, S.J.; Zhang, G.Z.; Wang, S.X. Correlation of lower concentrations of hydrogen sulfide with atherosclerosis in chronic hemodialysis patients with diabetic nephropathy. Blood Purif., 2014, 38(3-4), 188-194.
[http://dx.doi.org/10.1159/000368883] [PMID: 25531647]
[53]
Meng, G.; Zhu, J.; Xiao, Y.; Huang, Z.; Zhang, Y.; Tang, X.; Xie, L.; Chen, Y.; Shao, Y.; Ferro, A.; Wang, R.; Moore, P.K.; Ji, Y. Hydrogen sulfide donor GYY4137 protects against myocardial fibrosis. Oxid. Med. Cell. Longev., 2015, 2015, 691070.
[http://dx.doi.org/10.1155/2015/691070] [PMID: 26078813]
[54]
Zhang, Y.; Wang, J.; Li, H.; Yuan, L.; Wang, L.; Wu, B.; Ge, J. Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Sci. China Life Sci., 2015, 58(11), 1126-1134.
[http://dx.doi.org/10.1007/s11427-015-4904-6] [PMID: 26246380]
[55]
Bai, Y.W.; Ye, M.J.; Yang, D.L.; Yu, M.P.; Zhou, C.F.; Shen, T. Hydrogen sulfide attenuates paraquat-induced epithelial-mesenchymal transition of human alveolar epithelial cells through regulating transforming growth factor-β1/Smad2/3 signaling pathway. J. Appl. Toxicol., 2019, 39(3), 432-440.
[http://dx.doi.org/10.1002/jat.3734] [PMID: 30265375]
[56]
Guo, L.; Peng, W.; Tao, J.; Lan, Z.; Hei, H.; Tian, L.; Pan, W.; Wang, L.; Zhang, X. Hydrogen sulfide inhibits transforming growth factor-β1-induced EMT via Wnt/Catenin pathway. PLoS One, 2016, 11(1), e0147018.
[http://dx.doi.org/10.1371/journal.pone.0147018] [PMID: 26760502]
[57]
Lv, M.; Li, Y.; Ji, M.H.; Zhuang, M.; Tang, J.H. Inhibition of invasion and epithelial-mesenchymal transition of human breast cancer cells by hydrogen sulfide through decreased phospho-p38 expression. Mol. Med. Rep., 2014, 10(1), 341-346.
[http://dx.doi.org/10.3892/mmr.2014.2161] [PMID: 24756435]
[58]
Cheng, S.; Lu, Y.; Li, Y.; Gao, L.; Shen, H.; Song, K. Hydrogen sulfide inhibits epithelial-mesenchymal transition in peritoneal mesothelial cells. Sci. Rep., 2018, 8(1), 5863.
[http://dx.doi.org/10.1038/s41598-018-21807-x] [PMID: 29650971]
[59]
Zhang, H.; Lin, Y.; Ma, Y.; Zhang, J.; Wang, C.; Zhang, H. Protective effect of hydrogen sulfide on monocrotaline‑induced pulmonary arterial hypertension via inhibition of the endothelial mesenchymal transition. Int. J. Mol. Med., 2019, 44(6), 2091-2102.
[http://dx.doi.org/10.3892/ijmm.2019.4359] [PMID: 31573044]
[60]
Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[61]
Shen, Y.; Shen, Z.; Miao, L.; Xin, X.; Lin, S.; Zhu, Y.; Guo, W.; Zhu, Y.Z. miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-γ-lyase expression. Antioxid. Redox Signal., 2015, 22(3), 224-240.
[http://dx.doi.org/10.1089/ars.2014.5909] [PMID: 25203395]
[62]
John, A.M.S.P.; Kundu, S.; Pushpakumar, S.; Fordham, M.; Weber, G.; Mukhopadhyay, M.; Sen, U. GYY4137, a hydrogen sulfide donor modulates miR194-dependent collagen realignment in diabetic kidney. Sci. Rep., 2017, 7(1), 10924.
[http://dx.doi.org/10.1038/s41598-017-11256-3] [PMID: 28883608]
[63]
Liu, M.; Li, Z.; Liang, B.; Li, L.; Liu, S.; Tan, W.; Long, J.; Tang, F.; Chu, C.; Yang, J. Hydrogen sulfide ameliorates rat myocardial fibrosis induced by thyroxine through PI3K/AKT signaling pathway. Endocr. J., 2018, 65(7), 769-781.
[http://dx.doi.org/10.1507/endocrj.EJ17-0445] [PMID: 29743447]
[64]
Chow, C.Y.; Wang, X.; Riccardi, D.; Wolfner, M.F.; Clark, A.G. The genetic architecture of the genome-wide transcriptional response to ER stress in the mouse. PLoS Genet., 2015, 11(2), e1004924.
[http://dx.doi.org/10.1371/journal.pgen.1004924] [PMID: 25651210]
[65]
Kitakaze, K.; Taniuchi, S.; Kawano, E.; Hamada, Y.; Miyake, M.; Oyadomari, M.; Kojima, H.; Kosako, H.; Kuribara, T.; Yoshida, S.; Hosoya, T.; Oyadomari, S. Cell-based HTS identifies a chemical chaperone for preventing ER protein aggregation and proteotoxicity. eLife, 2019, 8(8), e43302.
[http://dx.doi.org/10.7554/eLife.43302] [PMID: 31843052]
[66]
Ying, R.; Wang, X.Q.; Yang, Y.; Gu, Z.J.; Mai, J.T.; Qiu, Q.; Chen, Y.X.; Wang, J.F. Hydrogen sulfide suppresses endoplasmic reticulum stress-induced endothelial-to-mesenchymal transition through Src pathway. Life Sci., 2016, 144(144), 208-217.
[http://dx.doi.org/10.1016/j.lfs.2015.11.025] [PMID: 26656263]
[67]
Barr, L.A.; Shimizu, Y.; Lambert, J.P.; Nicholson, C.K.; Calvert, J.W. Hydrogen sulfide attenuates high fat diet-induced cardiac dysfunction via the suppression of endoplasmic reticulum stress. Nitric Oxide, 2015, 46(46), 145-156.
[http://dx.doi.org/10.1016/j.niox.2014.12.013] [PMID: 25575644]
[68]
Wu, J.; Pan, W.; Wang, C.; Dong, H.; Xing, L.; Hou, J.; Fang, S.; Li, H.; Yang, F.; Yu, B. H2S attenuates endoplasmic reticulum stress in hypoxia-induced pulmonary artery hypertension. Biosci. Rep., 2019, 39(7), BSR20190304.
[http://dx.doi.org/10.1042/BSR20190304] [PMID: 31239370]
[69]
Chen, Z.F.; Zhao, B.; Tang, X.Y.; Li, W.; Zhu, L.L.; Tang, C.S.; Du, J.B.; Jin, H.F. Hydrogen sulfide regulates vascular endoplasmic reticulum stress in apolipoprotein E knockout mice. Chin. Med. J. (Engl.), 2011, 124(21), 3460-3467.
[PMID: 22340159]
[70]
Cai, W.J.; Wang, M.J.; Moore, P.K.; Jin, H.M.; Yao, T.; Zhu, Y.C. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc. Res., 2007, 76(1), 29-40.
[http://dx.doi.org/10.1016/j.cardiores.2007.05.026] [PMID: 17631873]
[71]
Mahmoud, M.; Souilhol, C.; Serbanovic-Canic, J.; Evans, P. GATA4-twist1 signalling in disturbed flow-induced atherosclerosis. Cardiovasc. Drugs Ther., 2019, 33(2), 231-237.
[http://dx.doi.org/10.1007/s10557-019-06863-3] [PMID: 30809744]
[72]
Chen, D.B.; Feng, L.; Hodges, J.K.; Lechuga, T.J.; Zhang, H. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis. Biol. Reprod., 2017, 97(3), 478-489.
[http://dx.doi.org/10.1093/biolre/iox105] [PMID: 29024947]
[73]
Antoon, J.W.; Nitzchke, A.M.; Martin, E.C.; Rhodes, L.V.; Nam, S.; Wadsworth, S.; Salvo, V.A.; Elliott, S.; Collins-Burow, B.; Nephew, K.P.; Burow, M.E. Inhibition of p38 mitogen-activated protein kinase alters microRNA expression and reverses epithelial-to-mesenchymal transition. Int. J. Oncol., 2013, 42(4), 1139-1150.
[http://dx.doi.org/10.3892/ijo.2013.1814] [PMID: 23403951]
[74]
Du, J.T.; Li, W.; Yang, J.Y.; Tang, C.S.; Li, Q.; Jin, H.F. Hydrogen sulfide is endogenously generated in rat skeletal muscle and exerts a protective effect against oxidative stress. Chin. Med. J. (Engl.), 2013, 126(5), 930-936.
[PMID: 23489804]
[75]
Liu, J.; Wu, J.; Sun, A.; Sun, Y.; Yu, X.; Liu, N.; Dong, S.; Yang, F.; Zhang, L.; Zhong, X.; Xu, C.; Lu, F.; Zhang, W. Hydrogen sulfide decreases high glucose/palmitate-induced autophagy in endothelial cells by the Nrf2-ROS-AMPK signaling pathway. Cell Biosci., 2016, 6(33), 33.
[http://dx.doi.org/10.1186/s13578-016-0099-1] [PMID: 27222705]
[76]
Kimura, H. Hydrogen sulfide and polysulfides as biological mediators. Molecules, 2014, 19(10), 16146-16157.
[http://dx.doi.org/10.3390/molecules191016146] [PMID: 25302704]
[77]
Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J.D.; Yamamoto, M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev., 1999, 13(1), 76-86.
[http://dx.doi.org/10.1101/gad.13.1.76] [PMID: 9887101]
[78]
Calvert, J.W.; Jha, S.; Gundewar, S.; Elrod, J.W.; Ramachandran, A.; Pattillo, C.B.; Kevil, C.G.; Lefer, D.J. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ. Res., 2009, 105(4), 365-374.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.199919] [PMID: 19608979]
[79]
Yang, G.; Zhao, K.; Ju, Y.; Mani, S.; Cao, Q.; Puukila, S.; Khaper, N.; Wu, L.; Wang, R. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid. Redox Signal., 2013, 18(15), 1906-1919.
[http://dx.doi.org/10.1089/ars.2012.4645] [PMID: 23176571]
[80]
Xiao, T.; Luo, J.; Wu, Z.; Li, F.; Zeng, O.; Yang, J. Effects of hydrogen sulfide on myocardial fibrosis and PI3K/AKT1-regulated autophagy in diabetic rats. Mol. Med. Rep., 2016, 13(2), 1765-1773.
[http://dx.doi.org/10.3892/mmr.2015.4689] [PMID: 26676365]
[81]
Singh, A.V.: Gemmati, D.; Kanase, A.; Pandey, I.; Misra, V.; Kishore, V.; Jahnke, T.; Bill, J. Nanobiomaterils for vascular biology and wound management: A review. Veins and Lymph., 2018, 7(2), 7196.
[http://dx.doi.org/10.4081/vl.2018.7196]
[82]
Ponticos, M.; Smith, B.D. Extracellular matrix synthesis in vascular disease: Hypertension, and atherosclerosis. J. Biomed. Res., 2014, 28(1), 25-39.
[http://dx.doi.org/10.7555/JBR.27.20130064] [PMID: 24474961]
[83]
Sancho, A.; Vandersmissen, I.; Craps, S.; Luttun, A.; Groll, J. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci. Rep., 2017, 7(10), 46152.
[http://dx.doi.org/10.1038/srep46152] [PMID: 28393890]
[84]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[85]
Li, L.; Zhang, W.; Wang, J. A viscoelastic-stochastic model of the effects of cytoskeleton remodelling on cell adhesion. R. Soc. Open Sci., 2016, 3(10), 160539.
[http://dx.doi.org/10.1098/rsos.160539] [PMID: 27853571]
[86]
Sun, H.J.; Wu, Z.Y.; Nie, X.W.; Bian, J.S. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front. Pharmacol., 2020, 10(10), 1568.
[http://dx.doi.org/10.3389/fphar.2019.01568] [PMID: 32038245]
[87]
Formanowicz, D.; Krawczyk, J.B.; Perek, B.; Formanowicz, P. A control-theoretic model of atherosclerosis. Int. J. Mol. Sci., 2019, 20(3), 785.
[http://dx.doi.org/10.3390/ijms20030785] [PMID: 30759798]
[88]
Mina, S.G.; Huang, P.; Murray, B.T.; Mahler, G.J. The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction. Biomicrofluidics, 2017, 11(4), 044104.
[http://dx.doi.org/10.1063/1.4991738] [PMID: 28798857]
[89]
Thomas, S.R.; Witting, P.K.; Drummond, G.R. Redox control of endothelial function and dysfunction: Molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal., 2008, 10(10), 1713-1765.
[http://dx.doi.org/10.1089/ars.2008.2027] [PMID: 18707220]
[90]
Olejarz, W.; Łacheta, D.; Kubiak-Tomaszewska, G. Matrix metalloproteinases as biomarkers of atherosclerotic plaque instability. Int. J. Mol. Sci., 2020, 21(11), 3946.
[http://dx.doi.org/10.3390/ijms21113946] [PMID: 32486345]
[91]
Wang, Z.J.; Wu, J.; Guo, W.; Zhu, Y.Z. Atherosclerosis and the hydrogen sulfide signaling pathway - therapeutic approaches to disease prevention. Cell. Physiol. Biochem., 2017, 42(3), 859-875.
[http://dx.doi.org/10.1159/000478628] [PMID: 28641276]
[92]
Liu, Z.H.; Zhang, Y.; Wang, X.; Fan, X.F.; Zhang, Y.; Li, X.; Gong, Y.S.; Han, L.P. SIRT1 activation attenuates cardiac fibrosis by endothelial-to-mesenchymal transition. Biomed. Pharmacother., 2019, 118, 109227.
[http://dx.doi.org/10.1016/j.biopha.2019.109227] [PMID: 31351433]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy