Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Hydrogen-induced Neuroprotection in Neonatal Hypoxic-ischemic Encephalopathy

Author(s): Ferenc Domoki*

Volume 27, Issue 5, 2021

Published on: 13 November, 2020

Page: [687 - 694] Pages: 8

DOI: 10.2174/1381612826666201113095720

open access plus

Open Access Journals Promotions 2
Abstract

Hypoxic-ischemic encephalopathy (HIE) remains to be a major cause of morbidity, mortality and severe neurodevelopmental disability in term neonates. Moderate whole body hypothermia is an established, effective neuroprotective therapy to reduce mortality and long-term disability associated with HIE, however, research for adjunct therapies is still warranted to complement the effect of hypothermia. In the last decade, molecular hydrogen emerged as a simple, available, inexpensive substance with advantageous pharmacokinetics to ameliorate hypoxic-ischemic cellular damage. The present review examines the preclinical studies employing hydrogen to combat the deleterious consequences of hypoxic-ischemic insults in rodent and piglet HIE models. Hydrogen exerted unequivocal neuroprotective actions shown by preserved neurovascular function, neuronal viability, and neurocognitive functions in virtually all model species and hypoxic-ischemic insult types tested. Administration of hydrogen started in most studies after the hypoxic-ischemic insult enhancing the translational value of the findings. Among the explored mechanisms of hydrogen-induced neuroprotection, antioxidant, anti- apoptotic and anti-inflammatory effects appeared to be dominant. Unfortunately, the additive neuroprotective effect of hydrogen and therapeutic hypothermia has not yet been demonstrated, thus such studies are warranted to promote the clinical testing of molecular hydrogen as an adjunct neuroprotective treatment of HIE.

Keywords: Asphyxia neonatorum, birth asphyxia, cerebral hypoxia-ischemia, medical gas research, molecular hydrogen, neonatal animals, neuroprotectants, translational research.

[1]
Azzopardi D, Brocklehurst P, Edwards D, et al. TOBY Study Group The TOBY Study. Whole body hypothermia for the treatment of perinatal asphyxial encephalopathy: a randomised controlled trial. BMC Pediatr 2008; 8: 17.
[http://dx.doi.org/10.1186/1471-2431-8-17] [PMID: 18447921]
[2]
Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 2010; 86(6): 329-38.
[http://dx.doi.org/10.1016/j.earlhumdev.2010.05.010] [PMID: 20554402]
[3]
Lee ACC, Kozuki N, Blencowe H, et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr Res 2013; 74(Suppl. 1): 50-72.
[http://dx.doi.org/10.1038/pr.2013.206] [PMID: 24366463]
[4]
Shankaran S, Laptook AR, Ehrenkranz RA, et al. National Institute of Child Health and Human Development Neonatal Research Network. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005; 353(15): 1574-84.
[http://dx.doi.org/10.1056/NEJMcps050929] [PMID: 16221780]
[5]
Azzopardi DV, Strohm B, Edwards AD, et al. TOBY Study Group Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 2009; 361(14): 1349-58.
[http://dx.doi.org/10.1056/NEJMoa0900854] [PMID: 19797281]
[6]
Azzopardi D, Strohm B, Marlow N, et al. TOBY Study Group Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med 2014; 371(2): 140-9.
[http://dx.doi.org/10.1056/NEJMoa1315788] [PMID: 25006720]
[7]
Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2013; (1): CD003311
[http://dx.doi.org/10.1002/14651858.CD003311.pub3] [PMID: 23440789]
[8]
Tolaymat Y, Doré S, Griffin HW, Shih S, Edwards ME, Weiss MD. Inhaled gases for neuroprotection of neonates: A review. Front Pediatr 2020; 7: 558.
[http://dx.doi.org/10.3389/fped.2019.00558] [PMID: 32047729]
[9]
Cai J, Kang Z, Liu WW, et al. Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neurosci Lett 2008; 441(2): 167-72.
[http://dx.doi.org/10.1016/j.neulet.2008.05.077] [PMID: 18603371]
[10]
Cai J, Kang Z, Liu K, et al. Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Res 2009; 1256: 129-37.
[http://dx.doi.org/10.1016/j.brainres.2008.11.048] [PMID: 19063869]
[11]
Matchett GA, Fathali N, Hasegawa Y, et al. Hydrogen gas is ineffective in moderate and severe neonatal hypoxia-ischemia rat models. Brain Res 2009; 1259: 90-7.
[http://dx.doi.org/10.1016/j.brainres.2008.12.066] [PMID: 19168038]
[12]
Bai X, Liu S, Yuan L, et al. Hydrogen-rich saline mediates neuroprotection through the regulation of endoplasmic reticulum stress and autophagy under hypoxia-ischemia neonatal brain injury in mice. Brain Res 2016; 1646: 410-7.
[http://dx.doi.org/10.1016/j.brainres.2016.06.020] [PMID: 27317636]
[13]
Chu X, Cao L, Yu Z, et al. Hydrogen-rich saline promotes microglia M2 polarization and complement-mediated synapse loss to restore behavioral deficits following hypoxia-ischemic in neonatal mice via AMPK activation. J Neuroinflammation 2019; 16(1): 104.
[http://dx.doi.org/10.1186/s12974-019-1488-2] [PMID: 31103039]
[14]
Wu G, Chen Z, Wang P, et al. Hydrogen inhalation protects hypoxic-ischemic brain damage by attenuating inflammation and apoptosis in neonatal rats. Exp Biol Med (Maywood) 2019; 244(12): 1017-27.
[http://dx.doi.org/10.1177/1535370219855399] [PMID: 31189349]
[15]
Rice JE III, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 1981; 9(2): 131-41.
[http://dx.doi.org/10.1002/ana.410090206] [PMID: 7235629]
[16]
Vannucci RC, Connor JR, Mauger DT, et al. Rat model of perinatal hypoxic-ischemic brain damage. J Neurosci Res 1999; 55(2): 158-63.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990115)55:2<158:AID-JNR3>3.0.CO;2-1] [PMID: 9972818]
[17]
Domoki F, Oláh O, Zimmermann A, et al. Hydrogen is neuroprotective and preserves cerebrovascular reactivity in asphyxiated newborn pigs. Pediatr Res 2010; 68(5): 387-92.
[http://dx.doi.org/10.1203/PDR.0b013e3181f2e81c] [PMID: 20657346]
[18]
Oláh O, Tóth-Szűki V, Temesvári P, Bari F, Domoki F. Delayed neurovascular dysfunction is alleviated by hydrogen in asphyxiated newborn pigs. Neonatology 2013; 104(2): 79-86.
[http://dx.doi.org/10.1159/000348445] [PMID: 23859876]
[19]
Németh J, Tóth-Szűki V, Varga V, Kovács V, Remzső G, Domoki F. Molecular hydrogen affords neuroprotection in a translational piglet model of hypoxic-ischemic encephalopathy. J Physiol Pharmacol 2016; 67(5): 677-89.
[PMID: 28011948]
[20]
Htun Y, Nakamura S, Nakao Y, et al. Hydrogen ventilation combined with mild hypothermia improves short-term neurological outcomes in a 5-day neonatal hypoxia-ischaemia piglet model. Sci Rep 2019; 9(1): 4088.
[http://dx.doi.org/10.1038/s41598-019-40674-8] [PMID: 30858437]
[21]
Book SA, Bustad LK. The fetal and neonatal pig in biomedical research. J Anim Sci 1974; 38(5): 997-1002.
[http://dx.doi.org/10.2527/jas1974.385997x] [PMID: 4596894]
[22]
Conrad MS, Johnson RW. The domestic piglet: an important model for investigating the neurodevelopmental consequences of early life insults. Annu Rev Anim Biosci 2015; 3: 245-64.
[http://dx.doi.org/10.1146/annurev-animal-022114-111049] [PMID: 25387115]
[23]
Young W. H2 clearance measurement of blood flow: a review of technique and polarographic principles. Stroke 1980; 11(5): 552-64.
[http://dx.doi.org/10.1161/01.STR.11.5.552] [PMID: 6999671]
[24]
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007; 13(6): 688-94.
[http://dx.doi.org/10.1038/nm1577] [PMID: 17486089]
[25]
Liu CL, Zhang K, Chen G. Hydrogen therapy: from mechanism to cerebral diseases. Med Gas Res 2016; 6(1): 48-54.
[http://dx.doi.org/10.4103/2045-9912.179346] [PMID: 27826423]
[26]
Iketani M, Ohsawa I. Molecular hydrogen as a neuroprotective agent. Curr Neuropharmacol 2017; 15(2): 324-31.
[http://dx.doi.org/10.2174/1570159X14666160607205417] [PMID: 27281176]
[27]
Li H, Luo Y, Yang P, Liu J. Hydrogen as a complementary therapy against ischemic stroke: A review of the evidence. J Neurol Sci 2019; 396: 240-6.
[http://dx.doi.org/10.1016/j.jns.2018.11.004] [PMID: 30529801]
[28]
Rainaldi MA, Perlman JM. Pathophysiology of birth asphyxia. Clin Perinatol 2016; 43(3): 409-22.
[http://dx.doi.org/10.1016/j.clp.2016.04.002] [PMID: 27524444]
[29]
Hassell KJ, Ezzati M, Alonso-Alconada D, Hausenloy DJ, Robertson NJ. New horizons for newborn brain protection: enhancing endogenous neuroprotection. Arch Dis Child Fetal Neonatal Ed 2015; 100(6): F541-52.
[http://dx.doi.org/10.1136/archdischild-2014-306284] [PMID: 26063194]
[30]
Singer D. Neonatal tolerance to hypoxia: a comparative-physiological approach. Comp Biochem Physiol A Mol Integr Physiol 1999; 123(3): 221-34.
[http://dx.doi.org/10.1016/S1095-6433(99)00057-4] [PMID: 10501017]
[31]
Mortola JP. How newborn mammals cope with hypoxia. Respir Physiol 1999; 116(2-3): 95-103.
[http://dx.doi.org/10.1016/S0034-5687(99)00038-9] [PMID: 10487295]
[32]
Mano Y, Kotani T, Ito M, et al. Maternal molecular hydrogen administration ameliorates rat fetal hippocampal damage caused by in utero ischemia-reperfusion. Free Radic Biol Med 2014; 69: 324-30.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.037] [PMID: 24509162]
[33]
Imai K, Kotani T, Tsuda H, et al. Neuroprotective potential of molecular hydrogen against perinatal brain injury via suppression of activated microglia. Free Radic Biol Med 2016; 91: 154-63.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.12.015] [PMID: 26709014]
[34]
Parker SJ, Kuzniewicz M, Niki H, Wu YW. Antenatal and intrapartum risk factors for hypoxic-ischemic encephalopathy in a US birth cohort. J Pediatr 2018; 203: 163-9.
[http://dx.doi.org/10.1016/j.jpeds.2018.08.028] [PMID: 30270166]
[35]
Johnson CT, Burd I, Raghunathan R, Northington FJ, Graham EM. Perinatal inflammation/infection and its association with correction of metabolic acidosis in hypoxic-ischemic encephalopathy. J Perinatol 2016; 36(6): 448-52.
[http://dx.doi.org/10.1038/jp.2015.221] [PMID: 26796123]
[36]
Leffler CW, Mirro R, Shanklin DR, Armstead WM, Shibata M. Light/dye microvascular injury selectively eliminates hypercapniainduced pial arteriolar dilation in newborn pigs. Am J Physiol - Hear Circ Physiol 1994; 266: 623-30.
[37]
Busija DW, Bari F, Domoki F, Louis T. Mechanisms involved in the cerebrovascular dilator effects of N-methyl-d-aspartate in cerebral cortex. Brain Res Brain Res Rev 2007; 56(1): 89-100.
[http://dx.doi.org/10.1016/j.brainresrev.2007.05.011] [PMID: 17716743]
[38]
Leffler CW, Busija DW, Armstead WM, Mirro R, Beasley DG. Ischemia alters cerebral vascular responses to hypercapnia and acetylcholine in piglets. Pediatr Res 1989; 25(2): 180-3.
[http://dx.doi.org/10.1203/00006450-198902000-00020] [PMID: 2919133]
[39]
Busija DW, Meng W, Bari F, et al. Effects of ischemia on cerebrovascular responses to N-methyl-D-aspartate in piglets. Am J Physiol - Hear Circ Physiol 1996; 270: 1225-30.
[40]
Domoki F, Kis B, Nagy K, Farkas E, Busija DW, Bari F. Diazoxide preserves hypercapnia-induced arteriolar vasodilation after global cerebral ischemia in piglets Am J Physiol - Hear Circ Physiol 2005; 289: 368-73.
[http://dx.doi.org/10.1152/ajpheart.00887.2004]
[41]
Domoki F, Perciaccante JV, Veltkamp R, Bari F, Busija DW. Mitochondrial potassium channel opener diazoxide preserves neuronal-vascular function after cerebral ischemia in newborn pigs. Stroke 1999; 30(12): 2713-8.
[http://dx.doi.org/10.1161/01.STR.30.12.2713] [PMID: 10583002]
[42]
Lenti L, Zimmermann A, Kis D, et al. PACAP and VIP differentially preserve neurovascular reactivity after global cerebral ischemia in newborn pigs. Brain Res 2009; 1283: 50-7.
[http://dx.doi.org/10.1016/j.brainres.2009.06.021] [PMID: 19538945]
[43]
Shankaran S. The postnatal management of the asphyxiated term infant. Clin Perinatol 2002; 29(4): 675-92.
[http://dx.doi.org/10.1016/S0095-5108(02)00056-8] [PMID: 12516741]
[44]
Csekő AJ, Bangó M, Lakatos P, Kárdási J, Pusztai L, Szabó M. Accuracy of amplitude-integrated electroencephalography in the prediction of neurodevelopmental outcome in asphyxiated infants receiving hypothermia treatment. Acta Paediatr 2013; 102(7): 707-11.
[http://dx.doi.org/10.1111/apa.12226] [PMID: 23586497]
[45]
Domoki F, Zölei-Szénási D, Oláh O, et al. Comparison of cerebrocortical microvascular effects of different hypoxic-ischemic insults in piglets: a laser-speckle imaging study. J Physiol Pharmacol 2014; 65(4): 551-8.
[PMID: 25179087]
[46]
Randall GC. The relationship of arterial blood pH and pCO2 to the viability of the newborn piglet. Can J Comp Med 1971; 35(2): 141-6.
[PMID: 4253463]
[47]
Randall GCB. Studies on the effect of acute asphyxia on the fetal pig in utero. Biol Neonate 1979; 36(1-2): 63-9.
[http://dx.doi.org/10.1159/000241208] [PMID: 38863]
[48]
Pospelov AS, Puskarjov M, Kaila K, Voipio J. Endogenous brain-sparing responses in brain pH and PO2 in a rodent model of birth asphyxia. Acta Physiol (Oxf) 2020; 229(3)e13467
[http://dx.doi.org/10.1111/apha.13467] [PMID: 32174009]
[49]
Kattwinkel J, Perlman JM, Aziz K, et al. Part 15 - Neonatal resuscitation: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2010; 122(18)(Suppl. 3): S909-19.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.971119] [PMID: 20956231]
[50]
Rabi Y, Rabi D, Yee W. Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. Resuscitation 2007; 72(3): 353-63.
[http://dx.doi.org/10.1016/j.resuscitation.2006.06.134] [PMID: 17240032]
[51]
Aghadavod E, Nasri H. What are the molecular mechanisms of oxidant and antioxidant compounds? Ann Res Antioxid 2016; 1e10
[52]
Bari F, Errico RA, Louis TM, Busija DW. Differential effects of short-term hypoxia and hypercapnia on N-methyl-D-aspartate-induced cerebral vasodilatation in piglets. Stroke 1996; 27(9): 1634-9.
[http://dx.doi.org/10.1161/01.STR.27.9.1634] [PMID: 8784141]
[53]
Armstead WM, Mirro R, Busija DW, Leffler CW. Postischemic generation of superoxide anion by newborn pig brain Am J Physiol - Hear Circ Physiol 1988; 255: 403-3.
[http://dx.doi.org/10.1152/ajpheart.1988.255.2.H401]
[54]
Domoki F, Perciaccante JV, Puskar M, Bari F, Busija DW. Cyclooxygenase-2 inhibitor NS398 preserves neuronal function after hypoxia/ischemia in piglets. Neuroreport 2001; 12(18): 4065-8.
[http://dx.doi.org/10.1097/00001756-200112210-00041] [PMID: 11742239]
[55]
Oláh O, Németh I, Tóth-Szűki V, Bari F, Domoki F. Regional differences in the neuronal expression of cyclooxygenase-2 (COX-2) in the newborn pig brain. Acta Histochem Cytochem 2012; 45(3): 187-92.
[http://dx.doi.org/10.1267/ahc.11056] [PMID: 22829712]
[56]
Varga V, Németh J, Oláh O, et al. Molecular hydrogen alleviates asphyxia-induced neuronal cyclooxygenase-2 expression in newborn pigs. Acta Pharmacol Sin 2018; 39(8): 1273-83.
[http://dx.doi.org/10.1038/aps.2017.148] [PMID: 29565041]
[57]
Uzdensky AB. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 2019; 24(9-10): 687-702.
[http://dx.doi.org/10.1007/s10495-019-01556-6] [PMID: 31256300]
[58]
Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 2011; 13(3): 184-90.
[http://dx.doi.org/10.1038/ncb0311-184] [PMID: 21364565]
[59]
Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000; 403(6765): 98-103.
[http://dx.doi.org/10.1038/47513] [PMID: 10638761]
[60]
Wang P, Zhao M, Chen Z, et al. Hydrogen gas attenuates hypoxic-ischemic brain injury via regulation of the MAPK/HO-1/PGC-1a pathway in neonatal rats. Oxid Med Cell Longev 2020; 20206978784
[http://dx.doi.org/10.1155/2020/6978784] [PMID: 32104537]
[61]
Kovács V, Tóth-Szűki V, Németh J, Varga V, Remzső G, Domoki F. Active forms of Akt and ERK are dominant in the cerebral cortex of newborn pigs that are unaffected by asphyxia. Life Sci 2018; 192: 1-8.
[http://dx.doi.org/10.1016/j.lfs.2017.11.015] [PMID: 29138115]
[62]
Faulkner S, Bainbridge A, Kato T, et al. Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann Neurol 2011; 70(1): 133-50.
[http://dx.doi.org/10.1002/ana.22387] [PMID: 21674582]

© 2024 Bentham Science Publishers | Privacy Policy