Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Puerarin: A Review on the Pharmacological Activity, Chemical Properties and Pharmacokinetics of Main Isoflavonoid

Author(s): Oluwafemi Adeleke Ojo*, Adebola Busola Ojo, Charles Obiora Nwonuma, Oluwakemi Josephine Awakan, Rotdelmwa Filibus Maimako, Boluwatife Lawrence Afolabi and Odunayo Anthonia Taiwo

Volume 12, Issue 1, 2022

Published on: 05 November, 2020

Article ID: e160921187628 Pages: 10

DOI: 10.2174/2210315510999201105145149

Price: $65

Abstract

Conventional drugs, as means of alternative medicine, have been in use in the Asian and African nations and some developed countries for the treatment of ailments and cure of diseases. Objective: Puerarin, a naturally occurring isoflavone in numerous plants, is one of the conventional medication that possess anti-inflammatory and immunoregulatory properties for the treatment of cardiac illnesses, osteonecrosis, Parkinson’s disease, Alzheimer’s disease, and other circulatory conditions. Puerarin is extensively distributed in numerous organs including the kidney, mammary gland, femur, tibia, stomach, liver, pancreas, brain, and lungs, but at a low rate because of its poor availability. However, when co-administered with compounds like gastrodin that can convey it into the cell, it shows a wide range of pharmacological properties, including antioxidant, antidiabetic, antimicrobial, antiviral, anti-inflammatory, anticancer, anti-Alzheimer’s, hepatoprotective, and neuroprotective activity. The biotransformation process of puerarin showed that it is well metabolized with daidzein, being the main hydrolyzed product. Puerarin is well tolerated in the body with a dosage of up to 250 mg/kg per day, does not initiate any toxic side effects but rather shows a wide range of beneficial and pharmacological properties.

Keywords: Puerarin, isoflavone, pharmacokinetics, pharmacological properties, toxicity, chemical properties, Alzheimer’s disease.

Graphical Abstract
[1]
Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils: A review. Food Chem. Toxicol., 2008, 46(2), 446-475.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[2]
Shakya, A.K. Medicinal plants: Future source of new drugs. Int. J. Herb. Med., 2016, 4(4), 59-64.
[3]
Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol., 2005, 100(1-2), 80-84.
[http://dx.doi.org/10.1016/j.jep.2005.04.025] [PMID: 15964727]
[4]
Naghibi, F.; Esmaeili, S.; Abdullah, N.R.; Nateghpour, M.; Taghvai, M.; Kamkar, S.; Mosaddegh, M. In vitro and in vivo antimalarial evaluations of myrtle extract, a plant traditionally used for treatment of parasitic disorders. Biomed. Res. Int., 2013.
[5]
Lemma, M.T.; Ahmed, A.M.; Elhady, M.T.; Ngo, H.T.; Vu, T.L-H.; Sang, T.K.; Campos-Alberto, E.; Sayed, A.; Mizukami, S.; Na-Bangchang, K.; Huy, N.T.; Hirayama, K.; Karbwang, J. Medicinal plants for in vitro antiplasmodial activities: A systematic review of literature. Parasitol. Int., 2017, 66(6), 713-720.
[http://dx.doi.org/10.1016/j.parint.2017.09.002] [PMID: 28890153]
[6]
Batiha, G.E.S.; Beshbishy, A.M.; Tayebwa, D.S.; Adeyemi, O.S.; Shaheen, H.; Yokoyama, N.; Igarashi, I. The effects of trans-chalcone and chalcone 4 hydrate on the growth of Babesia and Theileria. PLoS Negl. Trop. Dis., 2019, 13(5), e0007030.
[http://dx.doi.org/10.1371/journal.pntd.0007030] [PMID: 31125333]
[7]
Beshbishy, A.M.; Batiha, G.E.; Yokoyama, N.; Igarashi, I. Ellagic acid microspheres restrict the growth of Babesia and Theileria in vitro and Babesia microti in vivo. Parasit. Vectors, 2019, 12(1), 269.
[http://dx.doi.org/10.1186/s13071-019-3520-x] [PMID: 31138282]
[8]
Sulaiman, F.A.; Nafiu, M.O.; Yusuf, B.O.; Muritala, H.F.; Adeyemi, S.B.; Omar, S.A.; Dosumu, K.A.; Adeoti, Z.J.; Adegbesan, O.A.; Busari, B.O.; Otohinoyi, D.A. The GC-MS fingerprints of Nicotiana tabacum L. extract and propensity for renal impairment and modulation of serum triglycerides in Wistar rats. J. Pharm. Pharmacogn. Res., 2020, 8(3), 191-200.
[9]
Batiha, G.E.; Alqahtani, A.; Ojo, O.A.; Shaheen, H.M.; Wasef, L.; Elzeiny, M.; Ismail, M.; Shalaby, M.; Murata, T.; Zaragoza-Bastida, A.; Rivero-Perez, N.; Magdy Beshbishy, A.; Kasozi, K.I.; Jeandet, P.; Hetta, H.F. Biological properties, bioactive constituents, and pharmacokinetics of some capsicum spp. and capsaicinoids. Int. J. Mol. Sci., 2020, 21(15), 5179.
[http://dx.doi.org/10.3390/ijms21155179] [PMID: 32707790]
[10]
Sridharan, K.; Mohan, R.; Ramaratnam, S.; Panneerselvam, D. Ayurvedic treatments for diabetes mellitus. Cochrane Database Syst. Rev., 2011, 12, CD008288.
[PMID: 22161426]
[11]
Wang, Z.Y.; Liu, J.G.; Li, H.; Yang, H.M. Pharmacological effects of active components of Chinese herbal medicine in the treatment of Alzheimer’s disease: A Review. Am. J. Chin. Med., 2016, 44(8), 1525-1541.
[http://dx.doi.org/10.1142/S0192415X16500853] [PMID: 27848250]
[12]
Pang, B.; Lian, F.M.; Zhao, X.Y. Prevention of type 2 diabetes with the traditional Chinese patent medicine: A systematic review and meta-analysis. Diabetes Res. Clin. Pract., 2017, 131, 242-259.
[13]
Li, G.Q.; Kam, A.; Wong, K.H.; Zhou, X.; Omar, E.A.; Alqahtani, A.; Li, K.M.; Razmovski-Naumovski, V.; Chan, K. Herbal medicines for the management of diabetes. Adv. Exp. Med. Biol., 2012, 771, 396-413.
[http://dx.doi.org/10.1007/978-1-4614-5441-0_28] [PMID: 23393692]
[14]
Vallianou, N.G.; Evangelopoulos, A.; Kazazis, C. Resveratrol and diabetes. Rev. Diabet. Stud., 2013, 10(4), 236-242.
[http://dx.doi.org/10.1900/RDS.2013.10.236] [PMID: 24841877]
[15]
Nabavi, S.F.; Thiagarajan, R.; Rastrelli, L.; Daglia, M.; Sobarzo-Sánchez, E.; Alinezhad, H.; Nabavi, S.M. Curcumin: A natural product for diabetes and its complications. Curr. Top. Med. Chem., 2015, 15(23), 2445-2455.
[http://dx.doi.org/10.2174/1568026615666150619142519] [PMID: 26088351]
[16]
Zan, Y.; Kuai, C.X.; Qiu, Z.X.; Huang, F. Berberine ameliorates diabetic neuropathy: TRPV1 modulation by PKC pathway. Am. J. Chin. Med., 2017, 45(8), 1709-1723.
[http://dx.doi.org/10.1142/S0192415X17500926] [PMID: 29121795]
[17]
Zhang, Z.; Lam, T.N.; Zuo, Z. Radix Puerariae: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol., 2013, 53(8), 787-811.
[http://dx.doi.org/10.1002/jcph.96] [PMID: 23677886]
[18]
Zhou, Y.X.; Zhang, H.; Peng, C. Puerarin: A review of pharmacological effects. Phytother. Res., 2014, 28(7), 961-975.
[http://dx.doi.org/10.1002/ptr.5083] [PMID: 24339367]
[19]
Park, K.H.; Gu, D.R.; Jin, S.H.; Yoon, C.S.; Ko, W.; Kim, Y.C.; Lee, S.H. Pueraria lobate inhibits RANKL-mediated osteoclastogenesis via downregulation of CREB/PGC1beta/c-Fos/NFATc1 signaling. Am. J. Chin. Med., 2017, 45(8), 1725-1744.
[http://dx.doi.org/10.1142/S0192415X17500938] [PMID: 29121799]
[20]
Tan, C.; Wang, A.; Liu, C.; Li, Y.; Shi, Y.; Zhou, M.S. Puerarin improves vascular insulin resistance and cardiovascular remodeling in salt-sensitive hypertension. Am. J. Chin. Med., 2017, 45(6), 1169-1184.
[http://dx.doi.org/10.1142/S0192415X17500641] [PMID: 28830209]
[21]
Cao, X.; Tian, Y.; Zhang, T.; Li, X.; Ito, Y. Separation and purification of isoflavones from Pueraria lobata by high-speed counter-current chromatography. J. Chromatogr. A, 1999, 855(2), 709-713.
[http://dx.doi.org/10.1016/S0021-9673(99)00715-3] [PMID: 10519106]
[22]
He, X.; Tan, T.; Xu, B.; Janson, J.C. Separation and purification of puerarin using beta-cyclodextrin-coupled agarose gel media. J. Chromatogr. A., 2004, 1022(1-2), 77-82.
[http://dx.doi.org/10.1016/j.chroma.2003.09.045] [PMID: 14753773]
[23]
He, X.; Tan, T.; Janson, J.C. Purification of the isoflavonoid puerarin by adsorption chromatography on cross-linked 12% agarose. J. Chromatogr. A., 2004, 1057(1-2), 95-100.
[http://dx.doi.org/10.1016/j.chroma.2004.09.068] [PMID: 15584227]
[24]
Fang, C.; Wan, X.; Tan, H.; Jiang, C. Separation and determination of isoflavonoids in several kudzu samples by high-performance capillary electrophoresis (HPCE). Anal. Envi. And Cult. Herit. Chem., 2006, 96(1-2), 117-124.
[http://dx.doi.org/10.1002/adic.200690002] [PMID: 16734027]
[25]
Pan, J.; Yuan, C.; Dai, Y. Isolation and purification of puerarin from puerarin extractive by chelate complex chromatography. Se Pu, 2006, 24(5), 482-485.
[PMID: 17165543]
[26]
Lv, Y.; Hughes, T.C.; Hao, X.; Mei, D.; Tan, T. Preparation of monomeric and polymeric β-cyclodextrin functionalized monoliths for rapid isolation and purification of puerarin from Radix puerariae. J. Sep. Sci., 2011, 34(16-17), 2131-2137.
[http://dx.doi.org/10.1002/jssc.201100282] [PMID: 21766485]
[27]
Jiang, L.; Dai, J.; Huang, Z.; Du, Q.; Lin, J.; Wang, Y. Simultaneous determination of gastrodin and puerarin in rat plasma by HPLC and the application to their interaction on pharmacokinetics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 915-916, 8-12.
[http://dx.doi.org/10.1016/j.jchromb.2012.12.011] [PMID: 23314488]
[28]
Maji, A.K.; Banerjee, D.; Maity, N.; Banerji, P. A validated RP-HPLC-UV method for quantitative determination of puerarin in Pueraria tuberosa DC tuber extract. Pharm. Methods., 2012, 3(2), 79-79-83.
[http://dx.doi.org/10.4103/2229-4708.103879]
[29]
Han, S. Determination of puerarin by capillary electrophoresis with chemiluminescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(14-15), 1591-1594.
[http://dx.doi.org/10.1016/j.jchromb.2009.03.023] [PMID: 19342316]
[30]
Liu, L.; Feng, F.; Shuang, S.; Bai, Y.; Choi, M.M. Determination of puerarin in pharmaceutical and biological samples by capillary zone electrophoresis with UV detection. Talanta, 2012, 91, 83-87.
[http://dx.doi.org/10.1016/j.talanta.2012.01.022] [PMID: 22365684]
[31]
Yang, R.; Wang, Q.; Zeng, H.; Qin, Z.; Li, J.; Qu, L. Determination of puerarin in biological samples and its application to a pharmacokinetic study by flow-injection chemiluminescence. Luminescence, 2011, 26(5), 368-373.
[http://dx.doi.org/10.1002/bio.1281] [PMID: 21547999]
[32]
Udomsin, O.; Krittanai, S.; Kitisripanya, T.; Tanaka, H.; Putalun, W. A new highly selective and specific anti-puerarin polyclonal antibody for determination of puerarin using a mannich reaction hapten conjugate. Pharmacogn. Mag., 2018, 13(4), S845-S851.
[PMID: 29491643]
[33]
Hsiang, C.S.; Yang, Y.L.; Zhang, W.G.; Zhu, X.Y. Pharmacokinetics of puerarin - determination of its plasma concentration by spectrofluorometry. Acta Acad. Med. Sin., 1981, 3(Suppl. 1), 48-51.
[PMID: 6459877]
[34]
Jin, X.L.; Zhu, X.Y. Pharmacokinetics of puerarin in rats, rabbits, and dogs. Acta Pharmacol. Sin., 1992, 13(3), 284-288.
[PMID: 1442117]
[35]
Prasain, J.K.; Jones, K.; Brissie, N.; Moore, R.; Wyss, J.M.; Barnes, S. Identification of puerarin and its metabolites in rats by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem., 2004, 52(12), 3708-3712.
[http://dx.doi.org/10.1021/jf040037t] [PMID: 15186086]
[36]
Wang, D.; Liu, C.S.; Lv, J.; Lv, Y.I.; Tong, W.H.; Hu, J.H.; Shi, L.F. Automated on-line microdialysis sampling coupled with HPLC for synchronous determination of puerarin in subcutaneous tissue and plasma following topical administration. Clin. Lab., 2015, 61(9), 1297-1302.
[http://dx.doi.org/10.7754/Clin.Lab.2015.150139] [PMID: 26554250]
[37]
Kong, H.; Wang, X.; Shi, R.; Zhao, Y.; Cheng, J.; Yan, X.; Liu, X.; Wang, Y.; Zhang, M.; Wang, Q.; Qu, H. Pharmacokinetics and tissue distribution kinetics of puerarin in rats using indirect competitive ELISA. Molecules, 2017, 22(6), 939.
[http://dx.doi.org/10.3390/molecules22060939] [PMID: 28587251]
[38]
Anukunwithaya, T.; Poo, P.; Hunsakunachai, N.; Rodsiri, R.; Malaivijitnond, S.; Khemawoot, P. Absolute oral bioavailability and disposition kinetics of puerarin in female rats. BMC Pharmacol. Toxicol., 2018, 19(1), 25.
[http://dx.doi.org/10.1186/s40360-018-0216-3] [PMID: 29801513]
[39]
Cao, L.; Pu, J.; Cao, Q.R.; Chen, B.W.; Lee, B.J.; Cui, J.H. Pharmacokinetics of puerarin in pregnant rats at different stages of gestation after oral administration. Fitoterapia, 2013, 86, 202-207.
[http://dx.doi.org/10.1016/j.fitote.2013.03.004] [PMID: 23500385]
[40]
Li, P.; Bai, J.; Dong, B.; Lu, Y.; Zhang, S.; Guo, S.; Tan, N.; Zhao, M.; Du, S.; Cao, P. In vivo pharmacokinetics of puerarin via different drug administration routes based on middle cerebral artery occlusion model. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(4), 719-727.
[http://dx.doi.org/10.1007/s13318-016-0388-4] [PMID: 27928655]
[41]
Jin, X.L.; Cheng, G.F.; Zhu, X. Pharmacokinetics of puerarin in healthy volunteers. Zhongguo Lin Chuang Yao Li Xue Za Zhi, 1991, 7, 115-118.
[42]
Wang, Q.; Li, X.; Dai, S.; Ou, L.; Sun, X.; Zhu, B.; Chen, F.; Shang, M.; Song, H. Quantification of puerarin in plasma by on-line solid-phase extraction column switching liquid chromatography-tandem mass spectrometry and its applications to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 863(1), 55-63.
[http://dx.doi.org/10.1016/j.jchromb.2007.12.023] [PMID: 18242154]
[43]
Liu, G.; Liu, Z.; Yuan, S. Recent advances in methods of puerarin biotransformation. Mini Rev. Med. Chem., 2016, 16(17), 1392-1402.
[http://dx.doi.org/10.2174/1389557516666160505114456] [PMID: 27145856]
[44]
Zhang, Y.F.; Han, L.W.; He, D.Y.; Wang, Z.; Li, X.Z.; Ni, J. In vivo and in vitro evaluation of absorption characteristics of puerarin by gastrointestinal track administration. Chin. Pharmaceutic, 2010, J(45), 5..
[45]
Prasain, J.K.; Peng, N.; Moore, R.; Arabshahi, A.; Barnes, S.; Wyss, J.M. Tissue distribution of puerarin and its conjugated metabolites in rats assessed by liquid chromatography-tandem mass spectrometry. Phytomedicine, 2009, 16(1), 65-71.
[http://dx.doi.org/10.1016/j.phymed.2008.09.004] [PMID: 19027277]
[46]
Shang, Z.; Xin, Q.; Zhao, W.; Wang, Z.; Li, Q.; Zhang, J.; Cong, W. Rapid profiling and identification of puerarin metabolites in rat urine and plasma after oral administration by UHPLC-LTQ-Orbitrap mass spectrometer. J. Chromatogr. A, 2017, 1068-1069, 180-192.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.038] [PMID: 29073480]
[47]
Li, H.Z.; Chen, W.N.X.; Lv, X.R.; Li, F.J.; Wang, Y.S. Puerarin’s toxicity study and safety experiment. J. Changwei Med. Coll., 1985, 7, 29-42.
[48]
Hwang, Y.P.; Choi, C.Y.; Chung, Y.C.; Jeon, S.S.; Jeong, H.G. Protective effects of puerarin on carbon tetrachloride-induced hepatotoxicity. Arch. Pharm. Res., 2007, 30(10), 1309-1317.
[http://dx.doi.org/10.1007/BF02980272] [PMID: 18038910]
[49]
Lian, D.; Yuan, H.; Yin, X.; Wu, Y.; He, R.; Huang, Y.; Chen, Y. Puerarin inhibits hyperglycemia-induced inter-endothelial junction through suppressing endothelial Nlrp-3 inflammasome activation via ROS-dependent oxidative pathway. Phytomedicine, 2019, 55, 310-319.
[http://dx.doi.org/10.1016/j.phymed.2018.10.013] [PMID: 30385134]
[50]
Li, X.; Cai, W.; Lee, K.; Liu, B.; Deng, Y.; Chen, Y.; Zhang, X.; He, J.C.; Zhong, Y. Puerarin attenuates diabetic kidney injury through the suppression of NOX4 expression in podocytes. Sci. Rep., 2017, 7(1), 1-11.
[http://dx.doi.org/10.1038/s41598-017-17925-7] [PMID: 28127051]
[51]
Rietjens, I.M.C.M.; Louisse, J.; Beekmann, K. The potential health effects of dietary phytoestrogens. Br. J. Pharmacol., 2017, 174(11), 1263-1280.
[http://dx.doi.org/10.1111/bph.13622] [PMID: 27723080]
[52]
Chen, F.; Zhang, H.Q.; Zhu, J.; Liu, K.Y.; Cheng, H.; Li, G.L.; Xu, S.; Lv, W.H.; Xie, Z.G. Puerarin enhances superoxide dismutase activity and inhibits RAGE and VEGF expression in retinas of STZ-induced early diabetic rats. Asian Pac. J. Trop. Med., 2012, 5(11), 891-896.
[http://dx.doi.org/10.1016/S1995-7645(12)60166-7] [PMID: 23146804]
[53]
Cai, Y.; Zhang, X.; Xu, X.; Yu, Y. Effects of puerarin on the retina and STAT3 expression in diabetic rats. Exp. Ther. Med., 2017, 14(6), 5480-5484.
[http://dx.doi.org/10.3892/etm.2017.5203] [PMID: 29285079]
[54]
Lv, B.; Huo, F.; Dang, X.; Xu, Z.; Chen, T.; Zhang, T.; Yang, X. Puerarin attenuates N-Methyl-D-aspartic acid-induced apoptosis and retinal ganglion cell damage through the JNK/p38 MAPK pathway. J. Glaucoma, 2016, 25(9), e792-e801.
[http://dx.doi.org/10.1097/IJG.0000000000000505] [PMID: 27552519]
[55]
Hao, L.N.; Zhang, Y.Q.; Shen, Y.H.; Wang, Z.Y.; Wang, Y.H. Inducible nitric oxide synthase and Fas/FasL with C3 expression of mouse retinal pigment epithelial cells in response to stimulation by peroxynitrite and antagonism of puerarin. Chin. Med. J. (Engl.), 2011, 124(16), 2522-2529.
[PMID: 21933599]
[56]
Wang, K.; Zhu, X.; Zhang, K.; Yao, Y.; Zhuang, M.; Tan, C.; Zhou, F.; Zhu, L. Puerarin inhibits amyloid beta-induced NLRP3 inflammasome activation in retinal pigment epithelial cells reticulum stresses. Exp. Cell Res., 2017, 357(2), 335-340.
[http://dx.doi.org/10.1016/j.yexcr.2017.05.030] [PMID: 28583762]
[57]
Hao, L.N.; Wang, M.; Ma, J.L.; Yang, T. Puerarin decreases apoptosis of retinal pigment epithelial cells in diabetic rats by reducing peroxynitrite level and iNOS expression. Sheng Li Xue Bao:Acta physiologica Sinica, 2012, 64(2), 199-206.
[58]
Meng, F.; Liu, R.; Bai, H.; Liu, B.W.; Liu, Y. Inhibitory effect of quercetin, rutin and puerarin on HDL oxidation induced by Cu2+. Sichuan Da Xue Xue Bao Yi Xue Ban, 2004, 35(6), 836-838.
[PMID: 15573768]
[59]
Wu, Y.; Xue, B.; Li, X.; Liu, H. Puerarin prevents high glucose-induced apoptosis of Schwann cells by inhibiting oxidative stress. Neural Regen. Res., 2012, 7(33), 2583-2591.
[PMID: 25368634]
[60]
Zhou, X.; Bai, C.; Sun, X.; Gong, X.; Yang, Y.; Chen, C.; Shan, G.; Yao, Q. Puerarin attenuates renal fibrosis by reducing oxidative stress induced-epithelial cell apoptosis via MAPK signal pathways in vivo and in vitro. Ren. Fail., 2017, 39(1), 423-431.
[http://dx.doi.org/10.1080/0886022X.2017.1305409] [PMID: 28335679]
[61]
Kim, J.; Kim, K.M.; Kim, C.S.; Sohn, E.; Lee, Y.M.; Jo, K.; Kim, J.S. Puerarin inhibits the retinal pericyte apoptosis induced by advanced glycation end products in vitro and in vivo by inhibiting NADPH oxidase-related oxidative stress. Free Radic. Biol. Med., 2012, 53(2), 357-365.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.04.030] [PMID: 22609359]
[62]
Bacanlı, M.; Başaran, A.A.; Başaran, N. The antioxidant, cytotoxic, and antigenotoxic effects of galangin, puerarin, and ursolic acid in mammalian cells. Drug Chem. Toxicol., 2017, 40(3), 256-262.
[http://dx.doi.org/10.1080/01480545.2016.1209680] [PMID: 27461151]
[63]
Bo, J.; Ming, B.Y.; Gang, L.Z.; Lei, C.; Jia, A.L. Protection by puerarin against MPP+-induced neurotoxicity in PC12 cells mediated by inhibiting mitochondrial dysfunction and caspase-3-like activation. Neurosci., 2005, 53(2), 183-188.
[http://dx.doi.org/10.1016/j.neures.2005.06.014] [PMID: 16112764]
[64]
Zhang, Q.; Huang, W.D.; Lv, X.Y.; Yang, Y.M. Puerarin protects differentiated PC12 cells from H2O2 induced apoptosis through the PI3K/Akt signalling pathway. Cell Biol. Int., 2012, 36(5), 419-426.
[http://dx.doi.org/10.1042/CBI20100900] [PMID: 22126839]
[65]
Cheng, Y.; Leng, W.; Zhang, J. Protective effect of puerarin against oxidative stress injury of neural cells and related mechanisms. Med. Sci. Monit., 2016, 22, 1244-1249.
[http://dx.doi.org/10.12659/MSM.896058] [PMID: 27074962]
[66]
Zhang, X.; Xiong, J.; Liu, S.; Wang, L.; Huang, J.; Liu, L.; Yang, J.; Zhang, G.; Guo, K.; Zhang, Z.; Wu, P.; Wang, D.; Lin, Z.; Xiong, N.; Wang, T. Puerarin protects dopaminergic neurons in Parkinson’s disease models. Neuroscience, 2014, 280, 88-98.
[http://dx.doi.org/10.1016/j.neuroscience.2014.08.052] [PMID: 25218963]
[67]
Lee, O.H.; Seo, D.H.; Park, C.S.; Kim, Y.C. Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells. Biofactors, 2010, 36(6), 459-467.
[http://dx.doi.org/10.1002/biof.119] [PMID: 20806284]
[68]
Inoguchi, T.; Nawata, H. NAD(P)H oxidase activation: a potential target mechanism for diabetic vascular complications, progressive beta-cell dysfunction and metabolic syndrome. Curr. Drug Targets, 2005, 6(4), 495-501.
[http://dx.doi.org/10.2174/1389450054021927] [PMID: 16026268]
[69]
Kowluru, A.; Kowluru, R.A. Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes. Biochem. Pharmacol., 2014, 88(3), 275-283.
[http://dx.doi.org/10.1016/j.bcp.2014.01.017] [PMID: 24462914]
[70]
Teshima, Y.; Takahashi, N.; Nishio, S.; Saito, S.; Kondo, H.; Fukui, A.; Aoki, K.; Yufu, K.; Nakagawa, M.; Saikawa, T. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ. J., 2013, 78(2), 300-306.
[PMID: 24334638]
[71]
Hansen, S.S.; Aasum, E.; Hafstad, A.D. The role of NADPH oxidases in diabetic cardiomyopathy. Biochim. Biophys. Acta, 2018, 1864(5 Pt B), 1908-1913.
[http://dx.doi.org/10.1016/j.bbadis.2017.07.025] [PMID: 28754449]
[72]
Hsu, F.L.; Liu, I.M.; Kuo, D.H.; Chen, W.C.; Su, H.C.; Cheng, J.T. Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats. J. Nat. Prod., 2003, 66(6), 788-792.
[http://dx.doi.org/10.1021/np0203887] [PMID: 12828463]
[73]
Sun, W.; Zheng, X.Z.; Xu, Q.L.; Nian, H.; Liu, G.L. Effects of puerarin onADRP gene expression in fatty tissue of type 2 diabetes mellitus rats. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi, 2008, 33(16), 2026-2028.
[PMID: 19086646]
[74]
Li, Q.; Xiao, Y.; Gong, H.; Shen, D.; Zhu, F.; Wu, Q.; Chen, H.; Zhong, H. Effect of puerarin on the expression of extracellular matrix in rats with streptozotocin-induced diabetic nephropathy. Natl. Med. J. India, 2009, 22(1), 9-12.
[PMID: 19761151]
[75]
Shen, J.G.; Yao, M.F.; Chen, X.C.; Feng, Y.F.; Ye, Y.H.; Tong, Z.H. Effects of puerarin on receptor for advanced glycation end products in nephridial tissue of streptozotocin-induced diabetic rats. Mol. Biol. Rep., 2009, 36(8), 2229-2233.
[http://dx.doi.org/10.1007/s11033-008-9438-6] [PMID: 19125353]
[76]
Wu, K.; Liang, T.; Duan, X.; Xu, L.; Zhang, K.; Li, R. Anti-diabetic effects of puerarin, isolated from Pueraria lobata (Willd.), on streptozotocin-diabetogenic mice through promoting insulin expression and ameliorating metabolic function. Food Chem. Toxicol., 2013, 60, 341-347.
[http://dx.doi.org/10.1016/j.fct.2013.07.077] [PMID: 23927877]
[77]
Tanaka, T.; Yokota, Y.; Tang, H.; Zaima, N.; Moriyama, T.; Kawamura, Y. Anti-hyperglycemic effect of a kudzu (Pueraria lobata) vine extract in ovariectomized mice. J. Nutr. Sci. Vitaminol. (Tokyo), 2016, 62(5), 341-349.
[http://dx.doi.org/10.3177/jnsv.62.341] [PMID: 27928122]
[78]
Yang, L.; Yao, D.; Yang, H.; Wei, Y.; Peng, Y.; Ding, Y.; Shu, L. Puerarin protects pancreatic beta-cells in obese diabetic mice via activation of GLP-1R Signaling. Mol. Endocrinol., 2016, 30(3), 361-371.
[http://dx.doi.org/10.1210/me.2015-1213] [PMID: 26789107]
[79]
Chen, W.C.; Hayakawa, S.; Yamamoto, T.; Su, H.C.; Liu, I.M.; Cheng, J.T. Mediation of beta-endorphin by the isoflavone puerarin to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med., 2004, 70(2), 113-116.
[http://dx.doi.org/10.1055/s-2004-815486] [PMID: 14994187]
[80]
Li, Z.; Shangguan, Z.; Liu, Y.; Wang, J.; Li, X.; Yang, S.; Liu, S. Puerarin protects pancreatic β-cell survival via PI3K/Akt signaling pathway. J. Mol. Endocrinol., 2014, 53(1), 71-79.
[http://dx.doi.org/10.1530/JME-13-0302] [PMID: 24827001]
[81]
Shi, W.G.; Qu, L.; Wang, J.W. Study on interventing effect of puerarin on insulin resistance in patients with coronary heart disease. Chinese J. Integ. Trad. West. Med., 2002, 22(1), 21-24..
[82]
Xu, M.E.; Xiao, S.Z.; Sun, Y.H.; Zheng, X.X.; Ou-Yang, Y.; Guan, C. The study of anti-metabolic syndrome effect of puerarin in vitro. Life Sci., 2005, 77(25), 3183-3196.
[http://dx.doi.org/10.1016/j.lfs.2005.03.036] [PMID: 16005472]
[83]
Hwang, Y.P.; Kim, H.G.; Hien, T.T.; Jeong, M.H.; Jeong, T.C.; Jeong, H.G. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase. Toxicol. Appl. Pharmacol., 2011, 257(1), 48-58.
[http://dx.doi.org/10.1016/j.taap.2011.08.017] [PMID: 21884717]
[84]
Zhu, L.H.; Wang, L.; Wang, D.; Jiang, H.; Tang, Q.Z.; Yan, L.; Bian, Z.Y.; Wang, X.A.; Li, H. Puerarin attenuates high-glucose-and diabetes-induced vascular smooth muscle cell proliferation by blocking PKCbeta2/Rac1-dependent signaling. Free Radic. Biol. Med., 2010, 48(4), 471-482.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.10.040] [PMID: 19854265]
[85]
Cheng, W.; Wu, P.; Du, Y.; Wang, Y.; Zhou, N.; Ge, Y.; Yang, Z. Puerarin improves cardiac function through regulation of energy metabolism in Streptozotocin-Nicotinamide induced diabetic mice after myocardial infarction. Biochem. Biophys. Res. Commun., 2015, 463(4), 1108-1114.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.067]
[86]
Zhang, Y.; Wang, H.; Yu, L.; Chen, J. The Puerarin improves renal function in STZ-induced diabetic rats by attenuating eNOS expression. Ren. Fail., 2015, 37(4), 699-703.
[http://dx.doi.org/10.3109/0886022X.2015.1011500] [PMID: 25707518]
[87]
She, S.; Liu, W.; Li, T.; Hong, Y. Effects of puerarin in STZ-induced diabetic rats by oxidative stress and the TGF-β1/Smad2 pathway. Food Funct., 2014, 5(5), 944-950.
[http://dx.doi.org/10.1039/C3FO60565E] [PMID: 24595557]
[88]
Xiong, F.L.; Sun, X.H.; Gan, L.; Yang, X.L.; Xu, H.B. Puerarin protects rat pancreatic islets from damage by hydrogen peroxide. Eur. J. Pharmacol., 2006, 529(1-3), 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2005.10.024] [PMID: 16321378]
[89]
Xu, X.; Zheng, N.; Chen, Z.; Huang, W.; Liang, T.; Kuang, H. Puerarin, isolated from Pueraria lobata (Willd.), protects against diabetic nephropathy by attenuating oxidative stress. Gene, 2016, 591(2), 411-416.
[http://dx.doi.org/10.1016/j.gene.2016.06.032] [PMID: 27317894]
[90]
Zhong, Y.; Zhang, X.; Cai, X.; Wang, K.; Chen, Y.; Deng, Y. Puerarin attenuated early diabetic kidney injury through down-regulation of matrix metalloproteinase 9 in streptozotocin-induced diabetic rats. PLoS One, 2014, 9(1), e85690.
[http://dx.doi.org/10.1371/journal.pone.0085690] [PMID: 24454919]
[91]
Teng, Y.; Cui, H.; Yang, M.; Song, H.; Zhang, Q.; Su, Y.; Zheng, J. Protective effect of puerarin on diabetic retinopathy in rats. Mol. Biol. Rep., 2009, 36(5), 1129-1133.
[http://dx.doi.org/10.1007/s11033-008-9288-2] [PMID: 18587665]
[92]
Zhu, X.; Xie, M.; Wang, K.; Zhang, K.; Gao, Y.; Zhu, L.; Zhou, F. The effect of puerarin against IL-1β-mediated leukostasis and apoptosis in retinal capillary endothelial cells (TR-iBRB2). Mol. Vis., 2014, 20, 1815-1823.
[PMID: 25593509]
[93]
Xue, B.; Wang, L.; Zhang, Z.; Wang, R.; Xia, X.X.; Han, P.P.; Cao, L.J.; Liu, Y.H.; Sun, L.Q. Puerarin may protect against Schwann cell damage induced by glucose fluctuation. J. Nat. Med., 2017, 71(3), 472-481.
[http://dx.doi.org/10.1007/s11418-016-1067-0] [PMID: 28181078]
[94]
Liu, M.; Liao, K.; Yu, C.; Li, X.; Liu, S.; Yang, S. Puerarin alleviates neuropathic pain by inhibiting neuroinflammation in spinal cord. Mediators Inflamm., 2014, 2014.
[http://dx.doi.org/10.1155/2014/485927]
[95]
Tang, F.; Li, W.H.; Zhou, X.; Liu, Y.H.; Li, Z.; Tang, Y.S.; Kou, X.; Wang, S.D.; Bao, M.; Qu, L.D.; Li, M.; Li, B. Puerarin protects against Staphylococcus aureus induced injury of human alveolar epithelial A549 cells via downregulating alpha-hemolysin secretion. Microb. Drug Resist., 2014, 20(4), 357-363.
[http://dx.doi.org/10.1089/mdr.2013.0104] [PMID: 24372183]
[96]
Wong, K.H.; Li, G.Q.; Li, K.M.; Razmovski-Naumovski, V.; Chan, K. Kudzu root: Traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J. Ethnopharmacol., 2011, 134(3), 584-607.
[http://dx.doi.org/10.1016/j.jep.2011.02.001] [PMID: 21315814]
[97]
Ullah, M.Z.; Khan, A.U.; Afridi, R.; Rasheed, H.; Khalid, S.; Naveed, M.; Ali, H.; Kim, Y.S.; Khan, S. Attenuation of inflammatory pain by puerarin in animal model of inflammation through inhibition of pro-inflammatory mediators. Int. Immunopharmacol., 2018, 61, 306-316.
[http://dx.doi.org/10.1016/j.intimp.2018.05.034] [PMID: 29909234]
[98]
Ojo, OA.; Ojo, A.B.; Taiwo, O.A.; Oluba, O. Novel coronavirus (SARS-CoV-2) main protease: Molecular docking of puerarin as a potential inhibitor. Version, 2020, 1, 14.
[99]
Deng, H.F.; Wang, S.; Li, L.; Zhou, Q.; Guo, W.B.; Wang, X.L.; Liu, M.D.; Liu, K.; Xiao, X.Z. Puerarin prevents vascular endothelial injury through suppression of NF-κB activation in LPS-challenged human umbilical vein endothelial cells. Biomed. Pharmacother., 2018, 104, 261-267.
[http://dx.doi.org/10.1016/j.biopha.2018.05.038] [PMID: 29775893]
[100]
Fu, C.; Chen, B.; Jin, X.; Liu, X.; Wang, F.; Guo, R.; Chen, Z.; Zheng, H.; Wang, L.; Zhang, Y. Puerarin protects endothelial progenitor cells from damage of angiotensin II via activation of ERK1/2-Nrf2 signaling pathway. Mol. Med. Rep., 2018, 17(3), 3877-3883.
[PMID: 29359784]
[101]
Yu, Z.; Li, W. Induction of apoptosis by puerarin in colon cancer HT-29 cells. Cancer Lett., 2006, 238(1), 53-60.
[http://dx.doi.org/10.1016/j.canlet.2005.06.022] [PMID: 16055262]
[102]
Gan, M.; Yin, X. Puerarin induced in mantle cell lymphoma apoptosis and its possible mechanisms involving multi-signaling pathway. Cell Biochem. Biophys., 2015, 71(1), 367-373.
[http://dx.doi.org/10.1007/s12013-014-0207-y] [PMID: 25173778]
[103]
Zhang, W.G.; Liu, X.F.; Meng, K.W.; Hu, S.Y. Puerarin inhibits growth and induces apoptosis in SMMC-7721 hepatocellular carcinoma cells. Mol. Med. Rep., 2014, 10(5), 2752-2758.
[http://dx.doi.org/10.3892/mmr.2014.2512] [PMID: 25175767]
[104]
Lin, Y.J.; Hou, Y.C.; Lin, C.H.; Hsu, Y.A.; Sheu, J.J.; Lai, C.H.; Chen, B.H.; Lee Chao, P.D.; Wan, L.; Tsai, F.J. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells. Biochem. Biophys. Res. Commun., 2009, 378(4), 683-688.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.178] [PMID: 19013426]
[105]
Ojo, O.A.; Aruleba, R.T.; Adekiya, T.A.; Sibuyi, N.R.S.; Ojo, A.B.; Ajiboye, B.O.; Oyinloye, B.E.; Adeola, H.A.; Fadaka, A.O. Deciphering the interaction of puerarin with cancer macromolecules: An in silico investigation. J. Biomol. Struct. Dyn., 2020, 14, 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1819425] [PMID: 32924840]
[106]
Tang, Y.H.; Zhu, H.Q.; Zhang, Y.C.; Shao, H.M.; Ji, J.M.; Zhu, G.R.; Jiang, P.J.; Ji, O.; Shen, Q. Apoptosis of NB4 cells induced by flavonoids of puerarin in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2010, 18(2), 326-329.
[PMID: 20416161]
[107]
Hu, Y.; Li, X.; Lin, L.; Liang, S.; Yan, J. Puerarin inhibits non-small cell lung cancer cell growth via the induction of apoptosis. Oncol. Rep., 2018, 39(4), 1731-1738.
[http://dx.doi.org/10.3892/or.2018.6234] [PMID: 29393465]
[108]
Jiang, K.; Chen, H.; Tang, K.; Guan, W.; Zhou, H.; Guo, X.; Chen, Z.; Ye, Z.; Xu, H. Puerarin inhibits bladder cancer cell proliferation through the mTOR/p70S6K signaling pathway. Oncol. Lett., 2018, 15(1), 167-174.
[PMID: 29375709]
[109]
Peng, X.Y.; Qi, Z.H.; Chen, H.P. Study on the differentiation and apoptosis of HL-60 cell line induced by Puerarin. Hunan Yi Ke Da Xue Xuebao Bulletin Hunan Med. Uni., 2001, 26(2), 126-128.
[110]
Shao, H.M.; Tang, Y.H.; Jiang, P.J.; Zhu, H.Q.; Zhang, Y.C.; Ji, J.M.; Ji, O.; Shen, Q. Inhibitory effect of flavonoids of puerarin on proliferation of different human acute myeloid leukemia cell lines in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2010, 18(2), 296-299.
[PMID: 20416155]
[111]
Hao, L.N.; Zhang, Y.Q.; Shen, Y.H.; Wang, Z.Y.; Wang, Y.H.; Zhang, H.F.; He, S.Z. Effect of puerarin on retinal pigment epithelial cells apoptosis induced partly by peroxynitrite via Fas/FasL pathway. Int. J. Ophthalmol., 2010, 3(4), 283-287.
[PMID: 22553574]
[112]
Chen, F.; Liu, K.Y.; Xu, S.; Lu, W.H.; Chen, H.; Zhang, H.Q. Experiment effect of puerarin on retina in diabetic rats induced by streptozotocin and its mechanisms. Chin Pharmacol Bull., 2011, 27(9), 1279-1284.
[113]
Wang, K.; Zhu, X.; Zhang, K.; Wu, Z.; Sun, S.; Zhou, F.; Zhu, L. Neuroprotective effect of puerarin on glutamate-induced cytotoxicity in differentiated Y-79 cells via inhibition of ROS generation and Ca2+ influx. Int. J. Mol. Sci., 2016, 17(7), 1109.
[http://dx.doi.org/10.3390/ijms17071109]
[114]
Cengiz, N.; Kavak, S.; Güzel, A.; Ozbek, H.; Bektaş, H.; Him, A.; Erdoğan, E.; Balahoroğlu, R. Investigation of the hepatoprotective effects of Sesame (Sesamum indicum L.) in carbon tetrachloride-induced liver toxicity. J. Membr. Biol., 2013, 246(1), 1-6.
[http://dx.doi.org/10.1007/s00232-012-9494-7] [PMID: 22915054]
[115]
Cheng, Y.; Zhu, G.; Guan, Y.; Liu, Y.; Hu, Y.; Li, Q. Protective effects of puerarin against 1-methyl-4-phenylpyridinium-induced mitochondrial apoptotic death in differentiated SH-SY5Y cells. Zhongguo Zhongyao Zazhi, 2011, 36(9), 1222-1226.
[PMID: 21842654]
[116]
Zhu, G.; Wang, X.; Wu, S.; Li, Q. Involvement of activation of PI3K/Akt pathway in the protective effects of puerarin against MPP+-induced human neuroblastoma SH-SY5Y cell death. Neurochem. Int., 2012, 60(4), 400-408.
[http://dx.doi.org/10.1016/j.neuint.2012.01.003] [PMID: 22265823]
[117]
Cheng, Y.F.; Zhu, G.Q.; Wang, M.; Cheng, H.; Zhou, A.; Wang, N.; Fang, N.; Wang, X.C.; Xiao, X.Q.; Chen, Z.W.; Li, Q.L. Involvement of ubiquitin proteasome system in protective mechanisms of Puerarin to MPP(+)-elicited apoptosis. Neurosci. Res., 2009, 63(1), 52-58.
[http://dx.doi.org/10.1016/j.neures.2008.10.009] [PMID: 19022306]
[118]
Zhang, H.Y.; Hu, H.T.; Liu, Y.H.; Wang, H.Q.; Feng, G.F.; Chen, G.M. Effect of puerarin on PC12 cells apoptosis induced by Abeta25-35 in vitro. Zhong Yao Cai, 2008, 31(4), 543-546.
[PMID: 18661826]
[119]
Zhang, H.Y.; Liu, Y.H.; Wang, H.Q.; Xu, J.H.; Hu, H.T. Puerarin protects PC12 cells against beta-amyloid-induced cell injury. Cell Biol. Int., 2008, 32(10), 1230-1237.
[http://dx.doi.org/10.1016/j.cellbi.2008.07.006] [PMID: 18675923]
[120]
Xing, G.; Dong, M.; Li, X.; Zou, Y.; Fan, L.; Wang, X.; Cai, D.; Li, C.; Zhou, L.; Liu, J.; Niu, Y. Neuroprotective effects of puerarin against beta-amyloid-induced neurotoxicity in PC12 cells via a PI3K-dependent signaling pathway. Brain Res. Bull., 2011, 85(3-4), 212-218.
[http://dx.doi.org/10.1016/j.brainresbull.2011.03.024] [PMID: 21473901]
[121]
Zou, Y.; Hong, B.; Fan, L.; Zhou, L.; Liu, Y.; Wu, Q.; Zhang, X.; Dong, M. Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus: Involvement of the GSK-3β/Nrf2 signaling pathway. Free Radic. Res., 2013, 47(1), 55-63.
[http://dx.doi.org/10.3109/10715762.2012.742518] [PMID: 23088308]
[122]
Keyler, D.E.; Baker, J.I.; Lee, D.Y.; Overstreet, D.H.; Boucher, T.A.; Lenz, S.K. Toxicity study of an antidipsotropic Chinese herbal mixture in rats: NPI-028. J. Altern. Complement. Med., 2002, 8(2), 175-183.
[http://dx.doi.org/10.1089/107555302317371460] [PMID: 12006125]
[123]
Wen, B.Y.; Li, H.; Wang, L.; Wang, S.C. Metabolic kinetic of puerarin in beagle liver microsomal by HPLC-ESI-MS. Zhongguo Zhongyao Zazhi, 2008, 33(23), 2834-2837.
[PMID: 19260325]
[124]
Jung, H.R.; Kim, S.J.; Ham, S.H.; Cho, J.H.; Lee, Y.B.; Cho, H.Y. Simultaneous determination of puerarin and its active metabolite in human plasma by UPLC-MS/MS: Application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 971, 64-71.
[http://dx.doi.org/10.1016/j.jchromb.2014.09.015] [PMID: 25264914]
[125]
Yasuda, T.; Kano, Y.; Saito, K.; Ohsawa, K. Urinary and biliary metabolites of puerarin in rats. Biol. Pharm. Bull., 1995, 18(2), 300-303.
[http://dx.doi.org/10.1248/bpb.18.300] [PMID: 7742802]
[126]
von Ledebur, M.; Schmid, W. The micronucleus test. Methodological aspects. Mutat. Res., 1973, 19(1), 109-117.
[http://dx.doi.org/10.1016/0027-5107(73)90118-8] [PMID: 4792278]
[127]
Chung, H.J.; Chung, M.J.; Houng, S.; Jeun, J.; Kweon, D.; Choi, C.H.; Park, J.; Park, K.; Lee, S. Toxicological evaluation of the isoflavone puerarin and its glycosides. Eur. Food Res. Technol., 2009, 230(1), 145-153.
[http://dx.doi.org/10.1007/s00217-009-1156-3]
[128]
Chen, X.; Yi, L.; Song, S.; Wang, L.; Liang, Q.; Wang, Y.; Wu, Y.; Gao, Q. Puerarin attenuates palmitate-induced mitochondrial dysfunction, impaired mitophagy and inflammation in L6 myotubes. Life Sci., 2018, 206, 84-92.
[http://dx.doi.org/10.1016/j.lfs.2018.05.041] [PMID: 29802940]
[129]
Zhou, Y.; Song, X.; Dong, G. Effects of verapamil on the pharmacokinetics of puerarin in rats. Xenobiotica, 2019, 49(10), 1178-1182.
[http://dx.doi.org/10.1080/00498254.2018.1518552] [PMID: 30173622]
[130]
Su, H.F.; Lin, Q.; Wang, X.Y.; Fu, Y.; Gong, T.; Sun, X.; Zhang, Z.R. Absorptive interactions of concurrent oral administration of (+)-catechin and puerarin in rats and the underlying mechanisms. Acta Pharmacol. Sin., 2016, 37(4), 545-554.
[http://dx.doi.org/10.1038/aps.2015.164] [PMID: 26972494]
[131]
Zhang, Y.; Sun, W.; Pan, Y.; Li, T.; Yang, X.; Xu, R.; Qiu, X. Pharmacokinetics changes of ivabradine and N-desmethylivabradine after oral administration with puerarin in rats. Int. J. Clin. Exp. Med., 2016, 9(5), 8369-8374.
[132]
Zhang, L.; Du, S.Y.; Lu, Y.; Liu, C.; Wu, H.C.; Tian, Z.H.; Wang, M.; Yang, C. Puerarin transport across rat nasal epithelial cells and the influence of compatibility with peoniflorin and menthol. Drug Des. Devel. Ther., 2017, 11, 2581-2593.
[http://dx.doi.org/10.2147/DDDT.S143029] [PMID: 28919709]
[133]
Yang, B.; Du, S.; Lu, Y.; Jia, S.; Zhao, M.; Bai, J.; Li, P.; Wu, H. Influence of paeoniflorin and menthol on puerarin transport across MDCK and MDCK-MDR1 cells as blood-brain barrier in vitro model. J. Pharm. Pharmacol., 2018, 70(3), 349-360.
[http://dx.doi.org/10.1111/jphp.12853] [PMID: 29238980]
[134]
Zhao, Q.; Wang, Y.; Wang, H.; Feng, L. Effects of glycyrrhizin on the pharmacokinetics of puerarin in rats. Xenobiotica, 2018, 48(11), 1157-1163.
[http://dx.doi.org/10.1080/00498254.2017.1401155] [PMID: 29099639]
[135]
Liu, L.; Li, P.; Qiao, L.; Li, X. Effects of astragaloside IV on the pharmacokinetics of puerarin in rats. Xenobiotica, 2019, 49(10), 1173-1177.
[http://dx.doi.org/10.1080/00498254.2018.1480819] [PMID: 29790819]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy