Review Article

天然功能化多胺的合成及其生物活性研究进展

卷 28, 期 17, 2021

发表于: 02 November, 2020

页: [3406 - 3448] 页: 43

弟呕挨: 10.2174/0929867327666201102114544

价格: $65

Open Access Journals Promotions 2
摘要

近年来,越来越多的研究强调了多胺缀合物在所有生物和医学领域的重要性。本文就天然多胺及其衍生物的基础机制和开发应用等方面的研究进展作一综述。

关键词: 天然多胺、抗菌活性、毒素、海洋药物、抗感染药物、抗癌药物

[1]
Shah, P.; Swiatlo, E. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol., 2008, 68(1), 4-16.[http://dx.doi.org/10.1111/j.1365-2958.2008.06126.x] [PMID: 18405343]
[2]
Bienz, S.; Bisegger, P.; Guggisberg, A.; Hesse, M. Polyamine alkaloids. Nat. Prod. Rep., 2005, 22(5), 647-658.[http://dx.doi.org/10.1039/b413742f] [PMID: 16193161]
[3]
Huang, Y.; Pledgie, A.; Casero, R.A., Jr; Davidson, N.E. Molecular mechanisms of polyamine analogs in cancer cells. Anticancer Drugs, 2005, 16(3), 229-241.[http://dx.doi.org/10.1097/00001813-200503000-00002] [PMID: 15711175]
[4]
Wilson, D.; Boyle, G.M.; McIntyre, L.; Nolan, M.J.; Parsons, P.G.; Smith, J.J.; Tribolet, L.; Loukas, A.; Liddell, M.J.; Rash, L.D.; Daly, N.L.; Rash Lachlan, D. The aromatic head group of spider toxin polyamines influences toxicity to cancer cells. Toxins (Basel), 2017, 9(11), 9.[http://dx.doi.org/10.3390/toxins9110346] [PMID: 29077051]
[5]
Yerlikaya, A. Polyamines and S-adenosylmethionine decarboxylase. Turk Biyokim. Derg., 2004, 29, 208-214.
[6]
Hussain, S.S.; Ali, M.; Ahmad, M.; Siddique, K.H.M. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol. Adv., 2011, 29(3), 300-311.[http://dx.doi.org/10.1016/j.biotechadv.2011.01.003] [PMID: 21241790]
[7]
Patocka, J.; Kuehn, G. D. Natural polyamines and their biological consequence in mammals. Acta Med. (Hradec Kralove, Czech Rep.), 2000, 43(4), 119-124.[http://dx.doi.org/10.14712/18059694.2019.124] [PMID: 11294128]
[8]
Kuznetsov, V.V.; Radyukina, N.L.; Shevyakova, N.I. Polyamines and stress: biological roles, metabolism, and regulation. Russ. J. Plant Physiol., 2006, 53, 583-604.[http://dx.doi.org/10.1134/S1021443706050025]
[9]
Peulen, O.; Deloyer, P.; Deville, C.; Dandrifosse, G. Polyamines in gut inflammation and allergy. Curr. Med. Chem. Anti-Inflammatory Anti-Allergy Agents., 2004, 3(1), 1-8.[http://dx.doi.org/10.2174/1568014043483599]
[10]
Raymond, J.; Blankenship, R.E. Horizontal gene transfer in eukaryotic algal evolution. Proc. Natl. Acad. Sci. USA, 2003, 100(13), 7419-7420.[http://dx.doi.org/10.1073/pnas.1533212100] [PMID: 12810941]
[11]
Howarth, R.W. Nutrient limitation of net primary production in marine ecosystems. Annu. Rev. Ecol. Syst., 1988, 19, 89-110.[http://dx.doi.org/10.1146/annurev.es.19.110188.000513]
[12]
Armbrust, E.V. The life of diatoms in the world’s oceans. Nature, 2009, 459(7244), 185-192.[http://dx.doi.org/10.1038/nature08057] [PMID: 19444204]
[13]
Lu, X.Z.L.; Clevinger, C.; Liu, Q.; Hollibaugh, J.T.; Mou, X. Temporal dynamics and depth variations of dissolved free amino acids and polyamines in coastal seawater determined by high-performance liquid chromatography. Mar. Chem., 2014, 163, 36-44.[http://dx.doi.org/10.1016/j.marchem.2014.04.004]
[14]
Hamana, K.; Niitsu, M.; Hayashi, H. Occurrence of homospermidine and thermospermine as a cellular polyamine in unicellular chlorophyte and multicellular charophyte green algae. J. Gen. Appl. Microbiol., 2013, 59(4), 313-319.[http://dx.doi.org/10.2323/jgam.59.313] [PMID: 24005181]
[15]
Hosoya, R.; Hamana, K.; Niitsu, M.; Itoh, T. Polyamine analysis for chemotaxonomy of thermophilic eubacteria: Polyamine distribution profiles within the orders Aquificales, Thermotogales, Thermodesulfobacteriales, Thermales, Thermoanaerobacteriales, Clostridiales and Bacillales. J. Gen. Appl. Microbiol., 2004, 50(5), 271-287.[http://dx.doi.org/10.2323/jgam.50.271] [PMID: 15747232]
[16]
Kröger, N.; Deutzmann, R.; Bergsdorf, C.; Sumper, M. Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. USA, 2000, 97(26), 14133-14138.[http://dx.doi.org/10.1073/pnas.260496497] [PMID: 11106386]
[17]
Pawolski, D.; Heintze, C.; Mey, I.; Steinem, C.; Kröger, N. Reconstituting the formation of hierarchically porous silica patterns using diatom biomolecules. J. Struct. Biol., 2018, 204(1), 64-74.[http://dx.doi.org/10.1016/j.jsb.2018.07.005] [PMID: 30009877]
[18]
Sumper, M.; Brunner, E.; Lehmann, G. Biomineralization in diatoms: characterization of novel polyamines associated with silica. FEBS Lett., 2005, 579(17), 3765-3769.[http://dx.doi.org/10.1016/j.febslet.2005.06.001] [PMID: 15963992]
[19]
Burczyk, J.; Zych, M.; Ioannidis, N.E.; Kotzabasis, K. Polyamines in cell walls of chlorococcalean microalgae. Z. Natforsch. C J. Biosci., 2014, 69(1-2), 75-80.[http://dx.doi.org/10.5560/znc.2012-0215] [PMID: 24772826]
[20]
Casero, R.A.J.Jr.; Woster, P.M. Recent advances in the development of polyamine analogues as antitumor agents. J. Med. Chem., 2009, 52(15), 4551-4573.[http://dx.doi.org/10.1021/jm900187v] [PMID: 19534534]
[21]
Nowotarski, S.L.; Woster, P.M.; Casero, R.A.Jr. Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev. Mol. Med., 2013, 15, e3.[http://dx.doi.org/10.1017/erm.2013.3] [PMID: 23432971]
[22]
Grishin, E.V.; Volkova, T.M.; Arsen’ev, A.S.; Reshetova, O.S.; Onoprienko, V.V. Structural-functional characteristics of argiopine--the ion channel blockers from the spider Argiope lobata venom. Bioorg. Khim., 1986, 12(8), 1121-1124.[PMID: 2430580]
[23]
Nelson, J.K.; Frølund, S.U.; Tikhonov, D.B.; Kristensen, A.S.; Strømgaard, K. Synthesis and biological activity of argiotoxin 636 and analogues: selective antagonists for ionotropic glutamate receptors. Angew. Chem. Int. Ed. Engl., 2009, 48(17), 3087-3091.[http://dx.doi.org/10.1002/anie.200805426] [PMID: 19152392]
[24]
Adams, M.E.; Carney, R.L.; Enderlin, F.E.; Fu, E.T.; Jarema, M.A.; Li, J.P.; Miller, C.A.; Schooley, D.A.; Shapiro, M.J.; Venema, V.J. Structures and biological activities of three synaptic antagonists from orb weaver spider venom. Biochem. Biophys. Res. Commun., 1987, 148(2), 678-683.[http://dx.doi.org/10.1016/0006-291X(87)90930-2] [PMID: 3689366]
[25]
Shih, T.L.; Ruiz-Sanchez, J.; Mrozik, H. The total synthesis of argiopine (argiotoxin-636). Tetrahedron Lett., 1987, 28(48), 6015-6018.[http://dx.doi.org/10.1016/S0040-4039(00)96851-5]
[26]
Jasys, V.J.; Kelbaugh, P.R.; Nason, D.M.; Phillips, D.; Saccomano, N.A.; Volkmann, R.A. The total synthesis of argiotoxins 636, 659 and 673. Tetrahedron Lett., 1988, 29(48), 6223-6226.[http://dx.doi.org/10.1016/S0040-4039(00)82310-2]
[27]
Blagbrough, I.S.; Moya, E. Total synthesis of polyamine amide spider toxin argiotoxin-636 by a practical reductive alkylation strategy. Tetrahedron Lett., 1995, 36(51), 9393-9396.[http://dx.doi.org/10.1016/0040-4039(95)01994-S]
[28]
Budd, T.; Clinton, P.; Dell, A.; Duce, I.R.; Johnson, S.J.; Quicke, D.L.; Taylor, G.W.; Usherwood, P.N.; Usoh, G. Isolation and characterisation of glutamate receptor antagonists from venoms of orb-web spiders. Brain Res., 1988, 448(1), 30-39.[http://dx.doi.org/10.1016/0006-8993(88)91098-0] [PMID: 2839270]
[29]
Scott, R.H.; Thatcher, N.M.; Ayar, A.; Mitchell, S.J.; Pollock, J.; Gibson, M.T.; Duce, I.R.; Moya, E.; Blagbrough, I.S. Extracellular or intracellular application of argiotoxin-636 has inhibitory actions on membrane excitability and voltage-activated currents in cultured rat sensory neurones. Neuropharmacology, 1998, 37(12), 1563-1578.[http://dx.doi.org/10.1016/S0028-3908(98)00144-0] [PMID: 9886679]
[30]
Poulsen, M.H.; Lucas, S.; Bach, T.B.; Barslund, A.F.; Wenzler, C.; Jensen, C.B.; Kristensen, A.S.; Strømgaard, K. Structure-activity relationship studies of argiotoxins: selective and potent inhibitors of ionotropic glutamate receptors. J. Med. Chem., 2013, 56(3), 1171-1181.[http://dx.doi.org/10.1021/jm301602d] [PMID: 23320429]
[31]
Draguhn, A.; Jahn, W.; Witzemann, V. Argiotoxin636 inhibits NMDA-activated ion channels expressed in Xenopus oocytes. Neurosci. Lett., 1991, 132(2), 187-190.[http://dx.doi.org/10.1016/0304-3940(91)90298-8] [PMID: 1723790]
[32]
Ashe, J.H.; Cox, C.L.; Adams, M.E. Argiotoxin-636 blocks excitatory synaptic transmission in rat hippocampal CA1 pyramidal neurons. Brain Res., 1989, 480(1-2), 234-241.[http://dx.doi.org/10.1016/0006-8993(89)91587-4] [PMID: 2540876]
[33]
Herold, E.E.; Yaksh, T.L. Anesthesia and muscle relaxation with intrathecal injections of AR636 and AG489, two acylpolyamine spider toxins, in rat. Anesthesiology, 1992, 77(3), 507-512.[http://dx.doi.org/10.1097/00000542-199209000-00016] [PMID: 1519789]
[34]
Barslund, A.F.; Poulsen, M.H.; Bach, T.B.; Lucas, S.; Kristensen, A.S.; Strømgaard, K. Solid-phase synthesis and biological evaluation of Joro spider toxin-4 from Nephila clavata . J. Nat. Prod., 2011, 74(3), 483-486.[http://dx.doi.org/10.1021/np100746w] [PMID: 21188966]
[35]
Verdoni, M.; Roudaut, H.; De Pomyers, H.; Gigmes, D.; Bertin, D.; Luis, J.; Bengeloune, A.H.; Mabrouk, K. ArgTX-636, a polyamine isolated from spider venom: A novel class of melanogenesis inhibitors. Bioorg. Med. Chem., 2016, 24(22), 5685-5692.[http://dx.doi.org/10.1016/j.bmc.2016.08.023] [PMID: 27647371]
[36]
Tzouros, M.; Chesnov, S.; Bienz, S.; Hesse, M.; Bigler, L. New linear polyamine derivatives in spider venoms. Toxicon, 2005, 46(3), 350-354.[http://dx.doi.org/10.1016/j.toxicon.2005.04.018] [PMID: 15982700]
[37]
Tzouros, M.; Chesnov, S.; Bigler, L.; Bienz, S. A template approach for the characterization of linear polyamines and derivatives in spider venom. Eur. J. Mass Spectrom. (Chichester), 2013, 19(1), 57-69.[http://dx.doi.org/10.1255/ejms.1213] [PMID: 23841226]
[38]
Palma, M.S.; Nakajima, T. A natural combinatorial chemistry strategy in acylpolyamine toxins from nephilinae orb-web spiders. Toxin Rev., 2005, 24(2), 209-234.[http://dx.doi.org/10.1081/TXR-200057857]
[39]
Fukuyama, T.; Cheung, M.; Jow, C-K.; Hidai, Y.; Kan, T. 2,4-Dinitrobenzenesulfonamides: a simple and practical method for the preparation of a variety of secondary amines and diamines. Tetrahedron Lett., 1997, 38(33), 5831-5834.[http://dx.doi.org/10.1016/S0040-4039(97)01334-8]
[40]
Nihei, K.; Kato, M.J.; Yamane, T.; Palma, M.S.; Konno, K. An efficient and versatile synthesis of acylpolyamine spider toxins. Bioorg. Med. Chem. Lett., 2002, 12(3), 299-302.[http://dx.doi.org/10.1016/S0960-894X(01)00733-8] [PMID: 11814782]
[41]
Parks, T.N.; Mueller, A.L.; Artman, L.D.; Albensi, B.C.; Nemeth, E.F.; Jackson, H.; Jasys, V.J.; Saccomano, N.A.; Volkmann, R.A. Arylamine toxins from funnel-web spider ( Agelenopsis aperta ) venom antagonize N-methyl-D-aspartate receptor function in mammalian brain. J. Biol. Chem., 1991, 266(32), 21523-21529.[http://dx.doi.org/10.1016/S0021-9258(18)54670-6] [PMID: 1657970]
[42]
Quistad, G.B.; Suwanrumpha, S.; Jarema, M.A.; Shapiro, M.J.; Skinner, W.S.; Jamieson, G.C.; Lui, A.; Fu, E.W. Structures of paralytic acylpolyamines from the spider Agelenopsis aperta. Biochem. Biophys. Res. Commun., 1990, 169(1), 51-56.[http://dx.doi.org/10.1016/0006-291X(90)91431-Q] [PMID: 2350352]
[43]
Manov, N.; Tzouros, M.; Chesnov, S.; Bigler, L.; Bienz, S. Solid-phase synthesis of polyamine spider toxins and correlation with the natural products by HPLC-MS/MS. Helv. Chim. Acta, 2002, 85(9), 2827-2846.[http://dx.doi.org/10.1002/1522-2675(200209)85:9<2827::AID-HLCA2827>3.0.CO;2-5]
[44]
Kan, T.; Fukuyama, T. Ns strategies: a highly versatile synthetic method for amines. Chem. Commun. (Camb.), 2004, 21(4), 353-359.[http://dx.doi.org/10.1039/b311203a] [PMID: 14765207]
[45]
Jasys, V.J.; Kelbaugh, P.R.; Nason, D.M.; Phillips, D.; Rosnack, K.J.; Saccomano, N.A.; Stroh, J.G.; Volkmann, R.A.; Forman, J.T. Novel quaternary ammonium salt-containing polyamines from the Agelenopsis aperta funnel-web spider. J. Org. Chem., 1992, 57(6), 1814-1820.[http://dx.doi.org/10.1021/jo00032a039]
[46]
Toki, T.; Yasuhara, T.; Aramaki, Y.; Hashimoto, Y.; Shudo, K.; Kawai, N.; Nakajima, T. Molecular structures of spider toxins (JSTX-1, 2, 3 and 4) in the venom of Nephila clavata L. Koch. Jap. J. Sanit. Zool., 1990, 41(1), 9-14.[http://dx.doi.org/10.7601/mez.41.9]
[47]
Bruce, M.; Bukownik, R.; Eldefrawi, A.T.; Eldefrawi, M.E.; Goodnow, R.Jr.; Kallimopoulos, T.; Konno, K.; Nakanishi, K.; Niwa, M.; Usherwood, P.N.R. Structure-activity relationships of analogues of the wasp toxin philanthotoxin: non-competitive antagonists of quisqualate receptors. Toxicon, 1990, 28(11), 1333-1346.[http://dx.doi.org/10.1016/0041-0101(90)90098-R] [PMID: 1965063]
[48]
Franzyk, H.; Grzeskowiak, J.W.; Tikhonov, D.B.; Jaroszewski, J.W.; Mellor, I.R. The effects of conformational constraints in the polyamine moiety of philanthotoxins on AMPAR inhibition. Chem. Med. Chem., 2014, 9(8), 1725-1731.[http://dx.doi.org/10.1002/cmdc.201402109] [PMID: 25044789]
[49]
Fedorov, N.B.; Screbitsky, V.G.; Reymann, K.G. Effects of philanthotoxin-343 on CA1 pyramidal neurons of rat hippocampus in vitro . Eur. J. Pharmacol., 1992, 228(4), 201-206.[http://dx.doi.org/10.1016/0926-6917(92)90030-G] [PMID: 1282467]
[50]
Kachel, H.S.; Franzyk, H.; Mellor, I.R. Philanthotoxin analogues that selectively inhibit ganglionic nicotinic acetylcholine receptors with exceptional potency. J. Med. Chem., 2019, 62(13), 6214-6222.[http://dx.doi.org/10.1021/acs.jmedchem.9b00519] [PMID: 31244109]
[51]
Eldefrawi, A.T.; Eldefrawi, M.E.; Konno, K.; Mansour, N.A.; Nakanishi, K.; Oltz, E.; Usherwood, P.N. Structure and synthesis of a potent glutamate receptor antagonist in wasp venom. Proc. Natl. Acad. Sci. USA, 1988, 85(13), 4910-4913.[http://dx.doi.org/10.1073/pnas.85.13.4910] [PMID: 2838850]
[52]
Nakanishi, K.; Goodnow, R.; Konno, K.; Niwa, M.; Bukownik, R.; Kallimopoulos, T.A.; Usherwood, P.; Eldefrawi, A.T.; Eldefrawi, M.E. Philanthotoxin-433 (PhTX-433), a non-competitive glutamate receptor inhibitor. Pure Appl. Chem., 1990, 62(7), 1223-1230.[http://dx.doi.org/10.1351/pac199062071223]
[53]
Goodnow, R.Jr.; Konno, K.; Niwa, M.; Kallimopoulos, T.; Bukownik, R.; Lenares, D.; Nakanishi, K. Synthesis of glutamate receptor antagonist philanthotoxin-433 (PhTX-433) and its analogs. Tetrahedron, 1990, 46(9), 3267-3286.[http://dx.doi.org/10.1016/S0040-4020(01)85463-6]
[54]
Wang, F.; Manku, S.; Hall, D.G. Solid phase syntheses of polyamine toxins HO-416b and PhTX-433. Use of an efficient polyamide reduction strategy that facilitates access to branched analogues. Org. Lett., 2000, 2(11), 1581-1583.[http://dx.doi.org/10.1021/ol005817b] [PMID: 10841484]
[55]
Chhabra, S.R.; Khan, A.N.; Bycroft, B.W. Solid-phase synthesis of polyamines using a Dde-linker: philanthotoxin-4.3.3 via an on-resin Mitsunobu reaction. Tetrahedron Lett., 2000, 41(7), 1099-1102.[http://dx.doi.org/10.1016/S0040-4039(99)02239-X]
[56]
Andersen, T.F.; Stromgaard, K. Synthesis of polyamines and polyamine toxins. An improved alkylation procedure. Tetrahedron Lett., 2004, 45(42), 7929-7933.[http://dx.doi.org/10.1016/j.tetlet.2004.08.139]
[57]
Stromgaard, K.; Andersen, K.; Ruhland, T.; Krogsgaard-Larsen, P.; Jaroszewski, J.W. A versatile method for solid-phase synthesis of polyamines: neuroactive polyamine toxins as example. Synthesis, 2001, 2001(6), 0877-0884.[http://dx.doi.org/10.1055/s-2001-13410]
[58]
Strømgaard, K.; Piazzi, L.; Olsen, C.A.; Franzyk, H.; Jaroszewski, J.W. Protolytic properties of polyamine wasp toxin analogues studied by 13C NMR spectroscopy. Magn. Reson. Chem., 2006, 44(11), 1013-1022.[http://dx.doi.org/10.1002/mrc.1890] [PMID: 16941578]
[59]
Choi, S.K.; Kalivretenos, A.G.; Usherwood, P.N.; Nakanishi, K. Labeling studies of photolabile philanthotoxins with nicotinic acetylcholine receptors: mode of interaction between toxin and receptor. Chem. Biol., 1995, 2(1), 23-32.[http://dx.doi.org/10.1016/1074-5521(95)90077-2] [PMID: 9383400]
[60]
Andersen, T.F.; Vogensen, S.B.; Jensen, L.S.; Knapp, K.M.; Strømgaard, K. Design and synthesis of labeled analogs of PhTX-56, a potent and selective AMPA receptor antagonist. Bioorg. Med. Chem., 2005, 13(17), 5104-5112.[http://dx.doi.org/10.1016/j.bmc.2005.05.023] [PMID: 15990320]
[61]
Jones, M.G.; Lodge, D. Comparison of some arthropod toxins and toxin fragments as antagonists of excitatory amino acid-induced excitation of rat spinal neurones. Eur. J. Pharmacol., 1991, 204(2), 203-209.[http://dx.doi.org/10.1016/0014-2999(91)90706-V] [PMID: 1806388]
[62]
Jensen, L.S.; Bølcho, U.; Egebjerg, J.; Strømgaard, K. Design, synthesis, and pharmacological characterization of polyamine toxin derivatives: potent ligands for the pore-forming region of AMPA receptors. Chem. Med. Chem., 2006, 1(4), 419-428.[http://dx.doi.org/10.1002/cmdc.200500093] [PMID: 16892377]
[63]
Baslé, A.; Delcour, A.H. Effect of two polyamine toxins on the bacterial porin OmpF. Biochem. Biophys. Res. Commun., 2001, 285(2), 550-554.[http://dx.doi.org/10.1006/bbrc.2001.5155] [PMID: 11444879]
[64]
Bixel, M.G.; Krauss, M.; Liu, Y.; Bolognesi, M.L.; Rosini, M.; Mellor, I.S.; Usherwood, P.N.; Melchiorre, C.; Nakanishi, K.; Hucho, F. Structure-activity relationship and site of binding of polyamine derivatives at the nicotinic acetylcholine receptor. Eur. J. Biochem., 2000, 267(1), 110-120.[http://dx.doi.org/10.1046/j.1432-1327.2000.00971.x] [PMID: 10601857]
[65]
Frølund, S.; Bella, A.; Kristensen, A.S.; Ziegler, H.L.; Witt, M.; Olsen, C.A.; Strømgaard, K.; Franzyk, H.; Jaroszewski, J.W. Assessment of structurally diverse philanthotoxin analogues for inhibitory activity on ionotropic glutamate receptor subtypes: discovery of nanomolar, nonselective, and use-dependent antagonists. J. Med. Chem., 2010, 53(20), 7441-7451.[http://dx.doi.org/10.1021/jm100886h] [PMID: 20873775]
[66]
Kachel, H.S.; Patel, R.N.; Franzyk, H.; Mellor, I.R. Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition. Sci. Rep., 2016, 6, 38116.[http://dx.doi.org/10.1038/srep38116] [PMID: 27901080]
[67]
Kromann, H.; Krikstolaityte, S.; Andersen, A.J.; Andersen, K.; Krogsgaard-Larsen, P.; Jaroszewski, J.W.; Egebjerg, J.; Strømgaard, K. Solid-phase synthesis of polyamine toxin analogues: potent and selective antagonists of Ca2+-permeable AMPA receptors. J. Med. Chem., 2002, 45(26), 5745-5754.[http://dx.doi.org/10.1021/jm020314s] [PMID: 12477358]
[68]
Strømgaard, K.; Mellor, I.R.; Andersen, K.; Neagoe, I.; Pluteanu, F.; Usherwood, P.N.; Krogsgaard-Larsen, P.; Jaroszewski, J.W. Solid-phase synthesis and pharmacological evaluation of analogues of PhTX-12-A potent and selective nicotinic acetylcholine receptor antagonist. Bioorg. Med. Chem. Lett., 2002, 12(8), 1159-1162.[http://dx.doi.org/10.1016/S0960-894X(02)00120-8] [PMID: 11934578]
[69]
Strømgaard, K.; Bjørnsdottir, I.; Andersen, K.; Brierley, M.J.; Rizoli, S.; Eldursi, N.; Mellor, I.R.; Usherwood, P.N.; Hansen, S.H.; Krogsgaard-Larsen, P.; Jaroszewski, J.W. Solid phase synthesis and biological evaluation of enantiomerically pure wasp toxin analogues PhTX-343 and PhTX-12. Chirality, 2000, 12(2), 93-102.[http://dx.doi.org/10.1002/(SICI)1520-636X(2000)12:2<93::AID-CHIR6>3.0.CO;2-B] [PMID: 10637415]
[70]
Rao, M.N.; Shinnar, A.E.; Noecker, L.A.; Chao, T.L.; Feibush, B.; Snyder, B.; Sharkansky, I.; Sarkahian, A.; Zhang, X.; Jones, S.R.; Kinney, W.A.; Zasloff, M. Aminosterols from the dogfish shark Squalus acanthias . J. Nat. Prod., 2000, 63(5), 631-635.[http://dx.doi.org/10.1021/np990514f] [PMID: 10843574]
[71]
Yun, S-S.; Li, W. Identification of squalamine in the plasma membrane of white blood cells in the sea lamprey, Petromyzon marinus. J. Lipid Res., 2007, 48(12), 2579-2586.[http://dx.doi.org/10.1194/jlr.M700294-JLR200] [PMID: 17726196]
[72]
Brunel, J.M.; Salmi, C.; Loncle, C.; Vidal, N.; Letourneux, Y. Squalamine: a polyvalent drug of the future? Curr. Cancer Drug Targets, 2005, 5(4), 267-272.[http://dx.doi.org/10.2174/1568009054064642] [PMID: 15975047]
[73]
Ding, B.; Guan, Q.; Walsh, J.P.; Boswell, J.S.; Winter, T.W.; Winter, E.S.; Boyd, S.S.; Li, C.; Savage, P.B. Correlation of the antibacterial activities of cationic peptide antibiotics and cationic steroid antibiotics. J. Med. Chem., 2002, 45(3), 663-669.[http://dx.doi.org/10.1021/jm0105070] [PMID: 11806717]
[74]
Savage, P.B.; Li, C.; Taotafa, U.; Ding, B.; Guan, Q. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol. Lett., 2002, 217(1), 1-7.[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11448.x] [PMID: 12445638]
[75]
Moriarty, R.M.; Tuladhar, S.M.; Guo, L.; Wehrli, S. Synthesis of squalamine. A steroidal antibiotic from the shark. Tetrahedron Lett., 1994, 35(44), 8103-8106.[http://dx.doi.org/10.1016/0040-4039(94)88254-1]
[76]
Pechulis, A.D.; Bellevue, F.H.III.; Cioffi, C.L.; Trapp, S.G.; Fojtik, J.P.; McKitty, A.A.; Kinney, W.A.; Frye, L.L. Synthesis of 24ξ-squalamine, an anti-infective steroidal polyamine. J. Org. Chem., 1995, 60(16), 5121-5126.[http://dx.doi.org/10.1021/jo00121a033]
[77]
Moriarty, R.M.; Enache, L.A.; Kinney, W.A.; Allen, C.S.; Canary, J.W.; Tuladhar, S.M.; Guo, L. Stereoselective synthesis of squalamine dessulfate. Tetrahedron Lett., 1995, 36(29), 5139-5142.[http://dx.doi.org/10.1016/0040-4039(95)01011-6]
[78]
Zhang, X.; Rao, M.N.; Jones, S.R.; Shao, B.; Feibush, P.; McGuigan, M.; Tzodikov, N.; Feibush, B.; Sharkansky, I.; Snyder, B.; Mallis, L.M.; Sarkahian, A.; Wilder, S.; Turse, J.E.; Kinney, W.A.; Kjrsgaard, H.J.; Michalak, R.S. Synthesis of squalamine utilizing a readily accessible spermidine equivalent. J. Org. Chem., 1998, 63(23), 8599-8603.[http://dx.doi.org/10.1021/jo981344z]
[79]
Jones, S.R.; Selinsky, B.S.; Rao, M.N.; Zhang, X.; Kinney, W.A.; Tham, F.S. Efficient route to 7α-(Benzoyloxy)-3- dioxolane cholestan-24(R)-ol, a key intermediate in the synthesis of squalamine. J. Org. Chem., 1998, 63(11), 3786-3789.[http://dx.doi.org/10.1021/jo971405d]
[80]
Kinney, W.A.; Zhang, X.; Williams, J.I.; Johnston, S.; Michalak, R.S.; Deshpande, M.; Dostal, L.; Rosazza, J.P.N. A short formal synthesis of squalamine from a microbial metabolite. Org. Lett., 2000, 2(19), 2921-2922.[http://dx.doi.org/10.1021/ol0059495] [PMID: 10986072]
[81]
Zhou, X-D.; Cai, F.; Zhou, W-S. A stereoselective synthesis of squalamine. Tetrahedron, 2002, 58(52), 10293-10299.[http://dx.doi.org/10.1016/S0040-4020(02)01413-8]
[82]
Zhou, X.D.; Cai, F.; Zhou, W.S. A new highly stereoselective construction of the sidechain of squalamine through improved Sharpless catalytic asymmetric dihydroxylation. Tetrahedron Lett., 2001, 42(13), 2537-2539.[http://dx.doi.org/10.1016/S0040-4039(01)00191-5]
[83]
Okumura, K.; Nakamura, Y.; Takeuchi, S.; Kato, I.; Fujimoto, Y.; Ikekawa, N. Formal synthesis of squalamine from desmosterol. Chem. Pharm. Bull. (Tokyo), 2003, 51(10), 1177-1182.[http://dx.doi.org/10.1248/cpb.51.1177] [PMID: 14519925]
[84]
Zhang, D-H.; Cai, F.; Zhou, X-D.; Zhou, W-S. A concise and stereoselective synthesis of squalamine. Org. Lett., 2003, 5(18), 3257-3259.[http://dx.doi.org/10.1021/ol035062j] [PMID: 12943401]
[85]
Zhang, D-H.; Cai, F.; Zhou, X-D.; Zhou, W-S. A short and highly stereoselective synthesis of squalamine from methyl chenodeoxycholanate. Chin. J. Chem., 2005, 23(2), 176-181.[http://dx.doi.org/10.1002/cjoc.200590176]
[86]
Zhou, S.; Zheng, Y.; Yang, B.; Zhong, J.; Shi, H. Study on synthesis of key squalamine intermediate 7α, 24R-dihydroxy-5α-cholestan-3-one. Steroids, 2019, 151, 108472.[http://dx.doi.org/10.1016/j.steroids.2019.108472] [PMID: 31400392]
[87]
Alhanout, K.; Rolain, J.M.; Brunel, J.M. Squalamine as an example of a new potent antimicrobial agents class: a critical review. Curr. Med. Chem., 2010, 17(32), 3909-3917.[http://dx.doi.org/10.2174/092986710793205417] [PMID: 20858213]
[88]
Brycki, B.; Koenig, H.; Pospieszny, T. Quaternary alkylammonium conjugates of steroids: synthesis, molecular structure, and biological studies. Molecules, 2015, 20(11), 20887-20900.[http://dx.doi.org/10.3390/molecules201119735] [PMID: 26610455]
[89]
Alhanout, K.; Brunel, J-M.; Raoult, D.; Rolain, J-M. In vitro antibacterial activity of aminosterols against multidrug-resistant bacteria from patients with cystic fibrosis. J. Antimicrob. Chemother., 2009, 64(4), 810-814.[http://dx.doi.org/10.1093/jac/dkp281] [PMID: 19666647]
[90]
Salmi, C.; Loncle, C.; Vidal, N.; Letourneux, Y.; Fantini, J.; Maresca, M.; Taïeb, N.; Pagès, J-M.; Brunel, J.M. Squalamine: an appropriate strategy against the emergence of multidrug resistant gram-negative bacteria? PLoS One, 2008, 3(7), e2765.[http://dx.doi.org/10.1371/journal.pone.0002765] [PMID: 18648511]
[91]
Coulibaly, O.; Alhanout, K.; L’Ollivier, C.; Brunel, J-M.; Thera, M.A.; Djimdé, A.A.; Doumbo, O.K.; Piarroux, R.; Ranque, S. In vitro activity of aminosterols against dermatophytes. Med. Mycol., 2013, 51(3), 309-312.[http://dx.doi.org/10.3109/13693786.2012.724773] [PMID: 22998181]
[92]
Alhanout, K.; Brunel, J.M.; Ranque, S.; Rolain, J.M. In vitro antifungal activity of aminosterols against moulds isolated from cystic fibrosis patients. J. Antimicrob. Chemother., 2010, 65(6), 1307-1309.[http://dx.doi.org/10.1093/jac/dkq089] [PMID: 20335187]
[93]
Alhanout, K.; Malesinki, S.; Vidal, N.; Peyrot, V.; Rolain, J.M.; Brunel, J.M. New insights into the antibacterial mechanism of action of squalamine. J. Antimicrob. Chemother., 2010, 65(8), 1688-1693.[http://dx.doi.org/10.1093/jac/dkq213] [PMID: 20551217]
[94]
Selinsky, B.S.; Zhou, Z.; Fojtik, K.G.; Jones, S.R.; Dollahon, N.R.; Shinnar, A.E. The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles. Biochim. Biophys. Acta, 1998, 1370(2), 218-234.[http://dx.doi.org/10.1016/S0005-2736(97)00265-4] [PMID: 9545568]
[95]
Selinsky, B.S.; Smith, R.; Frangiosi, A.; Vonbaur, B.; Pedersen, L. Squalamine is not a proton ionophore. Biochim. Biophys. Acta, 2000, 1464(1), 135-141.[http://dx.doi.org/10.1016/S0005-2736(99)00256-4] [PMID: 10704927]
[96]
Di Pasquale, E.; Salmi-Smail, C.; Brunel, J-M.; Sanchez, P.; Fantini, J.; Maresca, M. Biophysical studies of the interaction of squalamine and other cationic amphiphilic molecules with bacterial and eukaryotic membranes: importance of the distribution coefficient in membrane selectivity. Chem. Phys. Lipids, 2010, 163(2), 131-140.[http://dx.doi.org/10.1016/j.chemphyslip.2009.10.006] [PMID: 19883637]
[97]
Russo, T.A.; Mylotte, D. Expression of the K54 and O4 specific antigen has opposite effects on the bactericidal activity of squalamine against an extraintestinal isolate of Escherichia coli. FEMS Microbiol. Lett., 1998, 162(2), 311-315.[http://dx.doi.org/10.1111/j.1574-6968.1998.tb13014.x] [PMID: 9627966]
[98]
Djouhri-Bouktab, L.; Alhanout, K.; Andrieu, V.; Raoult, D.; Rolain, J.M.; Brunel, J.M. Squalamine ointment for Staphylococcus aureus skin decolonization in a mouse model. J. Antimicrob. Chemother., 2011, 66(6), 1306-1310.[http://dx.doi.org/10.1093/jac/dkr114] [PMID: 21447519]
[99]
Nicol, M.; Mlouka, M.A.B.; Berthe, T.; Di Martino, P.; Jouenne, T.; Brunel, J-M.; Dé, E. Anti-persister activity of squalamine against Acinetobacter baumannii. Int. J. Antimicrob. Agents, 2019, 53(3), 337-342.[http://dx.doi.org/10.1016/j.ijantimicag.2018.11.004] [PMID: 30423343]
[100]
Walker, B.T.; Houston, T.A. Squalamine and its derivatives as potential antitubercular compounds. Tuberculosis (Edinb.), 2013, 93(1), 102-103.[http://dx.doi.org/10.1016/j.tube.2012.08.002] [PMID: 23017771]
[101]
Asmar, S.; Drancourt, M. Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis. BMC Microbiol., 2015, 15, 155.[http://dx.doi.org/10.1186/s12866-015-0479-4] [PMID: 26238865]
[102]
Dridi, B.; Fardeau, M-L.; Ollivier, B.; Raoult, D.; Drancourt, M. The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea. J. Antimicrob. Chemother., 2011, 66(9), 2038-2044.[http://dx.doi.org/10.1093/jac/dkr251] [PMID: 21680581]
[103]
Khelaifia, S.; Brunel, J.M.; Drancourt, M.; Drancourt, M. In-vitro archaeacidal activity of biocides against human-associated archaea. PLoS One, 2013, 8(5), e62738.[http://dx.doi.org/10.1371/journal.pone.0062738] [PMID: 23658767]
[104]
Khelaifia, S.; Drancourt, M. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology. Clin. Microbiol. Infect., 2012, 18(9), 841-848.[http://dx.doi.org/10.1111/j.1469-0691.2012.03913.x] [PMID: 22748132]
[105]
Lavigne, J-P.; Brunel, J-M.; Chevalier, J.; Pagès, J-M. Squalamine, an original chemosensitizer to combat antibiotic-resistant gram-negative bacteria. J. Antimicrob. Chemother., 2010, 65(4), 799-801.[http://dx.doi.org/10.1093/jac/dkq031] [PMID: 20147322]
[106]
Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386.[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[107]
Alhanout, K.; Djouhri, L.; Vidal, N.; Brunel, J.M.; Piarroux, R.; Ranque, S. In vitro activity of aminosterols against yeasts involved in blood stream infections. Med. Mycol., 2011, 49(2), 121-125.[http://dx.doi.org/10.3109/13693786.2010.502189] [PMID: 20662632]
[108]
Djouhri-Bouktab, L.; Alhanout, K.; Andrieu, V.; Stremler, N.; Dubus, J.C.; Raoult, D.; Rolain, J.M.; Brunel, J.M. Soluble squalamine tablets for the rapid disinfection of home nebulizers of cystic fibrosis patients. J. Cyst. Fibros., 2012, 11(6), 555-559.[http://dx.doi.org/10.1016/j.jcf.2012.05.006] [PMID: 22727722]
[109]
Hraiech, S.; Brégeon, F.; Brunel, J-M.; Rolain, J-M.; Lepidi, H.; Andrieu, V.; Raoult, D.; Papazian, L.; Roch, A. Antibacterial efficacy of inhaled squalamine in a rat model of chronic Pseudomonas aeruginosa pneumonia. J. Antimicrob. Chemother., 2012, 67(10), 2452-2458.[http://dx.doi.org/10.1093/jac/dks230] [PMID: 22744759]
[110]
Sakr, A.; Brégeon, F.; Rolain, J-M.; Blin, O. Staphylococcus aureus nasal decolonization strategies: a review. Expert Rev. Anti Infect. Ther., 2019, 17(5), 327-340.[http://dx.doi.org/10.1080/14787210.2019.1604220] [PMID: 31012332]
[111]
Coulibaly, O.; Thera, M.A.; Koné, A.K.; Siaka, G.; Traoré, P.; Djimdé, A.A.; Brunel, J-M.; Gaudart, J.; Piarroux, R.; Doumbo, O.K.; Ranque, S. A double-blind randomized placebo-controlled clinical trial of squalamine ointment for tinea capitis treatment. Mycopathologia, 2015, 179(3-4), 187-193.[http://dx.doi.org/10.1007/s11046-014-9849-y] [PMID: 25515244]
[112]
Alhanout, K.; Brunel, J.M.; Dubus, J.C.; Rolain, J.M.; Andrieu, V. Suitability of a new antimicrobial aminosterol formulation for aerosol delivery in cystic fibrosis. J. Antimicrob. Chemother., 2011, 66(12), 2797-2800.[http://dx.doi.org/10.1093/jac/dkr380] [PMID: 21933787]
[113]
Kikuchi, K.; Bernard, E.M.; Sadownik, A.; Regen, S.L.; Armstrong, D. Antimicrobial activities of squalamine mimics. Antimicrob. Agents Chemother., 1997, 41(7), 1433-1438.[http://dx.doi.org/10.1128/AAC.41.7.1433] [PMID: 9210661]
[114]
Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1459-1544.[http://dx.doi.org/10.1016/S0140-6736(16)31012-1] [PMID: 27733281]
[115]
Williams, J.I.; Weitman, S.; Gonzalez, C.M.; Jundt, C.H.; Marty, J.; Stringer, S.D.; Holroyd, K.J.; Mclane, M.P.; Chen, Q.; Zasloff, M.; Von Hoff, D.D. Squalamine treatment of human tumors in nu/nu mice enhances platinum-based chemotherapies. Clin. Cancer Res., 2001, 7(3), 724-733.[PMID: 11297269]
[116]
Sills, A.K.Jr.; Williams, J.I.; Tyler, B.M.; Epstein, D.S.; Sipos, E.P.; Davis, J.D.; McLane, M.P.; Pitchford, S.; Cheshire, K.; Gannon, F.H.; Kinney, W.A.; Chao, T.L.; Donowitz, M.; Laterra, J.; Zasloff, M.; Brem, H. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature. Cancer Res., 1998, 58(13), 2784-2792.[PMID: 9661892]
[117]
Akhter, S.; Nath, S.K.; Tse, C.M.; Williams, J.; Zasloff, M.; Donowitz, M. Squalamine, a novel cationic steroid, specifically inhibits the brush-border Na+/H+ exchanger isoform NHE3. Am. J. Physiol., 1999, 276(1), C136-C144.[http://dx.doi.org/10.1152/ajpcell.1999.276.1.C136] [PMID: 9886929]
[118]
Donowitz, M.; Janecki, A.; Akhter, S.; Cavet, M.E.; Sanchez, F.; Lamprecht, G.; Zizak, M.; Kwon, W.L.; Khurana, S.; Yun, C.H.; Tse, C.M. Short-term regulation of NHE3 by EGF and protein kinase C but not protein kinase A involves vesicle trafficking in epithelial cells and fibroblasts. Ann. N. Y. Acad. Sci., 2000, 915, 30-42.[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05221.x] [PMID: 11193592]
[119]
Hao, D.; Hammond, L.A.; Eckhardt, S.G.; Patnaik, A.; Takimoto, C.H.; Schwartz, G.H.; Goetz, A.D.; Tolcher, A.W.; McCreery, H.A.; Mamun, K.; Williams, J.I.; Holroyd, K.J.; Rowinsky, E.K. A phase I and pharmacokinetic study of squalamine, an aminosterol angiogenesis inhibitor. Clin. Cancer Res., 2003, 9(7), 2465-2471.[PMID: 12855619]
[120]
Li, D.; Williams, J.I.; Pietras, R.J. Squalamine and cisplatin block angiogenesis and growth of human ovarian cancer cells with or without HER-2 gene overexpression. Oncogene, 2002, 21(18), 2805-2814.[http://dx.doi.org/10.1038/sj.onc.1205410] [PMID: 11973639]
[121]
Schiller, J.H.; Bittner, G. Potentiation of platinum antitumor effects in human lung tumor xenografts by the angiogenesis inhibitor squalamine: effects on tumor neovascularization. Clin. Cancer Res., 1999, 5(12), 4287-4294.[PMID: 10632372]
[122]
Sokoloff, M.H.; Rinker-Schaeffer, C.W.; Chung, L.W.; Brendler, C.B. Adjunctive therapy for men with high risk localized and locally advanced prostate cancer: targeting disseminated tumor cells. J. Urol., 2004, 172(6 Pt 2), 2539-2544.[http://dx.doi.org/10.1097/01.ju.0000145044.97177.09] [PMID: 15538203]
[123]
Márquez-Garbán, D.C.; Gorrín-Rivas, M.; Chen, H-W.; Sterling, C., Jr; Elashoff, D.; Hamilton, N.; Pietras, R.J. Squalamine blocks tumor-associated angiogenesis and growth of human breast cancer cells with or without HER-2/neu overexpression. Cancer Lett., 2019, 449, 66-75.[http://dx.doi.org/10.1016/j.canlet.2019.02.009] [PMID: 30771431]
[124]
Yin, M.; Gentili, C.; Koyama, E.; Zasloff, M.; Pacifici, M. Antiangiogenic treatment delays chondrocyte maturation and bone formation during limb skeletogenesis. J. Bone Miner. Res., 2002, 17(1), 56-65.[http://dx.doi.org/10.1359/jbmr.2002.17.1.56] [PMID: 11771670]
[125]
Bhargava, P.; Marshall, J.L.; Dahut, W.; Rizvi, N.; Trocky, N.; Williams, J.I.; Hait, H.; Song, S.; Holroyd, K.J.; Hawkins, M.J. A phase I and pharmacokinetic study of squalamine, a novel antiangiogenic agent, in patients with advanced cancers. Clin. Cancer Res., 2001, 7(12), 3912-3919.[PMID: 11751482]
[126]
Herbst, R.S.; Hammond, L.A.; Carbone, D.P.; Tran, H.T.; Holroyd, K.J.; Desai, A.; Williams, J.I.; Bekele, B.N.; Hait, H.; Allgood, V.; Solomon, S.; Schiller, J.H. A phase I/IIA trial of continuous five-day infusion of squalamine lactate (MSI-1256F) plus carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Clin. Cancer Res., 2003, 9(11), 4108-4115.[PMID: 14519633]
[127]
Pietras, R.J.; Weinberg, O.K. Antiangiogenic steroids in human cancer therapy. Evid. Based Complement. Alternat. Med., 2005, 2(1), 49-57.[http://dx.doi.org/10.1093/ecam/neh066] [PMID: 15841278]
[128]
Sridhar, S.S.; Shepherd, F.A. Targeting angiogenesis: a review of angiogenesis inhibitors in the treatment of lung cancer. Lung Cancer, 2003, 42(Suppl. 1), S81-S91.[http://dx.doi.org/10.1016/S0169-5002(03)00308-8] [PMID: 14611919]
[129]
Emerson, M.V.; Lauer, A.K. Current and emerging therapies for the treatment of age-related macular degeneration. Clin. Ophthalmol., 2008, 2(2), 377-388.[http://dx.doi.org/10.2147/OPTH.S1485] [PMID: 19668729]
[130]
Higgins, R.D.; Yan, Y.; Geng, Y.; Zasloff, M.; Williams, J.I. Regression of retinopathy by squalamine in a mouse model. Pediatr. Res., 2004, 56(1), 144-149.[http://dx.doi.org/10.1203/01.PDR.0000128977.55799.34] [PMID: 15128931]
[131]
Higgins, R.D.; Sanders, R.J.; Yan, Y.; Zasloff, M.; Williams, J.I. Squalamine improves retinal neovascularization. Invest. Ophthalmol. Vis. Sci., 2000, 41(6), 1507-1512.[PMID: 10798670]
[132]
Genaidy, M.; Kazi, A.A.; Peyman, G.A.; Passos-Machado, E.; Farahat, H.G.; Williams, J.I.; Holroyd, K.J.; Blake, D.A. Effect of squalamine on iris neovascularization in monkeys. Retina, 2002, 22(6), 772-778.[http://dx.doi.org/10.1097/00006982-200212000-00014] [PMID: 12476105]
[133]
Ciulla, T.A.; Criswell, M.H.; Danis, R.P.; Williams, J.I.; McLane, M.P.; Holroyd, K.J. Squalamine lactate reduces choroidal neovascularization in a laser-injury model in the rat. Retina, 2003, 23(6), 808-814.[http://dx.doi.org/10.1097/00006982-200312000-00011] [PMID: 14707832]
[134]
Ciulla, T.; Oliver, A.; Gast, M.J. Squalamine lactate for the treatment of age-related macular degeneration. Expert Rev. Ophthalmol., 2007, 2(2), 165-175.[http://dx.doi.org/10.1586/17469899.2.2.165]
[135]
Chakravarthy, U.; Soubrane, G.; Bandello, F.; Chong, V.; Creuzot-Garcher, C.; Dimitrakos, S.A.II.; Korobelnik, J.F.; Larsen, M.; Monés, J.; Pauleikhoff, D.; Pournaras, C.J.; Staurenghi, G.; Virgili, G.; Wolf, S. Evolving European guidance on the medical management of neovascular age related macular degeneration. Br. J. Ophthalmol., 2006, 90(9), 1188-1196.[http://dx.doi.org/10.1136/bjo.2005.082255] [PMID: 16929063]
[136]
Michels, S.; Schmidt-Erfurth, U.; Rosenfeld, P.J. Promising new treatments for neovascular age-related macular degeneration. Expert Opin. Investig. Drugs, 2006, 15(7), 779-793.[http://dx.doi.org/10.1517/13543784.15.7.779] [PMID: 16787141]
[137]
Emerson, M.V.; Lauer, A.K. Emerging therapies for the treatment of neovascular age-related macular degeneration and diabetic macular edema. BioDrugs, 2007, 21(4), 245-257.[http://dx.doi.org/10.2165/00063030-200721040-00005] [PMID: 17628122]
[138]
Pecen, P.E.; Kaiser, P.K. Current phase 1/2 research for neovascular age-related macular degeneration. Curr. Opin. Ophthalmol., 2015, 26(3), 188-193.[http://dx.doi.org/10.1097/ICU.0000000000000147] [PMID: 25822255]
[139]
Wroblewski, J.J.; Hu, A.Y. Topical squalamine 0.2% and intravitreal ranibizumab 0.5 mg as combination therapy for macular edema due to branch and central retinal vein occlusion: an open-label, randomized study. Ophthalmic Surg. Lasers Imaging Retina, 2016, 47(10), 914-923.[http://dx.doi.org/10.3928/23258160-20161004-04] [PMID: 27759857]
[140]
Hussain, R.M.; Ciulla, T.A.; Ciulla Thomas, A. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration. Expert Opin. Emerg. Drugs, 2017, 22(3), 235-246.[http://dx.doi.org/10.1080/14728214.2017.1362390] [PMID: 28756707]
[141]
Al-Khersan, H.; Hussain, R.M.; Ciulla, T.A.; Dugel, P.U.; Ciulla Thomas, A.; Dugel Pravin, U.; Dugel Pravin, U. Innovative therapies for neovascular age-related macular degeneration. Expert Opin. Pharmacother., 2019, 20(15), 1879-1891.[http://dx.doi.org/10.1080/14656566.2019.1636031] [PMID: 31298960]
[142]
Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507.[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[143]
Trépo, C.; Chan, H.L.; Lok, A. Hepatitis B virus infection. Lancet, 2014, 384(9959), 2053-2063.[http://dx.doi.org/10.1016/S0140-6736(14)60220-8] [PMID: 24954675]
[144]
Zasloff, M.; Adams, A.P.; Beckerman, B.; Campbell, A.; Han, Z.; Luijten, E.; Meza, I.; Julander, J.; Mishra, A.; Qu, W.; Taylor, J.M.; Weaver, S.C.; Wong, G.C.L. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 15978-15983.[http://dx.doi.org/10.1073/pnas.1108558108] [PMID: 21930925]
[145]
Mao, X.; Ou, M.T.; Karuppagounder, S.S.; Kam, T-I.; Yin, X.; Xiong, Y.; Ge, P.; Umanah, G.E.; Brahmachari, S.; Shin, J-H.; Kang, H.C.; Zhang, J.; Xu, J.; Chen, R.; Park, H.; Andrabi, S.A.; Kang, S.U.; Gonçalves, R.A.; Liang, Y.; Zhang, S.; Qi, C.; Lam, S.; Keiler, J.A.; Tyson, J.; Kim, D.; Panicker, N.; Yun, S.P.; Workman, C.J.; Vignali, D.A.; Dawson, V.L.; Ko, H.S.; Dawson, T.M. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science, 2016, 353(6307), aah3374.[http://dx.doi.org/10.1126/science.aah3374] [PMID: 27708076]
[146]
International, A. s. D. Rapport Mondial Alzheimer 2015. 2015.
[147]
Pineda, A.; Burré, J. Modulating membrane binding of α-synuclein as a therapeutic strategy. Proc. Natl. Acad. Sci. USA, 2017, 114(6), 1223-1225.[http://dx.doi.org/10.1073/pnas.1620159114] [PMID: 28126719]
[148]
Wirths, O.; Bayer, T.A. α-Synuclein, Aβ and Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(1), 103-108.[http://dx.doi.org/10.1016/S0278-5846(02)00339-1] [PMID: 12551731]
[149]
Perni, M.; Galvagnion, C.; Maltsev, A.; Meisl, G.; Müller, M.B.; Challa, P.K.; Kirkegaard, J.B.; Flagmeier, P.; Cohen, S.I.; Cascella, R.; Chen, S.W.; Limbocker, R.; Sormanni, P.; Heller, G.T.; Aprile, F.A.; Cremades, N.; Cecchi, C.; Chiti, F.; Nollen, E.A.; Knowles, T.P.; Vendruscolo, M.; Bax, A.; Zasloff, M.; Dobson, C.M. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc. Natl. Acad. Sci. USA, 2017, 114(6), E1009-E1017.[http://dx.doi.org/10.1073/pnas.1610586114] [PMID: 28096355]
[150]
Alhanout, K.; Giorgio, C.D.; Meo, M.D.; Brunel, J.M. Non-genotoxic assessment of a natural antimicrobial agent: squalamine. Antiinfect. Agents, 2014, 12(1), 75-79.[http://dx.doi.org/10.2174/22113525113119990114]
[151]
Li, A.C.; Sabo, A.M.; McCormick, T.; Johnston, S.M. Quantitative analysis of squalamine, a self-ionization-suppressing aminosterol sulfate, in human plasma by LC-MS/MS. J. Pharm. Biomed. Anal., 2004, 34(3), 631-641.[http://dx.doi.org/10.1016/S0731-7085(03)00556-9] [PMID: 15127819]
[152]
Li, C-J.; Kari, U.P.; Noecker, L.A.; Jones, S.R.; Sabo, A.M.; McCormick, T.J.; Johnston, S.M. Determination of degradation products of squalamine lactate using LC/MS. J. Pharm. Biomed. Anal., 2003, 32(1), 85-96.[http://dx.doi.org/10.1016/S0731-7085(03)00047-5] [PMID: 12852451]
[153]
Zasloff, M.; Williams, J.I.; Chen, Q.; Anderson, M.; Maeder, T.; Holroyd, K.; Jones, S.; Kinney, W.; Cheshire, K.; McLane, M. A spermine-coupled cholesterol metabolite from the shark with potent appetite suppressant and antidiabetic properties. Int. J. Obes. Relat. Metab. Disord., 2001, 25(5), 689-697.[http://dx.doi.org/10.1038/sj.ijo.0801599] [PMID: 11360152]
[154]
Ahima, R.S.; Patel, H.R.; Takahashi, N.; Qi, Y.; Hileman, S.M.; Zasloff, M.A. Appetite suppression and weight reduction by a centrally active aminosterol. Diabetes, 2002, 51(7), 2099-2104.[http://dx.doi.org/10.2337/diabetes.51.7.2099] [PMID: 12086938]
[155]
Qin, Z.; Pandey, N.R.; Zhou, X.; Stewart, C.A.; Hari, A.; Huang, H.; Stewart, A.F.R.; Brunel, J.M.; Chen, H-H. Functional properties of Claramine: a novel PTP1B inhibitor and insulin-mimetic compound. Biochem. Biophys. Res. Commun., 2015, 458(1), 21-27.[http://dx.doi.org/10.1016/j.bbrc.2015.01.040] [PMID: 25623533]
[156]
Roitman, M.F.; Wescott, S.; Cone, J.J.; McLane, M.P.; Wolfe, H.R. MSI-1436 reduces acute food intake without affecting dopamine transporter activity. Pharmacol. Biochem. Behav., 2010, 97(1), 138-143.[http://dx.doi.org/10.1016/j.pbb.2010.05.010] [PMID: 20478327]
[157]
Lantz, K.A.; Hart, S.G.; Planey, S.L.; Roitman, M.F.; Ruiz-White, I.A.; Wolfe, H.R.; McLane, M.P. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity (Silver Spring), 2010, 18(8), 1516-1523.[http://dx.doi.org/10.1038/oby.2009.444] [PMID: 20075852]
[158]
Vintonyak, V.V.; Waldmann, H.; Rauh, D. Using small molecules to target protein phosphatases. Bioorg. Med. Chem., 2011, 19(7), 2145-2155.[http://dx.doi.org/10.1016/j.bmc.2011.02.047] [PMID: 21420867]
[159]
Krishnan, N.; Konidaris, K.F.; Gasser, G.; Tonks, N.K. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. J. Biol. Chem., 2018, 293(5), 1517-1525.[http://dx.doi.org/10.1074/jbc.C117.819110] [PMID: 29217773]
[160]
Krishnan, N.; Koveal, D.; Miller, D.H.; Xue, B.; Akshinthala, S.D.; Kragelj, J.; Jensen, M.R.; Gauss, C-M.; Page, R.; Blackledge, M.; Muthuswamy, S.K.; Peti, W.; Tonks, N.K. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol., 2014, 10(7), 558-566.[http://dx.doi.org/10.1038/nchembio.1528] [PMID: 24845231]
[161]
Pandey, N.R.; Zhou, X.; Zaman, T.; Cruz, S.A.; Qin, Z.; Lu, M.; Keyhanian, K.; Brunel, J.M.; Stewart, A.F.R.; Chen, H-H. LMO4 is required to maintain hypothalamic insulin signaling. Biochem. Biophys. Res. Commun., 2014, 450(1), 666-672.[http://dx.doi.org/10.1016/j.bbrc.2014.06.026] [PMID: 24937445]
[162]
Thompson, D.; Morrice, N.; Grant, L.; Le Sommer, S.; Lees, E.K.; Mody, N.; Wilson, H.M.; Delibegovic, M. Pharmacological inhibition of protein tyrosine phosphatase 1B protects against atherosclerotic plaque formation in the LDLR-/- mouse model of atherosclerosis. Clin. Sci. (Lond.), 2017, 131(20), 2489-2501.[http://dx.doi.org/10.1042/CS20171066] [PMID: 28899902]
[163]
Thiebaut, P-A.; Delile, E.; Coquerel, D.; Brunel, J.M.; Renet, S.; Tamion, F.; Richard, V. Protein tyrosine phosphatase 1B regulates endothelial endoplasmic reticulum stress; role in endothelial dysfunction. Vascul. Pharmacol., 2018, 109, 36-44.[http://dx.doi.org/10.1016/j.vph.2018.05.011] [PMID: 29894845]
[164]
Younossi, Z.M.; Stepanova, M.; Afendy, M.; Fang, Y.; Younossi, Y.; Mir, H.; Srishord, M. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin. Gastroenterol. Hepatol., 2011, 9(6), 524-530.e1.[http://dx.doi.org/10.1016/j.cgh.2011.03.020] [PMID: 21440669]
[165]
Takahashi, N.; Qi, Y.; Patel, H.R.; Ahima, R.S. A novel aminosterol reverses diabetes and fatty liver disease in obese mice. J. Hepatol., 2004, 41(3), 391-398.[http://dx.doi.org/10.1016/j.jhep.2004.05.006] [PMID: 15336441]
[166]
Mahla, R.S. Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol., 2016, 2016, 6940283.[http://dx.doi.org/10.1155/2016/6940283] [PMID: 27516776]
[167]
Smith, A.M.; Maguire-Nguyen, K.K.; Rando, T.A.; Zasloff, M.A.; Strange, K.B.; Yin, V.P.; Strange Kevin, B.; Yin Viravuth, P.; Zasloff Michael, A. The protein tyrosine phosphatase 1B inhibitor MSI-1436 stimulates regeneration of heart and multiple other tissues. NPJ Regen. Med., 2017, 2, 4.[http://dx.doi.org/10.1038/s41536-017-0008-1] [PMID: 29302341]
[168]
Perni, M.; Flagmeier, P.; Limbocker, R.; Cascella, R.; Aprile, F.A.; Galvagnion, C.; Heller, G.T.; Meisl, G.; Chen, S.W.; Kumita, J.R.; Challa, P.K.; Kirkegaard, J.B.; Cohen, S.I.A.; Mannini, B.; Barbut, D.; Nollen, E.A.A.; Cecchi, C.; Cremades, N.; Knowles, T.P.J.; Chiti, F.; Zasloff, M.; Vendruscolo, M.; Dobson, C.M.; Challa Pavan, K.; Cohen Samuel, I.A.; Mannini, B.; Knowles Tuomas, P.J.; Vendruscolo, M.; Dobson Christopher, M.; Cascella, R.; Cecchi, C.; Chiti, F.; Galvagnion, C.; Kirkegaard Julius, B.; Barbut, D.; Zasloff, M.; Nollen Ellen, A.A.; Cremades, N.; Knowles Tuomas, P.J.; Zasloff, M. Multistep inhibition of α-synuclein aggregation and toxicity in vitro and in vivo by trodusquemine. ACS Chem. Biol., 2018, 13(8), 2308-2319.[http://dx.doi.org/10.1021/acschembio.8b00466] [PMID: 29953201]
[169]
Limbocker, R.; Chia, S.; Ruggeri, F.S.; Perni, M.; Cascella, R.; Heller, G.T.; Meisl, G.; Mannini, B.; Habchi, J.; Michaels, T.C.T.; Challa, P.K.; Ahn, M.; Casford, S.T.; Fernando, N.; Xu, C.K.; Kloss, N.D.; Cohen, S.I.A.; Kumita, J.R.; Cecchi, C.; Zasloff, M.; Linse, S.; Knowles, T.P.J.; Chiti, F.; Vendruscolo, M.; Dobson, C.M.; Linse, S.; Knowles Tuomas, P.J. Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nat. Commun., 2019, 10(1), 225.[http://dx.doi.org/10.1038/s41467-018-07699-5] [PMID: 30644384]
[170]
Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci., 2016, 8(2), 83-91.[http://dx.doi.org/10.4103/0975-7406.171700] [PMID: 27134458]
[171]
Xu, M.; Davis, R.A.; Feng, Y.; Sykes, M.L.; Shelper, T.; Avery, V.M.; Camp, D.; Quinn, R.J. Ianthelliformisamines A-C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J. Nat. Prod., 2012, 75(5), 1001-1005.[http://dx.doi.org/10.1021/np300147d] [PMID: 22515429]
[172]
Fusetani, N.; Masuda, Y.; Nakao, Y.; Matsunaga, S.; van Soest, R.W.M. Three new bromotyrosine derivatives lethal to crab from the marine sponge, Pseudoceratina purpurea. Tetrahedron, 2001, 57(35), 7507-7511.[http://dx.doi.org/10.1016/S0040-4020(01)00735-9]
[173]
Pieri, C.; Borselli, D.; Di Giorgio, C.; De Méo, M.; Bolla, J-M.; Vidal, N.; Combes, S.; Brunel, J.M. New Ianthelliformisamine derivatives as antibiotic enhancers against resistant Gram-negative bacteria. J. Med. Chem., 2014, 57(10), 4263-4272.[http://dx.doi.org/10.1021/jm500194e] [PMID: 24801877]
[174]
Khan, F.A.; Ahmad, S.; Kodipelli, N.; Shivange, G.; Anindya, R. Syntheses of a library of molecules on the marine natural product ianthelliformisamines platform and their biological evaluation. Org. Biomol. Chem., 2014, 12(23), 3847-3865.[http://dx.doi.org/10.1039/c3ob42537a] [PMID: 24668192]
[175]
Choomuenwai, V.; Schwartz, B.D.; Beattie, K.D.; Andrews, K.T.; Khokhar, S.; Davis, R.A. The discovery, synthesis and antimalarial evaluation of natural product-based polyamine alkaloids. Tetrahedron Lett., 2013, 54(38), 5188-5191.[http://dx.doi.org/10.1016/j.tetlet.2013.07.058]
[176]
Matsunaga, S.; Kishi, R.; Otsuka, K.; Fujita, M.J.; Oikawa, M.; Sakai, R. Protoaculeine B, a putative N-terminal residue for the novel peptide toxin aculeines. Org. Lett., 2014, 16(11), 3090-3093.[http://dx.doi.org/10.1021/ol5011888] [PMID: 24845971]
[177]
Matsunaga, S.; Sakai, R.; Jimbo, M.; Kamiya, H. Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. Chem. Bio. Chem., 2007, 8(14), 1729-1735.[http://dx.doi.org/10.1002/cbic.200700305] [PMID: 17683052]
[178]
Shiozaki, H.; Miyahara, M.; Otsuka, K.; Miyako, K.; Honda, A.; Takasaki, Y.; Takamizawa, S.; Tukada, H.; Ishikawa, Y.; Sakai, R.; Oikawa, M. Studies on aculeines: synthetic strategy to the fully protected protoaculeine B, the N-terminal amino acid of Aculeine B. Org. Lett., 2018, 20(11), 3403-3407.[http://dx.doi.org/10.1021/acs.orglett.8b01331] [PMID: 29790756]
[179]
Bridoux, M.C.; Annenkov, V.V.; Menzel, H.; Keil, R.G.; Ingalls, A.E. A new liquid chromatography/electrospray ionization mass spectrometry method for the analysis of underivatized aliphatic long-chain polyamines: application to diatom-rich sediments. Rapid Commun. Mass Spectrom., 2011, 25(7), 877-888.[http://dx.doi.org/10.1002/rcm.4931] [PMID: 21416524]
[180]
Williams, D.E.; Lassota, P.; Andersen, R.J. Motuporamines A-C, Cytotoxic alkaloids isolated from the marine sponge Xestospongia exigua (Kirkpatrick). J. Org. Chem., 1998, 63(14), 4838-4841.[http://dx.doi.org/10.1021/jo980355p]
[181]
Williams, D.E.; Craig, K.S.; Patrick, B.; McHardy, L.M.; van Soest, R.; Roberge, M.; Andersen, R.J. Motuporamines, anti-invasion and anti-angiogenic alkaloids from the marine sponge Xestospongia exigua (Kirkpatrick): isolation, structure elucidation, analogue synthesis, and conformational analysis. J. Org. Chem., 2002, 67(1), 245-258.[http://dx.doi.org/10.1021/jo016101c] [PMID: 11777468]
[182]
Goldring, W.P.D.; Weiler, L. Cytotoxic alkaloids motuporamines A-C: synthesis and structural verification. Org. Lett., 1999, 1(9), 1471-1473.[http://dx.doi.org/10.1021/ol991029e] [PMID: 10825995]
[183]
Baldwin, J.E.; Vollmer, H.R.; Lee, V. Total synthesis of cytotoxic sponge alkaloids motuporamines A and B. Tetrahedron Lett., 1999, 40(29), 5401-5404.[http://dx.doi.org/10.1016/S0040-4039(99)01016-3]
[184]
Weston, M.H.; Nakajima, K.; Parvez, M.; Back, T.G. Ring-expansion of tertiary cyclic α-vinylamines by tandem conjugate addition to (p-toluenesulfonyl)ethyne and formal 3-aza-Cope rearrangement. Chem. Commun. (Camb.), 2006, (37), 3903-3905.[http://dx.doi.org/10.1039/b607713g] [PMID: 17268665]
[185]
Back, T.G. Design and synthesis of some biologically interesting natural and unnatural products based on organosulfur and selenium chemistry. Can. J. Chem., 2009, 87(12), 1657-1674.[http://dx.doi.org/10.1139/V09-133]
[186]
Marx, V.M.; Herbert, M.B.; Keitz, B.K.; Grubbs, R.H. Stereoselective access to Z and E macrocycles by ruthenium-catalyzed Z-selective ring-closing metathesis and ethenolysis. J. Am. Chem. Soc., 2013, 135(1), 94-97.[http://dx.doi.org/10.1021/ja311241q] [PMID: 23244210]
[187]
Fürstner, A.; Rumbo, A. Ring-closing alkyne metathesis. Stereoselective synthesis of the cytotoxic marine alkaloid motuporamine C. J. Org. Chem., 2000, 65(8), 2608-2611.[http://dx.doi.org/10.1021/jo991944d] [PMID: 10789486]
[188]
Zhou, L.; Li, Z.; Zou, Y.; Wang, Q.; Sanhueza, I.A.; Schoenebeck, F.; Goeke, A. Tandem nucleophilic addition/oxy-2-azonia-Cope rearrangement for the formation of homoallylic amides and lactams: total synthesis and structural verification of motuporamine G. J. Am. Chem. Soc., 2012, 134(49), 20009-20012.[http://dx.doi.org/10.1021/ja310002m] [PMID: 23181450]
[189]
Roskelley, C.D.; Williams, D.E.; McHardy, L.M.; Leong, K.G.; Troussard, A.; Karsan, A.; Andersen, R.J.; Dedhar, S.; Roberge, M. Inhibition of tumor cell invasion and angiogenesis by motuporamines. Cancer Res., 2001, 61(18), 6788-6794.[PMID: 11559552]
[190]
McHardy, L.M.; Sinotte, R.; Troussard, A.; Sheldon, C.; Church, J.; Williams, D.E.; Andersen, R.J.; Dedhar, S.; Roberge, M.; Roskelley, C.D. The tumor invasion inhibitor dihydromotuporamine C activates RHO, remodels stress fibers and focal adhesions, and stimulates sodium-proton exchange. Cancer Res., 2004, 64(4), 1468-1474.[http://dx.doi.org/10.1158/0008-5472.CAN-03-2733] [PMID: 14973060]
[191]
Kaur, N.; Delcros, J-G.; Martin, B.; Phanstiel, O., IV Synthesis and biological evaluation of dihydromotuporamine derivatives in cells containing active polyamine transporters. J. Med. Chem., 2005, 48(11), 3832-3839.[http://dx.doi.org/10.1021/jm0491288] [PMID: 15916435]
[192]
Breitbeil, F.III.; Kaur, N.; Delcros, J-G.; Martin, B.; Abboud, K.A.; Phanstiel, O., IV Modeling the preferred shapes of polyamine transporter ligands and dihydromotuporamine-C mimics: shovel versus hoe. J. Med. Chem., 2006, 49(8), 2407-2416.[http://dx.doi.org/10.1021/jm050814w] [PMID: 16610784]
[193]
Muth, A.; Pandey, V.; Kaur, N.; Wason, M.; Baker, C.; Han, X.; Johnson, T.R.; Altomare, D.A.; Phanstiel, O.IV. Synthesis and biological evaluation of antimetastatic agents predicated upon dihydromotuporamine C and its carbocyclic derivatives. J. Med. Chem., 2014, 57(10), 4023-4034.[http://dx.doi.org/10.1021/jm401906v] [PMID: 24784222]
[194]
Borselli, D.; Blanchet, M.; Bolla, J-M.; Muth, A.; Skruber, K.; Phanstiel, O., IV; Brunel, J.M. IV; Brunel, J.M. Motuporamine derivatives as antimicrobial agents and antibiotic enhancers against resistant gram-negative bacteria. ChemBioChem, 2017, 18(3), 276-283.[http://dx.doi.org/10.1002/cbic.201600532] [PMID: 28098416]
[195]
Skruber, K.; Chaplin, K.J.; Phanstiel, O.IV. Synthesis and bioevaluation of macrocycle-polyamine conjugates as cell migration inhibitors. J. Med. Chem., 2017, 60(20), 8606-8619.[http://dx.doi.org/10.1021/acs.jmedchem.7b01222] [PMID: 28976754]
[196]
Barbeau, K.; Zhang, G.; Live, D.H.; Butler, A. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus . J. Am. Chem. Soc., 2002, 124(3), 378-379.[http://dx.doi.org/10.1021/ja0119088] [PMID: 11792199]
[197]
Correnti, C.; Strong, R. K. Iron sequestration in immunity. Encycl. Inorg. Bioinorg. Chem., 2013, 1-11.[http://dx.doi.org/10.1002/9781119951438.eibc2142]
[198]
Koppisch, A.T.; Browder, C.C.; Moe, A.L.; Shelley, J.T.; Kinkel, B.A.; Hersman, L.E.; Iyer, S.; Ruggiero, C.E. Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. Biometals, 2005, 18(6), 577-585.[http://dx.doi.org/10.1007/s10534-005-1782-6] [PMID: 16388397]
[199]
Abergel, R.J.; Zawadzka, A.M.; Raymond, K.N. Petrobactin-mediated iron transport in pathogenic bacteria: coordination chemistry of an unusual 3,4-catecholate/citrate siderophore. J. Am. Chem. Soc., 2008, 130(7), 2124-2125.[http://dx.doi.org/10.1021/ja077202g] [PMID: 18220393]
[200]
Hickford, S.J.H.; Küpper, F.C.; Zhang, G.; Carrano, C.J.; Blunt, J.W.; Butler, A. Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. J. Nat. Prod., 2004, 67(11), 1897-1899.[http://dx.doi.org/10.1021/np049823i] [PMID: 15568785]
[201]
Homann, V.V.; Edwards, K.J.; Webb, E.A.; Butler, A. Siderophores of Marinobacter aquaeolei : petrobactin and its sulfonated derivatives. Biometals, 2009, 22(4), 565-571.[http://dx.doi.org/10.1007/s10534-009-9237-0] [PMID: 19357970]
[202]
Bergeron, R.J.; Huang, G.; Smith, R.E.; Bharti, N.; McManis, J.S.; Butler, A. Total synthesis and structure revision of petrobactin. Tetrahedron, 2003, 59(11), 2007-2014.[http://dx.doi.org/10.1016/S0040-4020(03)00103-0]
[203]
Barbeau, K.; Rue, E.L.; Trick, C.G.; Bruland, K.W.; Butler, A. Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnol. Oceanogr., 2003, 48(3), 1069-1078.[http://dx.doi.org/10.4319/lo.2003.48.3.1069]
[204]
Zhang, G.; Amin, S.A.; Küpper, F.C.; Holt, P.D.; Carrano, C.J.; Butler, A. Ferric stability constants of representative marine siderophores: marinobactins, aquachelins, and petrobactin. Inorg. Chem., 2009, 48(23), 11466-11473.[http://dx.doi.org/10.1021/ic901739m] [PMID: 19902959]
[205]
Harris, W.R.; Amin, S.A.; Küpper, F.C.; Green, D.H.; Carrano, C.J. Borate binding to siderophores: structure and stability. J. Am. Chem. Soc., 2007, 129(40), 12263-12271.[http://dx.doi.org/10.1021/ja073788v] [PMID: 17850151]
[206]
Zheng, T.; Nolan, E.M. Siderophore-based detection of Fe(III) and microbial pathogens. Metallomics, 2012, 4(9), 866-880.[http://dx.doi.org/10.1039/c2mt20082a] [PMID: 22854844]
[207]
Bugdahn, N.; Peuckert, F.; Albrecht, A.G.; Miethke, M.; Marahiel, M.A.; Oberthür, M. Direct identification of a siderophore import protein using synthetic petrobactin ligands. Angew. Chem. Int. Ed. Engl., 2010, 49(52), 10210-10213.[http://dx.doi.org/10.1002/anie.201005527] [PMID: 21117054]
[208]
Hagan, A.K.; Tripathi, A.; Berger, D.; Sherman, D.H.; Hanna, P.C. Petrobactin is exported from Bacillus anthracis by the RND-type exporter ApeX. MBio, 2017, 8(5), e01238-17.[http://dx.doi.org/10.1128/mBio.01238-17] [PMID: 28900020]
[209]
Gärdes, A.; Triana, C.; Amin, S.A.; Green, D.H.; Romano, A.; Trimble, L.; Carrano, C.J. Detection of photoactive siderophore biosynthetic genes in the marine environment. Biometals, 2013, 26(3), 507-516.[http://dx.doi.org/10.1007/s10534-013-9635-1] [PMID: 23700243]
[210]
Yarimizu, K.; Polido, G.; Gärdes, A.; Carter, M.L.; Hilbern, M.; Carrano, C.J. Evaluation of photo-reactive siderophore producing bacteria before, during and after a bloom of the dinoflagellate Lingulodinium polyedrum . Metallomics, 2014, 6(6), 1156-1163.[http://dx.doi.org/10.1039/C4MT00053F] [PMID: 24760287]
[211]
Gardner, R.A.; Kinkade, R.; Wang, C.; Phanstiel, O., IV Total synthesis of petrobactin and its homologues as potential growth stimuli for Marinobacter hydrocarbonoclasticus, an oil-degrading bacteria. J. Org. Chem., 2004, 69(10), 3530-3537.[http://dx.doi.org/10.1021/jo049803l] [PMID: 15132566]
[212]
Pandey, R.K.; Jarvis, G.G.; Low, P.S. Efficient synthesis of the siderophore petrobactin via antimony triethoxide mediated coupling. Tetrahedron Lett., 2012, 53(13), 1627-1629.[http://dx.doi.org/10.1016/j.tetlet.2012.01.074]
[213]
Bugdahn, N.; Oberthuer, M. Syntheses and iron binding affinities of the Bacillus anthracis siderophore petrobactin and side-chain-modified analogues. Eur. J. Org. Chem., 2014, 2014(2), 426-435.[http://dx.doi.org/10.1002/ejoc.201301340]
[214]
Abergel, R.J.; Wilson, M.K.; Arceneaux, J.E.L.; Hoette, T.M.; Strong, R.K.; Byers, B.R.; Raymond, K.N. Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc. Natl. Acad. Sci. USA, 2006, 103(49), 18499-18503.[http://dx.doi.org/10.1073/pnas.0607055103] [PMID: 17132740]
[215]
Cendrowski, S.; MacArthur, W.; Hanna, P. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol. Microbiol., 2004, 51(2), 407-417.[http://dx.doi.org/10.1046/j.1365-2958.2003.03861.x] [PMID: 14756782]
[216]
Koppisch, A.T.; Dhungana, S.; Hill, K.K.; Boukhalfa, H.; Heine, H.S.; Colip, L.A.; Romero, R.B.; Shou, Y.; Ticknor, L.O.; Marrone, B.L.; Hersman, L.E.; Iyer, S.; Ruggiero, C.E. Petrobactin is produced by both pathogenic and non-pathogenic isolates of the Bacillus cereus group of bacteria. Biometals, 2008, 21(5), 581-589.[http://dx.doi.org/10.1007/s10534-008-9144-9] [PMID: 18459058]
[217]
Dauner, M.; Eichinger, A.; Lücking, G.; Scherer, S.; Skerra, A. Reprogramming human siderocalin to neutralize petrobactin, the essential iron scavenger of Anthrax bacillus. Angew. Chem. Int. Ed. Engl., 2018, 57(44), 14619-14623.[http://dx.doi.org/10.1002/anie.201807442] [PMID: 30063283]
[218]
Lee, J.Y.; Janes, B.K.; Passalacqua, K.D.; Pfleger, B.F.; Bergman, N.H.; Liu, H.; Håkansson, K.; Somu, R.V.; Aldrich, C.C.; Cendrowski, S.; Hanna, P.C.; Sherman, D.H. Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J. Bacteriol., 2007, 189(5), 1698-1710.[http://dx.doi.org/10.1128/JB.01526-06] [PMID: 17189355]
[219]
Oves-Costales, D.; Kadi, N.; Fogg, M.J.; Song, L.; Wilson, K.S.; Challis, G.L. Enzymatic logic of anthrax stealth siderophore biosynthesis: AsbA catalyzes ATP-dependent condensation of citric acid and spermidine. J. Am. Chem. Soc., 2007, 129(27), 8416-8417.[http://dx.doi.org/10.1021/ja072391o] [PMID: 17579415]
[220]
Pfleger, B.F.; Lee, J.Y.; Somu, R.V.; Aldrich, C.C.; Hanna, P.C.; Sherman, D.H. Characterization and analysis of early enzymes for petrobactin biosynthesis in Bacillus anthracis. Biochemistry, 2007, 46(13), 4147-4157.[http://dx.doi.org/10.1021/bi6023995] [PMID: 17346033]
[221]
Koppisch, A.T.; Hotta, K.; Fox, D.T.; Ruggiero, C.E.; Kim, C-Y.; Sanchez, T.; Iyer, S.; Browder, C.C.; Unkefer, P.J.; Unkefer, C.J. Biosynthesis of the 3,4-dihydroxybenzoate moieties of petrobactin by Bacillus anthracis. J. Org. Chem., 2008, 73(15), 5759-5765.[http://dx.doi.org/10.1021/jo800427f] [PMID: 18582113]
[222]
Oves-Costales, D.; Kadi, N.; Fogg, M.J.; Song, L.; Wilson, K.S.; Challis, G.L. Petrobactin biosynthesis: AsbB catalyzes condensation of spermidine with N8-citryl-spermidine and its N1-(3,4-dihydroxybenzoyl) derivative. Chem. Commun. (Camb.), 2008, (34), 4034-4036.[http://dx.doi.org/10.1039/b809353a] [PMID: 18758617]
[223]
Pfleger, B.F.; Kim, Y.; Nusca, T.D.; Maltseva, N.; Lee, J.Y.; Rath, C.M.; Scaglione, J.B.; Janes, B.K.; Anderson, E.C.; Bergman, N.H.; Hanna, P.C.; Joachimiak, A.; Sherman, D.H. Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(44), 17133-17138.[http://dx.doi.org/10.1073/pnas.0808118105] [PMID: 18955706]
[224]
Oves-Costales, D.; Song, L.; Challis, G.L. Enantioselective desymmetrisation of citric acid catalysed by the substrate-tolerant petrobactin biosynthetic enzyme AsbA. Chem. Commun. (Camb.), 2009, (11), 1389-1391.[http://dx.doi.org/10.1039/b823147h] [PMID: 19259597]
[225]
Nusca, T.D.; Kim, Y.; Maltseva, N.; Lee, J.Y.; Eschenfeldt, W.; Stols, L.; Schofield, M.M.; Scaglione, J.B.; Dixon, S.D.; Oves-Costales, D.; Challis, G.L.; Hanna, P.C.; Pfleger, B.F.; Joachimiak, A.; Sherman, D.H. Functional and structural analysis of the siderophore synthetase AsbB through reconstitution of the petrobactin biosynthetic pathway from Bacillus anthracis. J. Biol. Chem., 2012, 287(19), 16058-16072.[http://dx.doi.org/10.1074/jbc.M112.359349] [PMID: 22408253]
[226]
Hotta, K.; Kim, C-Y.; Fox, D.T.; Koppisch, A.T. Siderophore-mediated iron acquisition in Bacillus anthracis and related strains. Microbiology (Reading), 2010, 156(Pt 7), 1918-1925.[http://dx.doi.org/10.1099/mic.0.039404-0] [PMID: 20466767]
[227]
Sheng, M.; Jia, H.; Tao, X.; Zeng, L.; Zhang, T.; Hu, Z.; And, Z.Z.; Liu, H. Mining, isolation and identification of siderophore synthesis gene from Brevibacillus brevis GZDF3. Am. J. Biochem. Biotechnol., 2018, 14(3), 200-209.[http://dx.doi.org/10.3844/ajbbsp.2018.200.209]
[228]
Daas, M.S.; Rosana, A.R.R.; Acedo, J.Z.; Douzane, M.; Nateche, F.; Kebbouche-Gana, S.; Vederas, J.C. Insights into the draft genome sequence of bioactives-producing Bacillus thuringiensis DNG9 isolated from Algerian soil-oil slough. Stand. Genomic Sci., 2018, 13, 25.[http://dx.doi.org/10.1186/s40793-018-0331-1] [PMID: 30344888]
[229]
Zawadzka, A.M.; Kim, Y.; Maltseva, N.; Nichiporuk, R.; Fan, Y.; Joachimiak, A.; Raymond, K.N. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc. Natl. Acad. Sci. USA, 2009, 106(51), 21854-21859.[http://dx.doi.org/10.1073/pnas.0904793106] [PMID: 19955416]
[230]
Zawadzka, A.M.; Abergel, R.J.; Nichiporuk, R.; Andersen, U.N.; Raymond, K.N. Siderophore-mediated iron acquisition systems in Bacillus cereus: Identification of receptors for anthrax virulence-associated petrobactin. Biochemistry, 2009, 48(16), 3645-3657.[http://dx.doi.org/10.1021/bi8018674] [PMID: 19254027]
[231]
Carlson, P.E.Jr.; Dixon, S.D.; Janes, B.K.; Carr, K.A.; Nusca, T.D.; Anderson, E.C.; Keene, S.E.; Sherman, D.H.; Hanna, P.C. Genetic analysis of petrobactin transport in Bacillus anthracis. Mol. Microbiol., 2010, 75(4), 900-909.[http://dx.doi.org/10.1111/j.1365-2958.2009.07025.x] [PMID: 20487286]
[232]
Pi, H.; Helmann, J.D. Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 2017, 114(48), 12785-12790.[http://dx.doi.org/10.1073/pnas.1713008114] [PMID: 29133393]
[233]
Dixon, S.D.; Janes, B.K.; Bourgis, A.; Carlson, P.E.Jr.; Hanna, P.C. Multiple ABC transporters are involved in the acquisition of petrobactin in Bacillus anthracis. Mol. Microbiol., 2012, 84(2), 370-382.[http://dx.doi.org/10.1111/j.1365-2958.2012.08028.x] [PMID: 22429808]
[234]
Hagan, A.K.; Carlson, P.E.Jr.; Hanna, P.C. Flying under the radar: The non-canonical biochemistry and molecular biology of petrobactin from Bacillus anthracis. Mol. Microbiol., 2016, 102(2), 196-206.[http://dx.doi.org/10.1111/mmi.13465] [PMID: 27425635]
[235]
Hagan, A.K.; Plotnick, Y.M.; Dingle, R.E.; Mendel, Z.I.; Cendrowski, S.R.; Sherman, D.H.; Tripathi, A.; Hanna, P.C. Petrobactin protects against oxidative stress and enhances sporulation efficiency in Bacillus anthracis sterne. MBio, 2018, 9(6), e02079-e18.[http://dx.doi.org/10.1128/mBio.02079-18] [PMID: 30401780]
[236]
Lee, J.Y.; Passalacqua, K.D.; Hanna, P.C.; Sherman, D.H. Regulation of petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and oxygen variation. PLoS One, 2011, 6(6), e20777.[http://dx.doi.org/10.1371/journal.pone.0020777] [PMID: 21673962]
[237]
Steglich, W.; Steffan, B.; Stroech, K.; Wolf, M. Pistillarin, a characteristic metabolite of Clavariadelphus pistillaris and several Ramaria species (Basidiomycetes). Z. Naturforsch. Cell Biosci., 1984, 39(1-2), 10-12.
[238]
Capon, R.J.; Stewart, M.; Ratnayake, R.; Lacey, E.; Gill, J.H. Citromycetins and bilains A-C: new aromatic polyketides and diketopiperazines from Australian marine-derived and terrestrial Penicillium spp. J. Nat. Prod., 2007, 70(11), 1746-1752.[http://dx.doi.org/10.1021/np0702483] [PMID: 17958395]
[239]
Li, L-F.; Chan, B.C-L.; Yue, G.G-L.; Lau, C.B-S.; Han, Q-B.; Leung, P-C.; Liu, J-K.; Fung, K-P. Two immunosuppressive compounds from the mushroom Rubinoboletus ballouii using human peripheral blood mononuclear cells by bioactivity-guided fractionation. Phytomedicine, 2013, 20(13), 1196-1202.[http://dx.doi.org/10.1016/j.phymed.2013.06.005] [PMID: 23830817]
[240]
Lee, I-K.; Ki, D-W.; Kim, S-E.; Yeom, J-H.; Kim, Y-S.; Yun, B-S. Pistillarin salt, a dicatecholspermidine family member from Gomphus floccosus, inhibits DNA single strand breakage by the Fenton reaction. J. Korean Soc. Appl. Biol. Chem., 2011, 54, 312-315.[http://dx.doi.org/10.3839/jksabc.2011.050]
[241]
Pine, E.M.; Hibbett, D.S.; Donoghue, M.J. Phylogenetic relationships of cantharelloid and clavarioid Homobasidiomycetes based on mitochondrial and nuclear rDNA sequences. Mycologia, 1999, 91(6), 944-963.[http://dx.doi.org/10.1080/00275514.1999.12061105]
[242]
Vidovic, S.; Zekovic, Z.; Jokic, S. Clavaria Mushrooms and extracts: investigation on valuable components and antioxidant properties. Int. J. Food Prop., 2014, 17(9), 2072-2081.[http://dx.doi.org/10.1080/10942912.2012.745129]
[243]
Sharma, S.K.; Miller, M.J.; Payne, S.M. Spermexatin and spermexatol: new synthetic spermidine-based siderophore analogues. J. Med. Chem., 1989, 32(2), 357-367.[http://dx.doi.org/10.1021/jm00122a013] [PMID: 2521517]
[244]
Reissbrodt, R.; Ramiandrasoa, F.; Bricard, L.; Kunesch, G. Siderophore activity of chemically synthesized dihydroxybenzoyl derivatives of spermidines and cystamide. Biometals, 1997, 10(2), 95-103.[http://dx.doi.org/10.1023/A:1018327122629] [PMID: 9210292]
[245]
Holinsworth, B.; Martin, J.D. Siderophore production by marine-derived fungi. Biometals, 2009, 22(4), 625-632.[http://dx.doi.org/10.1007/s10534-009-9239-y] [PMID: 19350395]
[246]
El Hage Chahine, J-M.; Bauer, A-M.; Baraldo, K.; Lion, C.; Ramiandrasoa, F.; Kunesch, G. Kinetics and thermodynamics of complex formation between FeIII and two synthetic chelators of the dicatecholspermidine family. Eur. J. Inorg. Chem., 2001, 2001(9), 2287-2296.[http://dx.doi.org/10.1002/1099-0682(200109)2001:9<2287::AID-EJIC2287>3.0.CO;2-7]
[247]
Beattie, K.D.; Ellwood, N.; Kumar, R.; Yang, X.; Healy, P.C.; Choomuenwai, V.; Quinn, R.J.; Elliott, A.G.; Huang, J.X.; Chitty, J.L.; Fraser, J.A.; Cooper, M.A.; Davis, R.A. Antibacterial and antifungal screening of natural products sourced from Australian fungi and characterisation of pestalactams D-F. Phytochemistry, 2016, 124, 79-85.[http://dx.doi.org/10.1016/j.phytochem.2015.12.014] [PMID: 26743853]
[248]
Parr, A.J.; Mellon, F.A.; Colquhoun, I.J.; Davies, H.V. Dihydrocaffeoyl polyamines (kukoamine and allies) in potato (Solanum tuberosum) tubers detected during metabolite profiling. J. Agric. Food Chem., 2005, 53(13), 5461-5466.[http://dx.doi.org/10.1021/jf050298i] [PMID: 15969534]
[249]
Li, Y-Y.; Di, R.; Baibado, J.T.; Cheng, Y-S.; Huang, Y-Q.; Sun, H.; Cheung, H-Y. Identification of kukoamines as the novel markers for quality assessment of Lycii cortex. Food Res. Int., 2014, 55, 373-380.[http://dx.doi.org/10.1016/j.foodres.2013.11.008]
[250]
Funayama, S.; Yoshida, K.; Konno, C.; Hikino, H. Structure of kukoamine A, a hypotensive principle of Lycium chinense root barks. Tetrahedron Lett., 1980, 21(14), 1355-1356.[http://dx.doi.org/10.1016/S0040-4039(00)74574-6]
[251]
Chantrapromma, K.; Ganem, B. Chemistry of naturally-occurring polyamines. 4. Total synthesis of kukoamine A, an antihypertensive constituent of Lycium chinense. Tetrahedron Lett., 1981, 22(1), 23-24.[http://dx.doi.org/10.1016/0040-4039(81)80030-5]
[252]
Page, P.; Burrage, S.; Baldock, L.; Bradley, M. The synthesis of symmetrical spermine conjugates using solid-phase chemistry. Bioorg. Med. Chem. Lett., 1998, 8(13), 1751-1756.[http://dx.doi.org/10.1016/S0960-894X(98)00303-5] [PMID: 9873428]
[253]
Garnelis, T.; Athanassopoulos, C.M.; Papaioannou, D.; Eggleston, I.M.; Fairlamb, A.H. Very short and efficient syntheses of the spermine alkaloid kukoamine A and analogs using isolable succinimidyl cinnamates. Chem. Lett., 2005, 34(2), 264-265.[http://dx.doi.org/10.1246/cl.2005.264]
[254]
Piletska, E.V.; Burns, R.; Terry, L.A.; Piletsky, S.A. Application of a molecularly imprinted polymer for the extraction of kukoamine a from potato peels. J. Agric. Food Chem., 2012, 60(1), 95-99.[http://dx.doi.org/10.1021/jf203669b] [PMID: 22142260]
[255]
Ponasik, J.A.; Strickland, C.; Faerman, C.; Savvides, S.; Karplus, P.A.; Ganem, B. Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase. Biochem. J., 1995, 311(Pt 2), 371-375.[http://dx.doi.org/10.1042/bj3110371] [PMID: 7487870]
[256]
Hu, X-L.; Gao, L-Y.; Niu, Y-X.; Tian, X.; Wang, J.; Meng, W-H.; Zhang, Q.; Cui, C.; Han, L.; Zhao, Q-C. Neuroprotection by Kukoamine A against oxidative stress may involve N-methyl-D-aspartate receptors. Biochim. Biophys. Acta, 2015, 1850(2), 287-298.[http://dx.doi.org/10.1016/j.bbagen.2014.11.006] [PMID: 25445711]
[257]
Li, Y-Y.; Hu, S.; Huang, Y-Q.; Han, Y.; Cheung, H-Y. Preventing H2O2-induced toxicity in primary cerebellar granule neuronsvia activating the PI3-K/Akt/GSK3β pathway by kukoamine from Lycii cortex. J. Funct. Foods, 2015, 17, 709-721.[http://dx.doi.org/10.1016/j.jff.2015.06.029]
[258]
Li, X.; Lin, J.; Chen, B.; Xie, H.; Chen, D. Antioxidant and cytoprotective effects of kukoamines A and B: comparison and positional isomeric effect. Molecules, 2018, 23(4), 973.[http://dx.doi.org/10.3390/molecules23040973] [PMID: 29690528]
[259]
Wang, Q.; Li, H.; Sun, Z.; Dong, L.; Gao, L.; Liu, C.; Wang, X. Kukoamine A inhibits human glioblastoma cell growth and migration through apoptosis induction and epithelial-mesenchymal transition attenuation. Sci. Rep., 2016, 6, 36543.[http://dx.doi.org/10.1038/srep36543] [PMID: 27824118]
[260]
Zhang, Y.; Cheng, Z.; Wang, C.; Ma, H.; Meng, W.; Zhao, Q. Neuroprotective effects of kukoamine A against radiation-induced rat brain injury through inhibition of oxidative stress and neuronal apoptosis. Neurochem. Res., 2016, 41(10), 2549-2558.[http://dx.doi.org/10.1007/s11064-016-1967-0] [PMID: 27241194]
[261]
Zhang, Y.; Gao, L.; Cheng, Z.; Cai, J.; Niu, Y.; Meng, W.; Zhao, Q.; Kukoamine, A. Kukoamine A prevents radiation-induced neuroinflammation and preserves hippocampal neurogenesis in rats by inhibiting activation of NF-κB and AP-1. Neurotox. Res., 2017, 31(2), 259-268.[http://dx.doi.org/10.1007/s12640-016-9679-4] [PMID: 27815817]
[262]
Liu, J.; Jiang, X.; Zhang, Q.; Lin, S.; Zhu, J.; Zhang, Y.; Du, J.; Hu, X.; Meng, W.; Zhao, Q. Neuroprotective effects of Kukoamine A against cerebral ischemiavia antioxidant and inactivation of apoptosis pathway. Neurochem. Int., 2017, 107, 191-197.[http://dx.doi.org/10.1016/j.neuint.2016.12.024] [PMID: 28088348]
[263]
Jiang, G.; Takase, M.; Aihara, Y.; Shigemori, H. Inhibitory activities of kukoamines A and B from Lycii cortex on amyloid aggregation related to Alzheimer’s disease and type 2 diabetes. J. Nat. Med., 2020, 74(1), 247-251.[http://dx.doi.org/10.1007/s11418-019-01337-0] [PMID: 31267354]
[264]
Hu, X.; Song, Q.; Li, X.; Li, D.; Zhang, Q.; Meng, W.; Zhao, Q. Neuroprotective effects of Kukoamine A on neurotoxin-induced Parkinson’s model through apoptosis inhibition and autophagy enhancement. Neuropharmacology, 2017, 117, 352-363.[http://dx.doi.org/10.1016/j.neuropharm.2017.02.022] [PMID: 28238714]
[265]
Li, G.; Zhou, F.; Chen, Y.; Zhang, W.; Wang, N. Kukoamine A attenuates insulin resistance and fatty liver through downregulation of Srebp-1c. Biomed. Pharmacother., 2017, 89, 536-543.[http://dx.doi.org/10.1016/j.biopha.2017.02.024] [PMID: 28254666]
[266]
Moreau, R.A.; Nuñez, A.; Singh, V. Diferuloylputrescine and p-coumaroyl-feruloylputrescine, abundant polyamine conjugates in lipid extracts of maize kernels. Lipids, 2001, 36(8), 839-844.[http://dx.doi.org/10.1007/s11745-001-0793-6] [PMID: 11592736]
[267]
Choi, S.W.; Lee, S.K.; Kim, E.O.; Oh, J.H.; Yoon, K.S.; Parris, N.; Hicks, K.B.; Moreau, R.A. Antioxidant and antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids. J. Agric. Food Chem., 2007, 55(10), 3920-3925.[http://dx.doi.org/10.1021/jf0635154] [PMID: 17397179]
[268]
Garcia, J.H.; Wagner, S.; Liu, K.F.; Hu, X.J. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke, 1995, 26(4), 627-634.[http://dx.doi.org/10.1161/01.str.26.4.627] [PMID: 7709410]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy