Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Intracellular Calcium Homeostasis and Kidney Disease

Author(s): Na Song, Ming Yang, Hao Zhang and Shi-kun Yang*

Volume 28, Issue 18, 2021

Published on: 02 November, 2020

Page: [3647 - 3665] Pages: 19

DOI: 10.2174/0929867327666201102114257

Price: $65

Open Access Journals Promotions 2
Abstract

Kidney disease is a serious health problem that burdens our healthcare system. It is crucial to find the accurate pathogenesis of various types of kidney disease to provide guidance for precise therapies for patients suffering from these diseases. However, the exact molecular mechanisms underlying these diseases have not been fully understood. Disturbance of calcium homeostasis in renal cells plays a fundamental role in the development of various types of kidney disease, such as primary glomerular disease, diabetic nephropathy, acute kidney injury and polycystic kidney disease, through promoting cell proliferation, stimulating extracellular matrix accumulation, aggravating podocyte injury, disrupting cellular energetics as well as dysregulating cell survival and death dynamics. As a result, preventing the disturbance of calcium homeostasis in specific renal cells (such as tubular cells, podocytes and mesangial cells) is becoming one of the most promising therapeutic strategies in the treatment of kidney disease. The endoplasmic reticulum and mitochondria are two vital organelles in this process. Calcium ions cycle between the endoplasmic reticulum and mitochondria at the conjugation of these two organelles known as the mitochondria-associated endoplasmic reticulum membrane, maintaining calcium homeostasis. The pharmacologic modulation of cellular calcium homeostasis can be viewed as a novel therapeutic method for renal diseases. Here, we will introduce calcium homeostasis under physiological conditions and the disturbance of calcium homeostasis in kidney diseases. We will focus on the calcium homeostasis regulation in renal cells (including tubular cells, podocytes and mesangial cells), especially in the mitochondria- associated endoplasmic reticulum membranes of these renal cells.

Keywords: Calcium homeostasis, cellular, kidney, endoplasmic reticulum, mitochondria, mitochondria-associated endoplasmic reticulum membrane.

[1]
Foster, R.R.; Welsh, G.I.; Satchell, S.C.; Marlow, R.D.; Wherlock, M.D.; Pons, D.; Mathieson, P.W.; Bates, D.O.; Saleem, M.A. Functional distinctions in cytosolic calcium regulation between cells of the glomerular filtration barrier. Cell Calcium, 2010, 48(1), 44-53.
[http://dx.doi.org/10.1016/j.ceca.2010.06.005] [PMID: 20674014]
[2]
Mai, X.; Shang, J.; Liang, S.; Yu, B.; Yuan, J.; Lin, Y.; Luo, R.; Zhang, F.; Liu, Y.; Lv, X.; Li, C.; Liang, X.; Wang, W.; Zhou, J. Blockade of orai1 store-operated calcium entry protects against renal fibrosis. J. Am. Soc. Nephrol., 2016, 27(10), 3063-3078.
[http://dx.doi.org/10.1681/ASN.2015080889] [PMID: 26940090]
[3]
Arruda, A.P.; Hotamisligil, G.S. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab., 2015, 22(3), 381-397.
[http://dx.doi.org/10.1016/j.cmet.2015.06.010] [PMID: 26190652]
[4]
Singh, A.V. Multiple sclerosis takes venous route: CCSVI and liberation therapy. Indian J. Med. Sci., 2010, 64(7), 337-340.
[http://dx.doi.org/10.4103/0019-5359.99879] [PMID: 22918077]
[5]
Singh, A.V.; Raymond, M.; Pace, F.; Certo, A.; Zuidema, J.M.; McKay, C.A.; Gilbert, R.J.; Lu, X.L.; Wan, L.Q. Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures. Sci. Rep., 2015, 5, 7847.
[http://dx.doi.org/10.1038/srep07847] [PMID: 25597401]
[6]
Demaurex, N.; Distelhorst, C. Cell biology. Apoptosis--the calcium connection. Science, 2003, 300(5616), 65-67.
[http://dx.doi.org/10.1126/science.1083628] [PMID: 12677047]
[7]
Somlyo, A.P. Excitation-contraction coupling and the ultrastructure of smooth muscle. Circ. Res., 1985, 57(4), 497-507.
[http://dx.doi.org/10.1161/01.RES.57.4.497] [PMID: 3899402]
[8]
Singh, A.V.; Kishore, V.; Santomauro, G.; Yasa, O.; Bill, J.; Sitti, M. Mechanical coupling of puller and pusher active microswimmers influences motility. Langmuir, 2020, 36(19), 5435-5443.
[http://dx.doi.org/10.1021/acs.langmuir.9b03665] [PMID: 32343587]
[9]
Singh, A.V.; Ansari, M.H.D.; Mahajan, M.; Srivastava, S.; Kashyap, S.; Dwivedi, P.; Pandit, V.; Katha, U. Sperm cell driven microrobots-emerging opportunities and challenges for biologically inspired robotic design. Micromachines (Basel), 2020, 11(4), E448.
[http://dx.doi.org/10.3390/mi11040448] [PMID: 32340402]
[10]
Singh, A.V.; Jungnickel, H.; Leibrock, L.; Tentschert, J.; Reichardt, P.; Katz, A.; Laux, P.; Luch, A. ToF-SIMS 3D imaging unveils important insights on the cellular microenvironment during biomineralization of gold nanostructures. Sci. Rep., 2020, 10(1), 261.
[http://dx.doi.org/10.1038/s41598-019-57136-w] [PMID: 31937806]
[11]
Raymond, M.J., Jr; Ray, P.; Kaur, G.; Fredericks, M.; Singh, A.V.; Wan, L.Q. Multiaxial polarity determines individual cellular and nuclear chirality. Cell. Mol. Bioeng., 2017, 10(1), 63-74.
[http://dx.doi.org/10.1007/s12195-016-0467-2] [PMID: 28360944]
[12]
Raymond, M.J., Jr; Ray, P.; Kaur, G.; Singh, A.V.; Wan, L.Q. Cellular and nuclear alignment analysis for determining epithelial cell chirality. Ann. Biomed. Eng., 2016, 44(5), 1475-1486.
[http://dx.doi.org/10.1007/s10439-015-1431-3] [PMID: 26294010]
[13]
Singh, A.V.; Mehta, K.K.; Worley, K.; Dordick, J.S.; Kane, R.S.; Wan, L.Q. Carbon nanotube-induced loss of multicellular chirality on micropatterned substrate is mediated by oxidative stress. ACS Nano, 2014, 8(3), 2196-2205.
[http://dx.doi.org/10.1021/nn405253d] [PMID: 24559311]
[14]
Clapham, D.E. Calcium signaling. Cell, 2007, 131(6), 1047-1058.
[http://dx.doi.org/10.1016/j.cell.2007.11.028] [PMID: 18083096]
[15]
Bernardi, P.; Rasola, A. Calcium and cell death: The mitochondrial connection. Subcell. Biochem., 2007, 45, 481-506.
[http://dx.doi.org/10.1007/978-1-4020-6191-2_18] [PMID: 18193649]
[16]
Xu, H.; Guan, N.; Ren, Y.L.; Wei, Q.J.; Tao, Y.H.; Yang, G.S.; Liu, X.Y.; Bu, D.F.; Zhang, Y.; Zhu, S.N. IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an Adriamycin nephropathy rat model. BMC Nephrol., 2018, 19(1), 140.
[http://dx.doi.org/10.1186/s12882-018-0940-3] [PMID: 29907098]
[17]
Lisak, D.A.; Schacht, T.; Enders, V.; Habicht, J.; Kiviluoto, S.; Schneider, J.; Henke, N.; Bultynck, G.; Methner, A. The transmembrane Bax inhibitor motif (TMBIM) containing protein family: Tissue expression, intracellular localization and effects on the ER CA2+-filling state. Biochim. Biophys. Acta, 2015, 1853(9), 2104-2114.
[http://dx.doi.org/10.1016/j.bbamcr.2015.03.002] [PMID: 25764978]
[18]
Gutiérrez, T.; Simmen, T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium, 2018, 70, 64-75.
[http://dx.doi.org/10.1016/j.ceca.2017.05.015] [PMID: 28619231]
[19]
Arduino, D.M.; Perocchi, F. Pharmacological modulation of mitochondrial calcium homeostasis. J. Physiol., 2018, 596(14), 2717-2733.
[http://dx.doi.org/10.1113/JP274959] [PMID: 29319185]
[20]
Csordás, G.; Várnai, P.; Golenár, T.; Roy, S.; Purkins, G.; Schneider, T.G.; Balla, T.; Hajnóczky, G. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell, 2010, 39(1), 121-132.
[http://dx.doi.org/10.1016/j.molcel.2010.06.029] [PMID: 20603080]
[21]
Bartok, A.; Weaver, D.; Golenár, T.; Nichtova, Z.; Katona, M.; Bánsághi, S.; Alzayady, K.J.; Thomas, V.K.; Ando, H.; Mikoshiba, K.; Joseph, S.K.; Yule, D.I.; Csordás, G.; Hajnóczky, G. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat. Commun., 2019, 10(1), 3726.
[http://dx.doi.org/10.1038/s41467-019-11646-3] [PMID: 31427578]
[22]
Rizzuto, R.; Pinton, P.; Carrington, W.; Fay, F.S.; Fogarty, K.E.; Lifshitz, L.M.; Tuft, R.A.; Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science, 1998, 280(5370), 1763-1766.
[http://dx.doi.org/10.1126/science.280.5370.1763] [PMID: 9624056]
[23]
Csordás, G.; Renken, C.; Várnai, P.; Walter, L.; Weaver, D.; Buttle, K.F.; Balla, T.; Mannella, C.A.; Hajnóczky, G. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol., 2006, 174(7), 915-921.
[http://dx.doi.org/10.1083/jcb.200604016] [PMID: 16982799]
[24]
Qi, H.; Li, L.; Shuai, J. Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations. Sci. Rep., 2015, 5, 7984.
[http://dx.doi.org/10.1038/srep07984] [PMID: 25614067]
[25]
Lam, A.K.; Galione, A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochim. Biophys. Acta, 2013, 1833(11), 2542-2559.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.004] [PMID: 23770047]
[26]
Naon, D.; Zaninello, M.; Giacomello, M.; Varanita, T.; Grespi, F.; Lakshminaranayan, S.; Serafini, A.; Semenzato, M.; Herkenne, S.; Hernández-Alvarez, M.I.; Zorzano, A.; De Stefani, D.; Dorn, G.W., II; Scorrano, L. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc. Natl. Acad. Sci. USA, 2016, 113(40), 11249-11254.
[http://dx.doi.org/10.1073/pnas.1606786113] [PMID: 27647893]
[27]
Szabadkai, G.; Bianchi, K.; Várnai, P.; De Stefani, D.; Wieckowski, M.R.; Cavagna, D.; Nagy, A.I.; Balla, T.; Rizzuto, R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol., 2006, 175(6), 901-911.
[http://dx.doi.org/10.1083/jcb.200608073] [PMID: 17178908]
[28]
Smets, I.; Caplanusi, A.; Despa, S.; Molnar, Z.; Radu, M.; VandeVen, M.; Ameloot, M.; Steels, P. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am. J. Physiol. Renal Physiol., 2004, 286(4), F784-F794.
[http://dx.doi.org/10.1152/ajprenal.00284.2003] [PMID: 14665432]
[29]
Petrungaro, C.; Zimmermann, K.M.; Küttner, V.; Fischer, M.; Dengjel, J.; Bogeski, I.; Riemer, J. The Ca(2+)-dependent release of the Mia40-induced MICU1-MICU2 dimer from MCU regulates mitochondrial Ca(2+) uptake. Cell Metab., 2015, 22(4), 721-733.
[http://dx.doi.org/10.1016/j.cmet.2015.08.019] [PMID: 26387864]
[30]
Xing, Y.; Wang, M.; Wang, J.; Nie, Z.; Wu, G.; Yang, X.; Shen, Y. Dimerization of MICU proteins controls Ca2+ influx through the mitochondrial Ca2+ uniporter. Cell Rep., 2019, 26(5), 1203-1212.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.01.022] [PMID: 30699349]
[31]
Penna, E.; Espino, J.; De Stefani, D.; Rizzuto, R. The MCU complex in cell death. Cell Calcium, 2018, 69, 73-80.
[http://dx.doi.org/10.1016/j.ceca.2017.08.008] [PMID: 28867646]
[32]
Wang, H.J.; Guay, G.; Pogan, L.; Sauvé, R.; Nabi, I.R. Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J. Cell Biol., 2000, 150(6), 1489-1498.
[http://dx.doi.org/10.1083/jcb.150.6.1489] [PMID: 10995452]
[33]
Kowaltowski, A.J.; Menezes-Filho, S.L.; Assali, E.A.; Gonçalves, I.G.; Cabral-Costa, J.V.; Abreu, P.; Miller, N.; Nolasco, P.; Laurindo, F.R.M.; Bruni-Cardoso, A.; Shirihai, O.S. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J., 2019, 33(12), 13176-13188.
[http://dx.doi.org/10.1096/fj.201901136R] [PMID: 31480917]
[34]
Gallego-Sandín, S.; Alonso, M.T.; García-Sancho, J. Calcium homoeostasis modulator 1 (CALHM1) reduces the calcium content of the endoplasmic reticulum (ER) and triggers ER stress. Biochem. J., 2011, 437(3), 469-475.
[http://dx.doi.org/10.1042/BJ20110479] [PMID: 21574960]
[35]
Chhabra, R.; Dubey, R.; Saini, N. Gene expression profiling indicate role of ER stress in miR-23a~27a~24-2 cluster induced apoptosis in HEK293T cells. RNA Biol., 2011, 8(4), 648-664.
[http://dx.doi.org/10.4161/rna.8.4.15583] [PMID: 21593605]
[36]
Zhang, Y.; Sun, R.; Geng, S.; Shan, Y.; Li, X.; Fang, W. Porcine circovirus type 2 induces ORF3-independent mitochondrial apoptosis via PERK activation and elevation of cytosolic calcium. J. Virol., 2019, 93(7), e01784-e18.
[http://dx.doi.org/10.1128/JVI.01784-18] [PMID: 30651358]
[37]
Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol., 2015, 6, 260-271.
[http://dx.doi.org/10.1016/j.redox.2015.08.010] [PMID: 26296072]
[38]
van Vliet, A.R.; Agostinis, P. Mitochondria-associated membranes and ER stress. Curr. Top. Microbiol. Immunol., 2018, 414, 73-102.
[http://dx.doi.org/10.1007/82_2017_2] [PMID: 28349285]
[39]
Verfaillie, T.; Rubio, N.; Garg, A.D.; Bultynck, G.; Rizzuto, R.; Decuypere, J.P.; Piette, J.; Linehan, C.; Gupta, S.; Samali, A.; Agostinis, P. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ., 2012, 19(11), 1880-1891.
[http://dx.doi.org/10.1038/cdd.2012.74] [PMID: 22705852]
[40]
Lan, B.; He, Y.; Sun, H.; Zheng, X.; Gao, Y.; Li, N. The roles of mitochondria-associated membranes in mitochondrial quality control under endoplasmic reticulum stress. Life Sci., 2019, 231, 116587.
[http://dx.doi.org/10.1016/j.lfs.2019.116587] [PMID: 31220526]
[41]
Kerkhofs, M.; Bultynck, G.; Vervliet, T.; Monaco, G. Therapeutic implications of novel peptides targeting ER-mitochondria Ca2+-flux systems. Drug Discov. Today, 2019, 24(5), 1092-1103.
[http://dx.doi.org/10.1016/j.drudis.2019.03.020] [PMID: 30910738]
[42]
Wang, X.; Pluznick, J.L.; Wei, P.; Padanilam, B.J.; Sansom, S.C. TRPC4 forms store-operated Ca2+ channels in mouse mesangial cells. Am. J. Physiol. Cell Physiol., 2004, 287(2), C357-C364.
[http://dx.doi.org/10.1152/ajpcell.00068.2004] [PMID: 15044151]
[43]
Raffaello, A.; Mammucari, C.; Gherardi, G.; Rizzuto, R. Calcium at the center of cell signaling: Interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem. Sci., 2016, 41(12), 1035-1049.
[http://dx.doi.org/10.1016/j.tibs.2016.09.001] [PMID: 27692849]
[44]
Malli, R.; Graier, W.F. The role of mitochondria in the activation/maintenance of SOCE: The contribution of mitochondrial Ca2+ uptake, mitochondrial motility, and location to store-operated Ca2+ entry. Adv. Exp. Med. Biol., 2017, 993, 297-319.
[http://dx.doi.org/10.1007/978-3-319-57732-6_16] [PMID: 28900921]
[45]
Sours-Brothers, S.; Ding, M.; Graham, S.; Ma, R. Interaction between TRPC1/TRPC4 assembly and STIM1 contributes to store-operated Ca2+ entry in mesangial cells. Exp. Biol. Med. (Maywood), 2009, 234(6), 673-682.
[http://dx.doi.org/10.3181/0809-RM-279] [PMID: 19307462]
[46]
Meng, K.; Xu, J.; Zhang, C.; Zhang, R.; Yang, H.; Liao, C.; Jiao, J. Calcium sensing receptor modulates extracellular calcium entry and proliferation via TRPC3/6 channels in cultured human mesangial cells. PLoS One, 2014, 9(6), e98777.
[http://dx.doi.org/10.1371/journal.pone.0098777] [PMID: 24905090]
[47]
Piwkowska, A.; Rogacka, D.; Audzeyenka, I.; Kasztan, M.; Angielski, S.; Jankowski, M. Intracellular calcium signaling regulates glomerular filtration barrier permeability: The role of the PKGIα-dependent pathway. FEBS Lett., 2016, 590(12), 1739-1748.
[http://dx.doi.org/10.1002/1873-3468.12228] [PMID: 27230807]
[48]
Li, W.; Ding, Y.; Smedley, C.; Wang, Y.; Chaudhari, S.; Birnbaumer, L.; Ma, R. Increased glomerular filtration rate and impaired contractile function of mesangial cells in TRPC6 knockout mice. Sci. Rep., 2017, 7(1), 4145.
[http://dx.doi.org/10.1038/s41598-017-04067-z] [PMID: 28646178]
[49]
Harita, Y.; Kurihara, H.; Kosako, H.; Tezuka, T.; Sekine, T.; Igarashi, T.; Ohsawa, I.; Ohta, S.; Hattori, S. Phosphorylation of nephrin triggers Ca2+ signaling by recruitment and activation of phospholipase C-gamma1. J. Biol. Chem., 2009, 284(13), 8951-8962.
[http://dx.doi.org/10.1074/jbc.M806851200] [PMID: 19179337]
[50]
van der Wijst, J.; van Goor, M.K.; Schreuder, M.F.; Hoenderop, J.G. TRPV5 in renal tubular calcium handling and its potential relevance for nephrolithiasis. Kidney Int., 2019, 96(6), 1283-1291.
[http://dx.doi.org/10.1016/j.kint.2019.05.029] [PMID: 31471161]
[51]
Wu, D.; Chen, X.; Guo, D.; Hong, Q.; Fu, B.; Ding, R.; Yu, L.; Hou, K.; Feng, Z.; Zhang, X.; Wang, J. Knockdown of fibronectin induces mitochondria-dependent apoptosis in rat mesangial cells. J. Am. Soc. Nephrol., 2005, 16(3), 646-657.
[http://dx.doi.org/10.1681/ASN.2004060445] [PMID: 15677310]
[52]
Foster, R.R.; Zadeh, M.A.; Welsh, G.I.; Satchell, S.C.; Ye, Y.; Mathieson, P.W.; Bates, D.O.; Saleem, M.A. Flufenamic acid is a tool for investigating TRPC6-mediated calcium signalling in human conditionally immortalised podocytes and HEK293 cells. Cell Calcium, 2009, 45(4), 384-390.
[http://dx.doi.org/10.1016/j.ceca.2009.01.003] [PMID: 19232718]
[53]
Park, S.J.; Kim, Y.; Yang, S.M.; Henderson, M.J.; Yang, W.; Lindahl, M.; Urano, F.; Chen, Y.M. Discovery of endoplasmic reticulum calcium stabilizers to rescue ER-stressed podocytes in nephrotic syndrome. Proc. Natl. Acad. Sci. USA, 2019, 116(28), 14154-14163.
[http://dx.doi.org/10.1073/pnas.1813580116] [PMID: 31235574]
[54]
Sonneveld, R.; van der Vlag, J.; Baltissen, M.P.; Verkaart, S.A.; Wetzels, J.F.; Berden, J.H.; Hoenderop, J.G.; Nijenhuis, T. Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. Am. J. Pathol., 2014, 184(6), 1715-1726.
[http://dx.doi.org/10.1016/j.ajpath.2014.02.008] [PMID: 24731445]
[55]
Graham, S.; Ding, M.; Sours-Brothers, S.; Yorio, T.; Ma, J.X.; Ma, R. Downregulation of TRPC6 protein expression by high glucose, a possible mechanism for the impaired Ca2+ signaling in glomerular mesangial cells in diabetes. Am. J. Physiol. Renal Physiol., 2007, 293(4), F1381-F1390.
[http://dx.doi.org/10.1152/ajprenal.00185.2007] [PMID: 17699555]
[56]
McGowan, T.A.; Madesh, M.; Zhu, Y.; Wang, L.; Russo, M.; Deelman, L.; Henning, R.; Joseph, S.; Hajnoczky, G.; Sharma, K. TGF-beta-induced Ca(2+) influx involves the type III IP(3) receptor and regulates actin cytoskeleton. Am. J. Physiol. Renal Physiol., 2002, 282(5), F910-F920.
[http://dx.doi.org/10.1152/ajprenal.00252.2001] [PMID: 11934702]
[57]
Ziyadeh, F.N. Mediators of diabetic renal disease: The case for tgf-Beta as the major mediator. J. Am. Soc. Nephrol., 2004, 15(Suppl. 1), S55-S57.
[http://dx.doi.org/10.1097/01.ASN.0000093460.24823.5B] [PMID: 14684674]
[58]
McGowan, T.A.; Sharma, K. Regulation of inositol 1,4,5-trisphosphate receptors by transforming growth factor-beta: Implications for vascular dysfunction in diabetes. Kidney Int. Suppl., 2000, 77, S99-S103.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07716.x] [PMID: 10997698]
[59]
Sharma, K.; Deelman, L.; Madesh, M.; Kurz, B.; Ciccone, E.; Siva, S.; Hu, T.; Zhu, Y.; Wang, L.; Henning, R.; Ma, X.; Hajnoczky, G. Involvement of transforming growth factor-beta in regulation of calcium transients in diabetic vascular smooth muscle cells. Am. J. Physiol. Renal Physiol., 2003, 285(6), F1258-F1270.
[http://dx.doi.org/10.1152/ajprenal.00145.2003] [PMID: 12876066]
[60]
Sharma, K.; Wang, L.; Zhu, Y.; DeGuzman, A.; Cao, G.Y.; Lynn, R.B.; Joseph, S.K. Renal type I inositol 1,4,5-trisphosphate receptor is reduced in streptozotocin-induced diabetic rats and mice. Am. J. Physiol., 1999, 276(1), F54-F61.
[http://dx.doi.org/10.1152/ajprenal.1999.276.1.f54] [PMID: 9887080]
[61]
Kanwar, Y.S.; Sun, L. Shuttling of calcium between endoplasmic reticulum and mitochondria in the renal vasculature. Am. J. Physiol. Renal Physiol., 2008, 295(5), F1301-F1302.
[http://dx.doi.org/10.1152/ajprenal.90506.2008] [PMID: 18768586]
[62]
Yang, M.; Zhao, L.; Gao, P.; Zhu, X.; Han, Y.; Chen, X.; Li, L.; Xiao, Y.; Wei, L.; Li, C.; Xiao, L.; Yuan, S.; Liu, F.; Dong, L.Q.; Kanwar, Y.S.; Sun, L. DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. EBioMedicine, 2019, 43, 607-619.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.044] [PMID: 31060900]
[63]
Wei, X.; Wei, X.; Lu, Z.; Li, L.; Hu, Y.; Sun, F.; Jiang, Y.; Ma, H.; Zheng, H.; Yang, G.; Liu, D.; Gao, P.; Zhu, Z. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes. Metabolism, 2020, 105, 154182.
[http://dx.doi.org/10.1016/j.metabol.2020.154182] [PMID: 32061660]
[64]
Xu, S.; Nam, S.M.; Kim, J.H.; Das, R.; Choi, S.K.; Nguyen, T.T.; Quan, X.; Choi, S.J.; Chung, C.H.; Lee, E.Y.; Lee, I.K.; Wiederkehr, A.; Wollheim, C.B.; Cha, S.K.; Park, K.S. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis., 2015, 6(11), e1976.
[http://dx.doi.org/10.1038/cddis.2015.331] [PMID: 26583319]
[65]
Yuan, Z.; Cao, A.; Liu, H.; Guo, H.; Zang, Y.; Wang, Y.; Wang, Y.; Wang, H.; Yin, P.; Peng, W. Calcium uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. J. Cell. Biochem., 2017, 118(9), 2809-2818.
[http://dx.doi.org/10.1002/jcb.25930] [PMID: 28181698]
[66]
Jurkovicova, D.; Sedlakova, B.; Lacinova, L.; Kopacek, J.; Sulova, Z.; Sedlak, J.; Krizanova, O. Hypoxia differently modulates gene expression of inositol 1,4,5-trisphosphate receptors in mouse kidney and HEK 293 cell line. Ann. N. Y. Acad. Sci., 2008, 1148, 421-427.
[http://dx.doi.org/10.1196/annals.1410.034] [PMID: 19120137]
[67]
Malis, C.D.; Bonventre, J.V. Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage. J. Biol. Chem., 1986, 261(30), 14201-14208.
[http://dx.doi.org/10.1016/S0021-9258(18)67004-8] [PMID: 2876985]
[68]
Hou, X.; Xiao, H.; Zhang, Y.; Zeng, X.; Huang, M.; Chen, X.; Birnbaumer, L.; Liao, Y. Transient receptor potential channel 6 knockdown prevents apoptosis of renal tubular epithelial cells upon oxidative stress via autophagy activation. Cell Death Dis., 2018, 9(10), 1015.
[http://dx.doi.org/10.1038/s41419-018-1052-5] [PMID: 30282964]
[69]
Schrier, R.W.; Hensen, J. Cellular mechanism of ischemic acute renal failure: Role of Ca2+ and calcium entry blockers. Klin. Wochenschr., 1988, 66(18), 800-807.
[http://dx.doi.org/10.1007/BF01728940] [PMID: 2846945]
[70]
Wu, D.; Chen, X.; Ding, R.; Qiao, X.; Shi, S.; Xie, Y.; Hong, Q.; Feng, Z. Ischemia/reperfusion induce renal tubule apoptosis by inositol 1,4,5-trisphosphate receptor and L-type Ca2+ channel opening. Am. J. Nephrol., 2008, 28(3), 487-499.
[http://dx.doi.org/10.1159/000113107] [PMID: 18185015]
[71]
Jiang, X.; Liao, X.H.; Huang, L.L.; Sun, H.; Liu, Q.; Zhang, L. Overexpression of augmenter of liver regeneration (ALR) mitigates the effect of H2O2-induced endoplasmic reticulum stress in renal tubule epithelial cells. Apoptosis, 2019, 24(3-4), 278-289.
[http://dx.doi.org/10.1007/s10495-019-01517-z] [PMID: 30680481]
[72]
Kopacek, J.; Ondrias, K.; Sedlakova, B.; Tomaskova, J.; Zahradnikova, L.; Sedlak, J.; Sulova, Z.; Zahradnikova, A.; Pastorek, J.; Krizanova, O. Type 2 IP(3) receptors are involved in uranyl acetate induced apoptosis in HEK 293 cells. Toxicology, 2009, 262(1), 73-79.
[http://dx.doi.org/10.1016/j.tox.2009.05.006] [PMID: 19460415]
[73]
Arhatte, M.; Gunaratne, G.S.; El Boustany, C.; Kuo, I.Y.; Moro, C.; Duprat, F.; Plaisant, M.; Duval, H.; Li, D.; Picard, N.; Couvreux, A.; Duranton, C.; Rubera, I.; Pagnotta, S.; Lacas-Gervais, S.; Ehrlich, B.E.; Marchant, J.S.; Savage, A.M.; van Eeden, F.J.M.; Wilkinson, R.N.; Demolombe, S.; Honoré, E.; Patel, A. TMEM33 regulates intracellular calcium homeostasis in renal tubular epithelial cells. Nat. Commun., 2019, 10(1), 2024.
[http://dx.doi.org/10.1038/s41467-019-10045-y] [PMID: 31048699]
[74]
Wang, J.; Toan, S.; Li, R.; Zhou, H. Melatonin fine-tunes intracellular calcium signals and eliminates myocardial damage through the IP3R/MCU pathways in cardiorenal syndrome type 3. Biochem. Pharmacol., 2020, 174, 113832.
[http://dx.doi.org/10.1016/j.bcp.2020.113832] [PMID: 32006470]
[75]
Anyatonwu, G.I.; Ehrlich, B.E. Calcium signaling and polycystin-2. Biochem. Biophys. Res. Commun., 2004, 322(4), 1364-1373.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.043] [PMID: 15336985]
[76]
Li, Y.; Wright, J.M.; Qian, F.; Germino, G.G.; Guggino, W.B. Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J. Biol. Chem., 2005, 280(50), 41298-41306.
[http://dx.doi.org/10.1074/jbc.M510082200] [PMID: 16223735]
[77]
Di Mise, A.; Tamma, G.; Ranieri, M.; Centrone, M.; van den Heuvel, L.; Mekahli, D.; Levtchenko, E.N.; Valenti, G. Activation of Calcium-Sensing Receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells. Sci. Rep., 2018, 8(1), 5704.
[http://dx.doi.org/10.1038/s41598-018-23732-5] [PMID: 29632324]
[78]
Mamenko, M.; Zaika, O.; Boukelmoune, N.; O’Neil, R.G.; Pochynyuk, O. Deciphering physiological role of the mechanosensitive TRPV4 channel in the distal nephron. Am. J. Physiol. Renal Physiol., 2015, 308(4), F275-F286.
[http://dx.doi.org/10.1152/ajprenal.00485.2014] [PMID: 25503733]
[79]
Yamaguchi, T.; Hempson, S.J.; Reif, G.A.; Hedge, A.M.; Wallace, D.P. Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J. Am. Soc. Nephrol., 2006, 17(1), 178-187.
[http://dx.doi.org/10.1681/ASN.2005060645] [PMID: 16319189]
[80]
Tomilin, V.; Reif, G.A.; Zaika, O.; Wallace, D.P.; Pochynyuk, O. Deficient transient receptor potential vanilloid type 4 function contributes to compromised [Ca2+]i homeostasis in human autosomal-dominant polycystic kidney disease cells. FASEB J., 2018, 32(8), 4612-4623.
[http://dx.doi.org/10.1096/fj.201701535RR] [PMID: 29553832]
[81]
Lajdova, I.; Spustova, V.; Oksa, A.; Chorvatova, A.; Chorvat, D., Jr; Dzurik, R. Intracellular calcium homeostasis in patients with early stages of chronic kidney disease: Effects of vitamin D3 supplementation. Nephrol. Dial. Transplant., 2009, 24(11), 3376-3381.
[http://dx.doi.org/10.1093/ndt/gfp292] [PMID: 19531669]
[82]
Saliba, Y.; Karam, R.; Smayra, V.; Aftimos, G.; Abramowitz, J.; Birnbaumer, L.; Farès, N. Evidence of a role for fibroblast transient receptor potential canonical 3 Ca2+ channel in renal fibrosis. J. Am. Soc. Nephrol., 2015, 26(8), 1855-1876.
[http://dx.doi.org/10.1681/ASN.2014010065] [PMID: 25479966]
[83]
Eisner, V.; Csordás, G.; Hajnóczky, G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca2+ and reactive oxygen species signaling. J. Cell Sci., 2013, 126(Pt 14), 2965-2978.
[http://dx.doi.org/10.1242/jcs.093609] [PMID: 23843617]
[84]
Bernard-Marissal, N.; Chrast, R.; Schneider, B.L. Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: A broken relationship? Cell Death Dis., 2018, 9(3), 333.
[http://dx.doi.org/10.1038/s41419-017-0125-1] [PMID: 29491369]
[85]
Stacchiotti, A.; Favero, G.; Lavazza, A.; Monsalve, M.; Rodella, L.F.; Rezzani, R. Taurine supplementation alleviates puromycin aminonucleoside damage by modulating endoplasmic reticulum stress and mitochondrial-related apoptosis in rat kidney. Nutrients, 2018, 10(6), E689.
[http://dx.doi.org/10.3390/nu10060689] [PMID: 29843457]
[86]
Lim, J.H.; Kim, H.W.; Kim, M.Y.; Kim, T.W.; Kim, E.N.; Kim, Y.; Chung, S.; Kim, Y.S.; Choi, B.S.; Kim, Y.S.; Chang, Y.S.; Kim, H.W.; Park, C.W. Cinacalcet-mediated activation of the CaMKKβ-LKB1-AMPK pathway attenuates diabetic nephropathy in db/db mice by modulation of apoptosis and autophagy. Cell Death Dis., 2018, 9(3), 270.
[http://dx.doi.org/10.1038/s41419-018-0324-4] [PMID: 29449563]
[87]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[88]
Nougarede, A.; Popgeorgiev, N.; Kassem, L.; Omarjee, S.; Borel, S.; Mikaelian, I.; Lopez, J.; Gadet, R.; Marcillat, O.; Treilleux, I.; Villoutreix, B.O.; Rimokh, R.; Gillet, G. Breast cancer targeting through inhibition of the endoplasmic reticulum-based apoptosis regulator Nrh/BCL2L10. Cancer Res., 2018, 78(6), 1404-1417.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0846] [PMID: 29330143]
[89]
Nougarède, A.; Rimokh, R.; Gillet, G. BH4-mimetics and -antagonists: An emerging class of Bcl-2 protein modulators for cancer therapy. Oncotarget, 2018, 9(82), 35291-35292.
[http://dx.doi.org/10.18632/oncotarget.26250] [PMID: 30450157]
[90]
Ivanova, H.; Wagner, L.E., II; Tanimura, A.; Vandermarliere, E.; Luyten, T.; Welkenhuyzen, K.; Alzayady, K.J.; Wang, L.; Hamada, K.; Mikoshiba, K.; De Smedt, H.; Martens, L.; Yule, D.I.; Parys, J.B.; Bultynck, G. Bcl-2 and IP3 compete for the ligand-binding domain of IP3Rs modulating Ca2+ signaling output. Cell. Mol. Life Sci., 2019, 76(19), 3843-3859.
[http://dx.doi.org/10.1007/s00018-019-03091-8] [PMID: 30989245]
[91]
Distelhorst, C.W. Targeting Bcl-2-IP3 receptor interaction to treat cancer: A novel approach inspired by nearly a century treating cancer with adrenal corticosteroid hormones. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(11 Pt B), 1795-1804.
[http://dx.doi.org/10.1016/j.bbamcr.2018.07.020] [PMID: 30053503]
[92]
Ivanova, H.; Vervliet, T.; Monaco, G.; Terry, L.E.; Rosa, N.; Baker, M.R.; Parys, J.B.; Serysheva, I.I.; Yule, D.I.; Bultynck, G. Bcl-2-protein family as modulators of IP3 receptors and other organellar Ca2+ channels. Cold Spring Harb. Perspect. Biol., 2020, 12(4), a035089.
[http://dx.doi.org/10.1101/cshperspect.a035089] [PMID: 31501195]
[93]
Rong, Y.P.; Aromolaran, A.S.; Bultynck, G.; Zhong, F.; Li, X.; McColl, K.; Matsuyama, S.; Herlitze, S.; Roderick, H.L.; Bootman, M.D.; Mignery, G.A.; Parys, J.B.; De Smedt, H.; Distelhorst, C.W. Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's inhibition of apoptotic calcium signals. Mol. Cell, 2008, 31(2), 255-265.
[http://dx.doi.org/10.1016/j.molcel.2008.06.014] [PMID: 18657507]
[94]
Ando, H.; Kawaai, K.; Bonneau, B.; Mikoshiba, K. Remodeling of Ca2+ signaling in cancer: Regulation of inositol 1,4,5-trisphosphate receptors through oncogenes and tumor suppressors. Adv. Biol. Regul., 2018, 68, 64-76.
[http://dx.doi.org/10.1016/j.jbior.2017.12.001] [PMID: 29287955]
[95]
Li, L.; Cui, J.; Liu, Z.; Zhou, X.; Li, Z.; Yu, Y.; Jia, Y.; Zuo, D.; Wu, Y. Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicol. Lett., 2018, 285, 156-167.
[http://dx.doi.org/10.1016/j.toxlet.2018.01.004] [PMID: 29306025]
[96]
Parys, J.B.; Vervliet, T. New insights in the IP3 receptor and its regulation. Adv. Exp. Med. Biol., 2020, 1131, 243-270.
[http://dx.doi.org/10.1007/978-3-030-12457-1_10] [PMID: 31646513]
[97]
Monaco, G.; Decrock, E.; Akl, H.; Ponsaerts, R.; Vervliet, T.; Luyten, T.; De Maeyer, M.; Missiaen, L.; Distelhorst, C.W.; De Smedt, H.; Parys, J.B.; Leybaert, L.; Bultynck, G. Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2versus Bcl-Xl. Cell Death Differ., 2012, 19(2), 295-309.
[http://dx.doi.org/10.1038/cdd.2011.97] [PMID: 21818117]
[98]
Vervliet, T.; Gerasimenko, J.V.; Ferdek, P.E.; Jakubowska, M.A.; Petersen, O.H.; Gerasimenko, O.V.; Bultynck, G. BH4 domain peptides derived from Bcl-2/Bcl-XL as novel tools against acute pancreatitis. Cell Death Discov., 2018, 4, 58.
[http://dx.doi.org/10.1038/s41420-018-0054-5] [PMID: 29760956]
[99]
Monaco, G.; Vervliet, T.; Akl, H.; Bultynck, G. The selective BH4-domain biology of Bcl-2-family members: IP3Rs and beyond. Cell. Mol. Life Sci., 2013, 70(7), 1171-1183.
[http://dx.doi.org/10.1007/s00018-012-1118-y] [PMID: 22955373]
[100]
Gabellini, C.; Trisciuoglio, D.; Del Bufalo, D. Non-canonical roles of Bcl-2 and Bcl-xL proteins: Relevance of BH4 domain. Carcinogenesis, 2017, 38(6), 579-587.
[http://dx.doi.org/10.1093/carcin/bgx016] [PMID: 28203756]
[101]
Akl, H.; Monaco, G.; La Rovere, R.; Welkenhuyzen, K.; Kiviluoto, S.; Vervliet, T.; Molgó, J.; Distelhorst, C.W.; Missiaen, L.; Mikoshiba, K.; Parys, J.B.; De Smedt, H.; Bultynck, G. IP3R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP3R-derived peptide targeting the BH4 domain of Bcl-2. Cell Death Dis., 2013, 4(5), e632.
[http://dx.doi.org/10.1038/cddis.2013.140] [PMID: 23681227]
[102]
Yu, Y.; Xie, Q.; Liu, W.; Guo, Y.; Xu, N.; Xu, L.; Liu, S.; Li, S.; Xu, Y.; Sun, L. Increased intracellular Ca2+ decreases cisplatin resistance by regulating iNOS expression in human ovarian cancer cells. Biomed. Pharmacother., 2017, 86, 8-15.
[http://dx.doi.org/10.1016/j.biopha.2016.11.135] [PMID: 27936394]
[103]
Vargas-Jaimes, L.; Xiao, L.; Zhang, J.; Possani, L.D.; Valdivia, H.H.; Quintero-Hernández, V. Recombinant expression of Intrepicalcin from the scorpion Vaejovis intrepidus and its effect on skeletal ryanodine receptors. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(4), 936-946.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.032] [PMID: 28159581]
[104]
Ramos-Franco, J.; Fill, M. Approaching ryanodine receptor therapeutics from the calcin angle. J. Gen. Physiol., 2016, 147(5), 369-373.
[http://dx.doi.org/10.1085/jgp.201611599] [PMID: 27114611]
[105]
Gorski, P.A.; Ceholski, D.K.; Young, H.S. Structure-function relationship of the serca pump and its regulation by phospholamban and sarcolipin. Adv. Exp. Med. Biol., 2017, 981, 77-119.
[http://dx.doi.org/10.1007/978-3-319-55858-5_5] [PMID: 29594859]
[106]
Martin, P.D.; James, Z.M.; Thomas, D.D. Effect of phosphorylation on interactions between transmembrane domains of SERCA and phospholamban. Biophys. J., 2018, 114(11), 2573-2583.
[http://dx.doi.org/10.1016/j.bpj.2018.04.035] [PMID: 29874608]
[107]
Makarewich, C.A.; Munir, A.Z.; Schiattarella, G.G.; Bezprozvannaya, S.; Raguimova, O.N.; Cho, E.E.; Vidal, A.H.; Robia, S.L.; Bassel-Duby, R.; Olson, E.N. The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. eLife, 2018, 7, 7.
[http://dx.doi.org/10.7554/eLife.38319] [PMID: 30299255]
[108]
Valberg, S.J.; Soave, K.; Williams, Z.J.; Perumbakkam, S.; Schott, M.; Finno, C.J.; Petersen, J.L.; Fenger, C.; Autry, J.M.; Thomas, D.D. Coding sequences of sarcoplasmic reticulum calcium ATPase regulatory peptides and expression of calcium regulatory genes in recurrent exertional rhabdomyolysis. J. Vet. Intern. Med., 2019, 33(2), 933-941.
[http://dx.doi.org/10.1111/jvim.15425] [PMID: 30720217]
[109]
Singh, D.R.; Dalton, M.P.; Cho, E.E.; Pribadi, M.P.; Zak, T.J.; Šeflová, J.; Makarewich, C.A.; Olson, E.N.; Robia, S.L. Newly discovered micropeptide regulators of SERCA form oligomers but bind to the pump as monomers. J. Mol. Biol., 2019, 431(22), 4429-4443.
[http://dx.doi.org/10.1016/j.jmb.2019.07.037] [PMID: 31449798]
[110]
Prezma, T.; Shteinfer, A.; Admoni, L.; Raviv, Z.; Sela, I.; Levi, I.; Shoshan-Barmatz, V. VDAC1-based peptides: Novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis., 2013, 4(9), e809.
[http://dx.doi.org/10.1038/cddis.2013.316] [PMID: 24052077]
[111]
Arzoine, L.; Zilberberg, N.; Ben-Romano, R.; Shoshan-Barmatz, V. Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. J. Biol. Chem., 2009, 284(6), 3946-3955.
[http://dx.doi.org/10.1074/jbc.M803614200] [PMID: 19049977]
[112]
Shteinfer-Kuzmine, A.; Amsalem, Z.; Arif, T.; Zooravlov, A.; Shoshan-Barmatz, V. Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy. Mol. Oncol., 2018, 12(7), 1077-1103.
[http://dx.doi.org/10.1002/1878-0261.12313] [PMID: 29698587]
[113]
Azarashvili, T.; Krestinina, O.; Baburina, Y.; Odinokova, I.; Grachev, D.; Papadopoulos, V.; Akatov, V.; Lemasters, J.J.; Reiser, G. Combined effect of G3139 and TSPO ligands on Ca(2+)-induced permeability transition in rat brain mitochondria. Arch. Biochem. Biophys., 2015, 587, 70-77.
[http://dx.doi.org/10.1016/j.abb.2015.10.012] [PMID: 26498031]
[114]
Lai, J.C.; Tan, W.; Benimetskaya, L.; Miller, P.; Colombini, M.; Stein, C.A. A pharmacologic target of G3139 in melanoma cells may be the mitochondrial VDAC. Proc. Natl. Acad. Sci. USA, 2006, 103(19), 7494-7499.
[http://dx.doi.org/10.1073/pnas.0602217103] [PMID: 16648253]
[115]
Tan, W.; Loke, Y.H.; Stein, C.A.; Miller, P.; Colombini, M. Phosphorothioate oligonucleotides block the VDAC channel. Biophys. J., 2007, 93(4), 1184-1191.
[http://dx.doi.org/10.1529/biophysj.107.105379] [PMID: 17483171]
[116]
Mostert, J.P.; Koch, M.W.; Heerings, M.; Heersema, D.J.; De Keyser, J. Therapeutic potential of fluoxetine in neurological disorders. CNS Neurosci. Ther., 2008, 14(2), 153-164.
[http://dx.doi.org/10.1111/j.1527-3458.2008.00040.x] [PMID: 18482027]
[117]
Nahon, E.; Israelson, A.; Abu-Hamad, S.; Varda, S.B. Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. FEBS Lett., 2005, 579(22), 5105-5110.
[http://dx.doi.org/10.1016/j.febslet.2005.08.020] [PMID: 16139271]
[118]
Thinnes, F.P. Does fluoxetine (Prozak) block mitochondrial permeability transition by blocking VDAC as part of permeability transition pores? Mol. Genet. Metab., 2005, 84(4), 378.
[http://dx.doi.org/10.1016/j.ymgme.2004.12.008] [PMID: 15781203]
[119]
Yuan, S.; Fu, Y.; Wang, X.; Shi, H.; Huang, Y.; Song, X.; Li, L.; Song, N.; Luo, Y. Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis. FASEB J., 2008, 22(8), 2809-2820.
[http://dx.doi.org/10.1096/fj.08-107417] [PMID: 18381814]
[120]
Shoshan-Barmatz, V.; Golan, M. Mitochondrial VDAC1: Function in cell life and death and a target for cancer therapy. Curr. Med. Chem., 2012, 19(5), 714-735.
[http://dx.doi.org/10.2174/092986712798992110] [PMID: 22204343]
[121]
Koval, O.M.; Nguyen, E.K.; Santhana, V.; Fidler, T.P.; Sebag, S.C.; Rasmussen, T.P.; Mittauer, D.J.; Strack, S.; Goswami, P.C.; Abel, E.D.; Grumbach, I.M. Loss of MCU prevents mitochondrial fusion in G1-S phase and blocks cell cycle progression and proliferation. Sci. Signal., 2019, 12(579), eaav1439.
[http://dx.doi.org/10.1126/scisignal.aav1439] [PMID: 31040260]
[122]
Nguyen, E.K.; Koval, O.M.; Noble, P.; Broadhurst, K.; Allamargot, C.; Wu, M.; Strack, S.; Thiel, W.H.; Grumbach, I.M. CaMKII (Ca2+/calmodulin-dependent kinase II) in mitochondria of smooth muscle cells controls mitochondrial mobility, migration, and neointima formation. Arterioscler. Thromb. Vasc. Biol., 2018, 38(6), 1333-1345.
[http://dx.doi.org/10.1161/ATVBAHA.118.310951] [PMID: 29599132]
[123]
Cuello, F.; Lorenz, K. Inhibition of cardiac CaMKII to cure heart failure: Step by step towards translation? Basic Res. Cardiol., 2016, 111(6), 66.
[http://dx.doi.org/10.1007/s00395-016-0582-1] [PMID: 27683175]
[124]
Gaudio, E.; Paduano, F.; Ngankeu, A.; Ortuso, F.; Lovat, F.; Pinton, S.; D’Agostino, S.; Zanesi, N.; Aqeilan, R.I.; Campiglia, P.; Novellino, E.; Alcaro, S.; Croce, C.M.; Trapasso, F. A Fhit-mimetic peptide suppresses annexin A4-mediated chemoresistance to paclitaxel in lung cancer cells. Oncotarget, 2016, 7(21), 29927-29936.
[http://dx.doi.org/10.18632/oncotarget.9179] [PMID: 27166255]
[125]
Sun, Y.; Deng, T.; Lu, N.; Yan, M.; Zheng, X. B-type natriuretic peptide protects cardiomyocytes at reperfusion via mitochondrial calcium uniporter. Biomed. Pharmacother., 2010, 64(3), 170-176.
[http://dx.doi.org/10.1016/j.biopha.2009.09.024] [PMID: 20149572]
[126]
Zhang, L.; Lu, X.; Wang, J.; Li, P.; Li, H.; Wei, S.; Zhou, X.; Li, K.; Wang, L.; Wang, R.; Zhao, Y.; Xiao, X. Zingiberis rhizoma mediated enhancement of the pharmacological effect of aconiti lateralis radix praeparata against acute heart failure and the underlying biological mechanisms. Biomed. Pharmacother., 2017, 96, 246-255.
[http://dx.doi.org/10.1016/j.biopha.2017.09.145] [PMID: 28987949]
[127]
Nguyen, D.T.; He, S.; Han, J.H.; Park, J.; Seo, Y.W.; Kim, T.H. Mitochondrial targeting domain of NOXA causes necrosis in apoptosis-resistant tumor cells. Amino Acids, 2018, 50(12), 1707-1717.
[http://dx.doi.org/10.1007/s00726-018-2644-1] [PMID: 30196335]
[128]
Kim, J.Y.; Han, J.H.; Moon, A.R.; Park, J.H.; Chang, J.H.; Bae, J.; Kim, T.H. Minimal killing unit of the mitochondrial targeting domain of Noxa. J. Pept. Sci., 2013, 19(8), 485-490.
[http://dx.doi.org/10.1002/psc.2525] [PMID: 23794461]
[129]
Karch, J.; Bround, M.J.; Khalil, H.; Sargent, M.A.; Latchman, N.; Terada, N.; Peixoto, P.M.; Molkentin, J.D. Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Sci. Adv., 2019, 5(8), eaaw4597.
[http://dx.doi.org/10.1126/sciadv.aaw4597] [PMID: 31489369]
[130]
Mishra, J.; Davani, A.J.; Natarajan, G.K.; Kwok, W.M.; Stowe, D.F.; Camara, A.K.S. Cyclosporin A increases mitochondrial buffering of calcium: An additional mechanism in delaying mitochondrial permeability transition pore opening. Cells, 2019, 8(9), E1052.
[http://dx.doi.org/10.3390/cells8091052] [PMID: 31500337]
[131]
Ottani, F.; Latini, R.; Staszewsky, L.; La Vecchia, L.; Locuratolo, N.; Sicuro, M.; Masson, S.; Barlera, S.; Milani, V.; Lombardi, M.; Costalunga, A.; Mollichelli, N.; Santarelli, A.; De Cesare, N.; Sganzerla, P.; Boi, A.; Maggioni, A.P.; Limbruno, U. CYCLE Investigators. Cyclosporine A in reperfused myocardial infarction: The multicenter, controlled, open-label CYCLE trial. J. Am. Coll. Cardiol., 2016, 67(4), 365-374.
[http://dx.doi.org/10.1016/j.jacc.2015.10.081] [PMID: 26821623]
[132]
Gan, X.; Zhang, L.; Liu, B.; Zhu, Z.; He, Y.; Chen, J.; Zhu, J.; Yu, H. CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation. J. Physiol. Biochem., 2018, 74(3), 395-402.
[http://dx.doi.org/10.1007/s13105-018-0627-z] [PMID: 29679227]
[133]
Seidlmayer, L.K.; Gomez-Garcia, M.R.; Shiba, T.; Porter, G.A., Jr; Pavlov, E.V.; Bers, D.M.; Dedkova, E.N. Dual role of inorganic polyphosphate in cardiac myocytes: The importance of polyP chain length for energy metabolism and mPTP activation. Arch. Biochem. Biophys., 2019, 662, 177-189.
[http://dx.doi.org/10.1016/j.abb.2018.12.019] [PMID: 30571965]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy