Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

In Silico Approaches for the Prediction and Analysis of Antiviral Peptides: A Review

Author(s): Phasit Charoenkwan, Nuttapat Anuwongcharoen, Chanin Nantasenamat, Md. Mehedi Hasan and Watshara Shoombuatong*

Volume 27, Issue 18, 2021

Published on: 02 November, 2020

Page: [2180 - 2188] Pages: 9

DOI: 10.2174/1381612826666201102105827

Price: $65

Open Access Journals Promotions 2
Abstract

In light of the growing resistance toward current antiviral drugs, efforts to discover novel and effective antiviral therapeutic agents remain a pressing scientific effort. Antiviral peptides (AVPs) represent promising therapeutic agents due to their extraordinary advantages in terms of potency, efficacy and pharmacokinetic properties. The growing volume of newly discovered peptide sequences in the post-genomic era requires computational approaches for timely and accurate identification of AVPs. Machine learning (ML) methods such as random forest and support vector machine represent robust learning algorithms that are instrumental in successful peptide-based drug discovery. Therefore, this review summarizes the current state-of-the-art application of ML methods for identifying AVPs directly from the sequence information. We compare the efficiency of these methods in terms of the underlying characteristics of the dataset used along with feature encoding methods, ML algorithms, cross-validation methods and prediction performance. Finally, guidelines for the development of robust AVP models are also discussed. It is anticipated that this review will serve as a useful guide for the design and development of robust AVP and related therapeutic peptide predictors in the future.

Keywords: Therapeutic peptides, antiviral peptide, classification, machine learning, feature representation, feature selection.

[1]
Mäde V, Els-Heindl S, Beck-Sickinger AG. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 2014; 10: 1197-212.
[http://dx.doi.org/10.3762/bjoc.10.118] [PMID: 24991269]
[2]
Fotouhi N. Peptide therapeutics Peptide chemistry and drug design. 1st ed. New York: WH Freeman & Co. 2015; pp. 1-8.
[3]
Fox JL. Rare-disease drugs boosted by new prescription drug user fee act.ed^eds. Nature Publishing Group 2012.
[http://dx.doi.org/10.1038/nbt0812-733]
[4]
Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016; 44(D1): D1087-93.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[5]
Seshadri Sundararajan V, Gabere MN, Pretorius A, et al. DAMPD: a manually curated antimicrobial peptide database. Nucleic Acids Res 2012; 40(Database issue): D1108-12.
[http://dx.doi.org/10.1093/nar/gkr1063] [PMID: 22110032]
[6]
Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 2016; 44(D1): D1094-7.
[http://dx.doi.org/10.1093/nar/gkv1051] [PMID: 26467475]
[7]
Qureshi A, Thakur N, Tandon H, Kumar M. AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res 2014; 42(Database issue): D1147-53.
[http://dx.doi.org/10.1093/nar/gkt1191] [PMID: 24285301]
[8]
Pirtskhalava M, Gabrielian A, Cruz P, et al. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 2016; 44(D1): D1104-12.
[http://dx.doi.org/10.1093/nar/gkv1174] [PMID: 26578581]
[9]
Singh S, Chaudhary K, Dhanda SK, et al. SATPdb: a database of structurally annotated therapeutic peptides. Nucleic Acids Res 2016; 44(D1): D1119-26.
[http://dx.doi.org/10.1093/nar/gkv1114] [PMID: 26527728]
[10]
Rajput A, Thakur A, Sharma S, Kumar M. aBiofilm: a resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 2018; 46(D1): D894-900.
[http://dx.doi.org/10.1093/nar/gkx1157] [PMID: 29156005]
[11]
Sharma D, Priyadarshini P, Vrati S. Unraveling the web of viroinformatics: computational tools and databases in virus research. J Virol 2015; 89(3): 1489-501.
[http://dx.doi.org/10.1128/JVI.02027-14] [PMID: 25428870]
[12]
Chang KY, Yang J-R. Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS One 2013; 8(8): e70166.
[http://dx.doi.org/10.1371/journal.pone.0070166] [PMID: 23940542]
[13]
Beltrán Lissabet JF, Belén LH, Farias JG. AntiVPP 1.0: A portable tool for prediction of antiviral peptides. Comput Biol Med 2019; 107: 127-30.
[http://dx.doi.org/10.1016/j.compbiomed.2019.02.011] [PMID: 30802694]
[14]
Thakur N, Qureshi A, Kumar M. AVPpred: collection and prediction of highly effective antiviral peptides. Nucleic Acids Res 2012; 40(Web Server issue): W199-204 .
[http://dx.doi.org/10.1093/nar/gks450] [PMID: 22638580]
[15]
Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. Meta-iAVP: A sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation. Int J Mol Sci 2019; 20(22): 5743.
[http://dx.doi.org/10.3390/ijms20225743] [PMID: 31731751]
[16]
Wei L, Zhou C, Su R, Zou Q. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Bioinformatics 2019; 35(21): 4272-80.
[http://dx.doi.org/10.1093/bioinformatics/btz246] [PMID: 30994882]
[17]
Zare M, Mohabatkar H, Faramarzi FK, Beigi MM, Behbahani M. Using Chou’s pseudo amino acid composition and machine learning method to predict the antiviral peptides. Open Bioinform J 2015; 9(1): 13-9.
[http://dx.doi.org/10.2174/1875036201509010013]
[18]
Gomes B, Augusto MT, Felício MR, et al. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv 2018; 36(2): 415-29.
[http://dx.doi.org/10.1016/j.biotechadv.2018.01.004] [PMID: 29330093]
[19]
Henriques ST, Craik DJ. Cyclotides as templates in drug design. Drug Discov Today 2010; 15(1-2): 57-64.
[http://dx.doi.org/10.1016/j.drudis.2009.10.007] [PMID: 19878736]
[20]
Nawae W, Hannongbua S, Ruengjitchatchawalya M. Molecular dynamics exploration of poration and leaking caused by Kalata B1 in HIV-infected cell membrane compared to host and HIV membranes. Sci Rep 2017; 7(1): 3638.
[http://dx.doi.org/10.1038/s41598-017-03745-2] [PMID: 28620219]
[21]
Vigant F, Santos NC, Lee B. Broad-spectrum antivirals against viral fusion. Nat Rev Microbiol 2015; 13(7): 426-37.
[http://dx.doi.org/10.1038/nrmicro3475] [PMID: 26075364]
[22]
Ngai PH, Ng TB. Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse transcriptase activities from small scarlet runner beans. Biochem Cell Biol 2005; 83(2): 212-20.
[http://dx.doi.org/10.1139/o05-037] [PMID: 15864329]
[23]
Huang Y, Zhang J, Zhao Y-Y, et al. SPARC expression and prognostic value in non-small cell lung cancer. Chin J Cancer 2012; 31(11): 541-8.
[http://dx.doi.org/10.5732/cjc.012.10212] [PMID: 23114088]
[24]
Rothan HA, Bahrani H, Rahman NA, Yusof R. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus. BMC Microbiol 2014; 14: 140.
[http://dx.doi.org/10.1186/1471-2180-14-140] [PMID: 24885331]
[25]
Quintero-Gil C, Parra-Suescún J, Lopez-Herrera A, Orduz S. In-silico design and molecular docking evaluation of peptides derivatives from bacteriocins and porcine beta defensin-2 as inhibitors of Hepatitis E virus capsid protein. Virusdisease 2017; 28(3): 281-8.
[http://dx.doi.org/10.1007/s13337-017-0383-7] [PMID: 29291214]
[26]
Chiang AW, Wu WY, Wang T, Hwang MJ. Identification of Entry Factors Involved in Hepatitis C Virus Infection Based on Host-Mimicking Short Linear Motifs. PLOS Comput Biol 2017; 13(1): e1005368.
[http://dx.doi.org/10.1371/journal.pcbi.1005368] [PMID: 28129350]
[27]
Yin P, Zhang L, Ye F, et al. A screen for inhibitory peptides of hepatitis C virus identifies a novel entry inhibitor targeting E1 and E2. Sci Rep 2017; 7(1): 3976.
[http://dx.doi.org/10.1038/s41598-017-04274-8] [PMID: 28638089]
[28]
Nyanguile O. Peptide antiviral strategies as an alternative to treat lower respiratory viral infections. Front Immunol 2019; 10: 1366.
[http://dx.doi.org/10.3389/fimmu.2019.01366] [PMID: 31293570]
[29]
Rothan HA, Abdulrahman AY, Sasikumer PG, Othman S, Abd Rahman N, Yusof R. Protegrin-1 inhibits dengue NS2B-NS3 serine protease and viral replication in MK2 cells. BioMed Research International 2012.
[30]
Bulet P, Stöcklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 2004; 198: 169-84.
[http://dx.doi.org/10.1111/j.0105-2896.2004.0124.x] [PMID: 15199962]
[31]
Badani H, Garry RF, Wimley WC. Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. Biochim Biophys Acta 2014; 1838(9): 2180-97.
[http://dx.doi.org/10.1016/j.bbamem.2014.04.015] [PMID: 24780375]
[32]
Wang CK, Shih LY, Chang KY. Large-Scale Analysis of Antimicrobial Activities in Relation to Amphipathicity and Charge Reveals Novel Characterization of Antimicrobial Peptides. Molecules 2017; 22(11): 22.
[http://dx.doi.org/10.3390/molecules22112037] [PMID: 29165350]
[33]
Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides. Molecules 2019; 24(10): 1973.
[http://dx.doi.org/10.3390/molecules24101973] [PMID: 31121946]
[34]
Pratiwi R, Malik AA, Schaduangrat N, et al. Protegrin-1 inhibits dengue NS2B-NS3 serine protease and viral replication in MK2 cells. BioMed Research International 2017.
[http://dx.doi.org/10.1155/2017/9861752]
[35]
Win TS, Malik AA, Prachayasittikul V. S Wikberg JE, Nantasenamat C, Shoombuatong W. HemoPred: a web server for predicting the hemolytic activity of peptides. Future Med Chem 2017; 9(3): 275-91.
[http://dx.doi.org/10.4155/fmc-2016-0188] [PMID: 28211294]
[36]
Hongjaisee S, Nantasenamat C, Carraway TS, Shoombuatong W. HIVCoR: A sequence-based tool for predicting HIV-1 CRF01_AE coreceptor usage. Comput Biol Chem 2019; 80: 419-32.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.05.006] [PMID: 31146118]
[37]
Charoenkwan P, Schaduangrat N, Nantasenamat C, Piacham T, Shoombuatong W. Correction: Shoombuatong, W., et al. iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou’s 5-Steps Rule and Informative Physicochemical Properties. Int. J. Mol. Sci. 2020, 21, 75. Int J Mol Sci 2020; 21(7): 75.
[http://dx.doi.org/10.3390/ijms21072629] [PMID: 32290041]
[38]
Win TS, Schaduangrat N, Prachayasittikul V, Nantasenamat C, Shoombuatong W. PAAP: a web server for predicting antihypertensive activity of peptides. Future Med Chem 2018; 10(15): 1749-67.
[http://dx.doi.org/10.4155/fmc-2017-0300] [PMID: 30039980]
[39]
Laengsri V, Nantasenamat C, Schaduangrat N, Nuchnoi P, Prachayasittikul V, Shoombuatong W. TargetAntiAngio: A Sequence-Based Tool for the Prediction and Analysis of Anti-Angiogenic Peptides. Int J Mol Sci 2019; 20(12): 2950.
[http://dx.doi.org/10.3390/ijms20122950] [PMID: 31212918]
[40]
Su R, Hu J, Zou Q, Manavalan B, Wei L. Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief Bioinform 2019.
[PMID: 30649170]
[41]
Su Z-D, Huang Y, Zhang Z-Y, et al. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics 2018; 34(24): 4196-204.
[http://dx.doi.org/10.1093/bioinformatics/bty508] [PMID: 29931187]
[42]
Wei L, Su R, Luan S, et al. Iterative feature representations improve N4-methylcytosine site prediction. Bioinformatics 2019; 35(23): 4930-7.
[http://dx.doi.org/10.1093/bioinformatics/btz408] [PMID: 31099381]
[43]
Xu Z-C, Feng P-M, Yang H, Qiu W-R, Chen W, Lin H. iRNAD: a computational tool for identifying D modification sites in RNA sequence. Bioinformatics 2019; 35(23): 4922-9.
[http://dx.doi.org/10.1093/bioinformatics/btz358] [PMID: 31077296]
[44]
Zhang Z-Y, Yang Y-H, Ding H, Wang D, Chen W, Lin H. Design powerful predictor for mRNA subcellular location prediction in Homo sapiens. Brief Bioinform 2020; bbz177.
[http://dx.doi.org/10.1093/bib/bbz177] [PMID: 31994694]
[45]
Zhu X-J, Feng C-Q, Lai H-Y, Chen W, Hao L. Predicting protein structural classes for low-similarity sequences by evaluating different features. Knowl Base Syst 2019; 163: 787-93.
[http://dx.doi.org/10.1016/j.knosys.2018.10.007]
[46]
Manavalan B, Basith S, Shin TH, Choi S, Kim MO, Lee G. MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget 2017; 8(44): 77121-36.
[http://dx.doi.org/10.18632/oncotarget.20365] [PMID: 29100375]
[47]
Manavalan B, Basith S, Shin TH, Lee DY, Wei L, Lee G. 4mCpred-EL: An Ensemble Learning Framework for Identification of DNA N4-methylcytosine Sites in the Mouse Genome. Cells 2019; 8(11): 1332.
[http://dx.doi.org/10.3390/cells8111332] [PMID: 31661923]
[48]
Manavalan B, Basith S, Shin TH, Wei L, Lee G. mAHTPred: a sequence-based meta-predictor for improving the prediction of anti- hypertensive peptides using effective feature representation. Bioinformatics 2019; 35(16): 2757-65.
[http://dx.doi.org/10.1093/bioinformatics/bty1047] [PMID: 30590410]
[49]
Manavalan B, Basith S, Shin TH, Wei L, Lee G. Meta-4mCpred: a sequence-based meta-predictor for accurate DNA 4mC site prediction using effective feature representation. Mol Ther Nucleic Acids 2019; 16: 733-44.
[http://dx.doi.org/10.1016/j.omtn.2019.04.019] [PMID: 31146255]
[50]
Manavalan B, Lee J. SVMQA: support-vector-machine-based protein single-model quality assessment. Bioinformatics 2017; 33(16): 2496-503.
[http://dx.doi.org/10.1093/bioinformatics/btx222] [PMID: 28419290]
[51]
Manavalan B, Shin TH, Kim MO, Lee G. AIPpred: sequence-based prediction of anti-inflammatory peptides using random forest. Front Pharmacol 2018; 9: 276.
[http://dx.doi.org/10.3389/fphar.2018.00276] [PMID: 29636690]
[52]
Manavalan B, Shin TH, Lee G. PVP-SVM: sequence-based prediction of phage virion proteins using a support vector machine. Front Microbiol 2018; 9: 476.
[http://dx.doi.org/10.3389/fmicb.2018.00476] [PMID: 29616000]
[53]
Manavalan B, Subramaniyam S, Shin TH, Kim MO, Lee G. Machine- learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy. J Proteome Res 2018; 17(8): 2715-6.
[http://dx.doi.org/10.1021/acs.jproteome.8b00148] [PMID: 29893128]
[54]
Khatun MS, Hasan MM, Kurata H. PreAIP: computational prediction of anti-inflammatory peptides by integrating multiple complementary features. Front Genet 2019; 10: 129.
[http://dx.doi.org/10.3389/fgene.2019.00129] [PMID: 30891059]
[55]
Khatun S, Hasan M, Kurata H. Efficient computational model for identification of antitubercular peptides by integrating amino acid patterns and properties. FEBS Lett 2019; 593(21): 3029-39.
[http://dx.doi.org/10.1002/1873-3468.13536] [PMID: 31297788]
[56]
Lai H-Y, Zhang Z-Y, Su Z-D, et al. iProEP: a computational predictor for predicting promoter. Mol Ther Nucleic Acids 2019; 17: 337-46.
[http://dx.doi.org/10.1016/j.omtn.2019.05.028] [PMID: 31299595]
[57]
Li W-C, Deng E-Z, Ding H, Chen W, Lin H. iORI-PseKNC: a predictor for identifying origin of replication with pseudo k-tuple nucleotide composition. Chemom Intell Lab Syst 2015; 141: 100-6.
[http://dx.doi.org/10.1016/j.chemolab.2014.12.011]
[58]
Lin H, Ding H, Guo F-B, Huang J. Prediction of subcellular location of mycobacterial protein using feature selection techniques. Mol Divers 2010; 14(4): 667-71.
[http://dx.doi.org/10.1007/s11030-009-9205-1] [PMID: 19908156]
[59]
Lin H, Liang Z-Y, Tang H, Chen W. Identifying sigma70 promoters with novel pseudo nucleotide composition. IEEE/ACM Trans Comput Biol Bioinformatics 2017.
[PMID: 28186907]
[60]
Lv H, Zhang Z-M, Li S-H, Tan J-X, Chen W, Lin H. Evaluation of different computational methods on 5-methylcytosine sites identification. Brief Bioinform 2019.
[PMID: 31157855]
[61]
Shoombuatong W, Prathipati P, Prachayasittikul V, et al. ES Wikberg J, Paul Gleeson M, Spjuth O. Towards predicting the cytochrome P450 modulation: from QSAR to proteochemometric modeling. Curr Drug Metab 2017; 18(6): 540-55.
[http://dx.doi.org/10.2174/1389200218666170320121932] [PMID: 28322159]
[62]
Shoombuatong W, Schaduangrat N, Nantasenamat C. Towards understanding aromatase inhibitory activity via QSAR modeling. EXCLI J 2018; 17: 688-708.
[PMID: 30190660]
[63]
Dao F-Y, Lv H, Wang F, et al. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 2019; 35(12): 2075-83.
[http://dx.doi.org/10.1093/bioinformatics/bty943] [PMID: 30428009]
[64]
Feng C-Q, Zhang Z-Y, Zhu X-J, et al. iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics 2019; 35(9): 1469-77.
[http://dx.doi.org/10.1093/bioinformatics/bty827] [PMID: 30247625]
[65]
Hasan MM, Khatun MS, Kurata H. Large-scale assessment of bioinformatics tools for lysine succinylation sites. Cells 2019; 8(2): 95.
[http://dx.doi.org/10.3390/cells8020095] [PMID: 30696115]
[66]
Hasan MM, Khatun MS, Mollah MNH, Yong C, Dianjing G, Dianjing G. NTyroSite: Computational identification of protein nitrotyrosine sites using sequence evolutionary features. Molecules 2018; 23(7): 1667.
[http://dx.doi.org/10.3390/molecules23071667] [PMID: 29987232]
[67]
Hasan MM, Guo D, Kurata H. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information. Mol Biosyst 2017; 13(12): 2545-50.
[http://dx.doi.org/10.1039/C7MB00491E] [PMID: 28990628]
[68]
Hasan MM, Khatun MS, Kurata H. A comprehensive review of in silico analysis for protein S-sulfenylation sites. Protein Pept Lett 2018; 25(9): 815-21.
[http://dx.doi.org/10.2174/0929866525666180905110619] [PMID: 30182830]
[69]
Hasan MM, Khatun MS, Mollah MNH, Yong C, Guo D. A systematic identification of species-specific protein succinylation sites using joint element features information. Int J Nanomedicine 2017; 12: 6303-15.
[http://dx.doi.org/10.2147/IJN.S140875] [PMID: 28894368]
[70]
Hasan MM, Kurata H. GPSuc: Global Prediction of Generic and Species-specific Succinylation Sites by aggregating multiple sequence features. PLoS One 2018; 13(10): e0200283.
[http://dx.doi.org/10.1371/journal.pone.0200283] [PMID: 30312302]
[71]
Hasan MM, Manavalan B, Khatun MS, Kurata H. i4mC-ROSE, a bioinformatics tool for the identification of DNA N4- methylcytosine sites in the Rosaceae genome. Int J Biol Macromol 2019.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.009] [PMID: 31805335]
[72]
Hasan MM, Manavalan B, Khatun MS, Kurata H. Prediction of Snitrosylation sites by integrating support vector machines and random forest. Molecular omics 2019; 15: 451-8.
[73]
Hasan MM, Rashid MM, Khatun MS, Kurata H. Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information. Sci Rep 2019; 9(1): 8258.
[http://dx.doi.org/10.1038/s41598-019-44548-x] [PMID: 31164681]
[74]
Hasan MM, Yang S, Zhou Y, Mollah MNH. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties. Mol Biosyst 2016; 12(3): 786-95.
[http://dx.doi.org/10.1039/C5MB00853K] [PMID: 26739209]
[75]
Hasan MM, Zhou Y, Lu X, Li J, Song J, Zhang Z. Computational identification of protein pupylation sites by using profile-based composition of k-spaced amino acid pairs. PLoS One 2015; 10(6): e0129635.
[http://dx.doi.org/10.1371/journal.pone.0129635] [PMID: 26080082]
[76]
Charoenkwan P, Nantasenamat C, Hasan MM, Shoombuatong W. Meta-iPVP: a sequence-based meta-predictor for improving the prediction of phage virion proteins using effective feature representation. J Comput Aided Mol Des 2020; 34(10): 1105-16.
[http://dx.doi.org/10.1007/s10822-020-00323-z] [PMID: 32557165]
[77]
Charoenkwan P, Nantasenamat C, Hasan MM, Shoombuatong W. iTTCA-Hybrid: Improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation. Anal Biochem 2020; 599113747.
[http://dx.doi.org/10.1016/j.ab.2020.113747] [PMID: 32333902]
[78]
Charoenkwan P, Yana J, Schaduangrat N, Nantasenamat C, Hasan MM, Shoombuatong W. iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides. Genomics 2020; 112(4): 2813-22.
[http://dx.doi.org/10.1016/j.ygeno.2020.03.019] [PMID: 32234434]
[79]
Hasan MM, Manavalan B, Shoombuatong W, Khatun MS, Kurata H. i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation. Plant Mol Biol 2020; 103(1-2): 225-34.
[http://dx.doi.org/10.1007/s11103-020-00988-y] [PMID: 32140819]
[80]
Hasan MM, Schaduangrat N, Basith S, Lee G, Shoombuatong W, Manavalan B. HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation. Bioinformatics 2020; 36(11): 3350-6.
[http://dx.doi.org/10.1093/bioinformatics/btaa160] [PMID: 32145017]
[81]
Hasan MM, Manavalan B, Shoombuatong W, Khatun MS, Kurata H. i4mC-Mouse: Improved identification of DNA N4-methylcytosine sites in the mouse genome using multiple encoding schemes. Comput Struct Biotechnol J 2020; 18: 906-12.
[http://dx.doi.org/10.1016/j.csbj.2020.04.001] [PMID: 32322372]
[82]
Kawashima S, Kanehisa M. AAindex: amino acid index database. Nucleic Acids Res 2000; 28(1): 374-4.
[http://dx.doi.org/10.1093/nar/28.1.374] [PMID: 10592278]
[83]
Breiman L. Random forests. Mach Learn 2001; 45: 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[84]
Breiman L. Classification and regression trees. Routledge 2017.
[http://dx.doi.org/10.1201/9781315139470]
[85]
Boopathi V, Subramaniyam S, Malik A, Lee G, Manavalan B, Yang D-C. mACPpred: a support vector machine-based meta-predictor for identification of anticancer peptides. Int J Mol Sci 2019; 20(8): 1964.
[http://dx.doi.org/10.3390/ijms20081964] [PMID: 31013619]
[86]
Basith S, Manavalan B, Shin TH, Lee G. iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Comput Struct Biotechnol J 2018; 16: 412-20.
[http://dx.doi.org/10.1016/j.csbj.2018.10.007] [PMID: 30425802]
[87]
Manavalan B, Shin TH, Kim MO, Lee G. PIP-EL: A new ensemble learning method for improved proinflammatory peptide predictions. Front Immunol 2018; 9: 1783.
[http://dx.doi.org/10.3389/fimmu.2018.01783] [PMID: 30108593]
[88]
Basith S, Manavalan B, Hwan Shin T, Lee G. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Med Res Rev 2020; 40(4): 1276-314.
[http://dx.doi.org/10.1002/med.21658] [PMID: 31922268]
[89]
Basith S, Manavalan B, Shin TH, Lee G. SDM6A: A web-based integrative machine-learning framework for predicting 6mA sites in the rice genome. Mol Ther Nucleic Acids 2019; 18: 131-41.
[http://dx.doi.org/10.1016/j.omtn.2019.08.011] [PMID: 31542696]
[90]
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20: 273-97.
[http://dx.doi.org/10.1007/BF00994018]
[91]
Drucker H, Burges CJ, Kaufman L, Smola AJ, Vapnik V. Support vector regression machines.ed^eds, Advances in neural information processing systems. 1997; pp. 155-61.
[92]
Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 2010; 26(5): 680-2.
[http://dx.doi.org/10.1093/bioinformatics/btq003] [PMID: 20053844]
[93]
Ettayapuram Ramaprasad AS, Singh S, Gajendra PSR, Venkatesan S. AntiAngioPred: a server for prediction of anti-angiogenic peptides. PLoS One 2015; 10(9): e0136990.
[http://dx.doi.org/10.1371/journal.pone.0136990] [PMID: 26335203]
[94]
Lata S, Sharma BK, Raghava GP. Analysis and prediction of antibacterial peptides. BMC Bioinformatics 2007; 8: 263.
[http://dx.doi.org/10.1186/1471-2105-8-263] [PMID: 17645800]
[95]
Wei L, Zhou C, Chen H, Song J, Su R. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics 2018; 34(23): 4007-16.
[http://dx.doi.org/10.1093/bioinformatics/bty451] [PMID: 29868903]
[96]
Wei L, Xing P, Su R, Shi G, Ma ZS, Zou Q. CPPred-RF: a sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency. J Proteome Res 2017; 16(5): 2044-53.
[http://dx.doi.org/10.1021/acs.jproteome.7b00019] [PMID: 28436664]
[97]
Rajput A, Gupta AK, Kumar M. Prediction and analysis of quorum sensing peptides based on sequence features. PLoS One 2015; 10(3): e0120066.
[http://dx.doi.org/10.1371/journal.pone.0120066] [PMID: 25781990]
[98]
Li N, Kang J, Jiang L, He B, Lin H, Huang J. PSBinder: a web service for predicting polystyrene surface-binding peptides. BioMed research international 2017.
[http://dx.doi.org/10.1155/2017/5761517]
[99]
Shoombuatong W, Schaduangrat N, Nantasenamat C. Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI J 2018; 17: 734-52.
[PMID: 30190664]
[100]
Chou K-C. Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 2011; 273(1): 236-47.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.024] [PMID: 21168420]
[101]
Xiao N, Cao D-S, Zhu M-F, Xu Q-S. protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics 2015; 31(11): 1857-9.
[http://dx.doi.org/10.1093/bioinformatics/btv042] [PMID: 25619996]
[102]
Chen W, Ding H, Feng P, Lin H, Chou K-C. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 2016; 7(13): 16895-909.
[http://dx.doi.org/10.18632/oncotarget.7815] [PMID: 26942877]
[103]
Huang H-L, Charoenkwan P, Kao T-F, et al. Prediction and analysis of protein solubility using a novel scoring card method with dipeptide composition.ed^eds, Bmc Bioinformatics BioMed Central. 2012.
[http://dx.doi.org/10.1186/1471-2105-13-S17-S3]
[104]
Charoenkwan P, Shoombuatong W, Lee H-C, Chaijaruwanich J, Huang H-L, Ho S-Y. SCMCRYS: predicting protein crystallization using an ensemble scoring card method with estimating propensity scores of P-collocated amino acid pairs. PLoS One 2013; 8(9): e72368.
[http://dx.doi.org/10.1371/journal.pone.0072368] [PMID: 24019868]
[105]
Huang H-L. Propensity scores for prediction and characterization of bioluminescent proteins from sequences. PLoS One 2014; 9(5): e97158.
[http://dx.doi.org/10.1371/journal.pone.0097158] [PMID: 24828431]
[106]
Charoenkwan P, Kanthawong S, Schaduangrat N, Yana J, Shoombuatong W. PVPred-SCM: Improved Prediction and Analysis of Phage Virion Proteins Using a Scoring Card Method. Cells 2020; 9(2): 353.
[http://dx.doi.org/10.3390/cells9020353] [PMID: 32028709]
[107]
Vasylenko T, Liou Y-F, Chiou P-C, et al. SCMBYK: prediction and characterization of bacterial tyrosine-kinases based on propensity scores of dipeptides. BMC Bioinformatics 2016; 17(Suppl. 19): 514.
[http://dx.doi.org/10.1186/s12859-016-1371-4] [PMID: 28155663]
[108]
Liou Y-F, Charoenkwan P, Srinivasulu Y, et al. SCMHBP: prediction and analysis of heme binding proteins using propensity scores of dipeptides. BMC Bioinformatics 2014; 15(Suppl. 16): S4.
[http://dx.doi.org/10.1186/1471-2105-15-S16-S4] [PMID: 25522279]
[109]
Liou Y-F, Vasylenko T, Yeh C-L, et al. SCMMTP: identifying and characterizing membrane transport proteins using propensity scores of dipeptides. BMC Genomics 2015; 16(Suppl. 12): S6.
[http://dx.doi.org/10.1186/1471-2164-16-S12-S6] [PMID: 26677931]
[110]
Vasylenko T, Liou Y-F, Chen H-A, Charoenkwan P, Huang H-L, Ho S-Y. SCMPSP: Prediction and characterization of photosynthetic proteins based on a scoring card method.ed^eds, BMC bioinformatics BioMed Central 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy