Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Predictive Value of Sirtuins in Acute Myocardial Infarction - Bridging the Bench to the Clinical Practice

Author(s): Arquimedes G. Junior*, Thiago L. de Almeida, Sara E.L. Tolouei, Andreia F. dos Santos and Francislaine A. dos Reis Lívero

Volume 27, Issue 2, 2021

Published on: 05 October, 2020

Page: [206 - 216] Pages: 11

DOI: 10.2174/1381612826666201005153848

Price: $65

Open Access Journals Promotions 2
Abstract

Acute myocardial infarction (AMI) is a non-transmissible condition with high prevalence, morbidity, and mortality. Different strategies for the management of AMI are employed worldwide, but its early diagnosis remains a major challenge. Many molecules have been proposed in recent years as predictive agents in the early detection of AMI, including troponin (C, T, and I), creatine kinase MB isoenzyme, myoglobin, heart-type fatty acid-binding protein, and a family of histone deacetylases with enzymatic activities named sirtuins. Sirtuins may be used as predictive or complementary treatment strategies and the results of recent preclinical studies are promising. However, human clinical trials and data are scarce, and many issues have been raised regarding the predictive values of sirtuins. The present review summarizes research on the predictive value of sirtuins in AMI. We also briefly summarize relevant clinical trials and discuss future perspectives and possible clinical applications.

Keywords: Cardiovascular diseases, heart attack, histone deacetylases, myocardial injury, ischemia, thrombolysis.

[1]
World Health Organization (WHO),Cardiovascular disease 2018. 2 Available at:. https://www.who.int/
[2]
Wilkins E, Wilson L, Wickramasinghe K, et al. European Cardiovascular Disease Statistics 2017 European Heart Network 2017Available at: http://www.ehnheart.org/
[3]
Heron M. Deaths: Leading Causes for 2017. Natl Vital Stat Rep 2019; 68(6): 1-77.
[PMID: 32501203]
[4]
Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet 2017; 389(10065): 197-210.
[http://dx.doi.org/10.1016/S0140-6736(16)30677-8] [PMID: 27502078]
[5]
Anderson JL, Morrow DA. Acute myocardial infarction. N Engl J Med 2017; 376(21): 2053-64.
[http://dx.doi.org/10.1056/NEJMra1606915] [PMID: 28538121]
[6]
Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD. Executive Group on behalf of the Joint ESC/ACC/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction Guidelines. Eur Heart J 2012; 33: 2551-67.
[http://dx.doi.org/10.1016/j.jacc.2012.08.001] [PMID: 22958960]
[7]
Organization for Economic Co-operation and Development - OECD. Health at a Glance 2019: OECD Indicators - Chapter 3 “Health Status: Mortality from circulatory disease”. OECD Publishing 2019.
[8]
Knot J, Kala P, Rokyta R, et al. Comparison of outcomes in ST-segment depression and ST-segment elevation myocardial infarction patients treated with emergency PCI: data from a multicentre registry. Cardiovasc J Afr 2012; 23(9): 495-500.
[http://dx.doi.org/10.5830/CVJA-2012-053] [PMID: 23108517]
[9]
Piegas LS, Timerman A, Feitosa GS, et al. V Diretriz da Sociedade Brasileira de Cardiologia sobre Tratamento do Infarto Agudo do Miocárdio com Supradesnível do Segmento ST. Arq Bras Cardiol 2015; 105(2)(Suppl. 1).
[http://dx.doi.org/10.5935/abc.20150107]
[10]
Ibanez B, James S, Agewall S, et al. ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2018; 39(2): 119-77.
[http://dx.doi.org/10.1093/eurheartj/ehx393] [PMID: 28886621]
[11]
van der Linden N, Wildi K, Twerenbold R, et al. Combining Troponin T and I for Diagnosis of AMI. Circulation 2018; 138: 989-99.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032003] [PMID: 29691270]
[12]
Wiens E, Arbour J, Seifer C. Measurement of Creatine Kinase in the Emergency Department for Diagnosis of Acute Myocardial Infarction. Can J Cardiol 2018; 34: S74.
[http://dx.doi.org/10.1016/j.cjca.2018.07.299]
[13]
Morrow DA, Antman EM, Charlesworth A, et al. TIMI risk score for ST-elevation myocardial infarction: A convenient, bedside, clinical score for risk assessment at presentation: An intravenous nPA for treatment of infarcting myocardium early II trial substudy. Circulation 2000; 102(17): 2031-7.
[http://dx.doi.org/10.1161/01.CIR.102.17.2031] [PMID: 11044416]
[14]
Chen YH, Huang SS, Lin SJ. TIMI and GRACE Risk Scores Predict Both Short-Term and Long-Term Outcomes in Chinese Patients with Acute Myocardial Infarction. Acta Cardiol Sin 2018; 34(1): 4-12.
[PMID: 29375219]
[15]
Granger CB, Goldberg RJ, Dabbous O, et al. Global Registry of Acute Coronary Events Investigators. Predictors of hospital mortality in the global registry of acute coronary events. Arch Intern Med 2003; 163(19): 2345-53.
[http://dx.doi.org/10.1001/archinte.163.19.2345] [PMID: 14581255]
[16]
Acharya D. Predictors of Outcomes in Myocardial Infarction and Cardiogenic Shock. Cardiol Rev 2018; 26(5): 255-66.
[http://dx.doi.org/10.1097/CRD.0000000000000190] [PMID: 29300230]
[17]
More HV, Pujari KN, Jadkar SP, Patil CG. Biochemical Parameters in Acute Myocardial Infarction with or Without Co-Morbidities. J Med Sci Clin Res 2017; 5(2): 17299-304.
[http://dx.doi.org/10.18535/jmscr/v5i2.11]
[18]
Osman J, Tan SC, Lee PY, Low TY, Jamal R. Sudden Cardiac Death (SCD) - risk stratification and prediction with molecular biomarkers. J Biomed Sci 2019; 26(1): 39.
[http://dx.doi.org/10.1186/s12929-019-0535-8] [PMID: 31118017]
[19]
Marcsa B, Dénes R, Vörös K, et al. A Common Polymorphism of the Human Cardiac Sodium Channel Alpha Subunit (SCN5A) Gene Is Associated with Sudden Cardiac Death in Chronic Ischemic Heart Disease. PLoS One 2015; 10(7)e0132137
[http://dx.doi.org/10.1371/journal.pone.0132137] [PMID: 26146998]
[20]
Winkel BG, Larsen MK, Berge KE, et al. The prevalence of mutations in KCNQ1, KCNH2, and SCN5A in an unselected national cohort of young sudden unexplained death cases. J Cardiovasc Electrophysiol 2012; 23(10): 1092-8.
[http://dx.doi.org/10.1111/j.1540-8167.2012.02371.x] [PMID: 22882672]
[21]
Belevych AE, Radwański PB, Carnes CA, Györke S. ‘Ryanopathy’: causes and manifestations of RyR2 dysfunction in heart failure. Cardiovasc Res 2013; 98(2): 240-7.
[http://dx.doi.org/10.1093/cvr/cvt024] [PMID: 23408344]
[22]
Thygesen K, Mair J, Katus H, et al. Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J 2010; 31(18): 2197-204.
[http://dx.doi.org/10.1093/eurheartj/ehq251] [PMID: 20685679]
[23]
Shah ASV, Sandoval Y, Noaman A, et al. Patient selection for high sensitivity cardiac troponin testing and diagnosis of myocardial infarction: prospective cohort study. BMJ 2017; 359: j4788.
[http://dx.doi.org/10.1136/bmj.j4788] [PMID: 29114078]
[24]
Wu E, Izquierdo Gómez MM. Cardiac magnetic resonance imaging and endothelin-1: a step forward in the detection of microvascular obstruction. Rev Esp Cardiol 2011; 64(2): 89-91.
[http://dx.doi.org/10.1016/j.recesp.2010.09.006] [PMID: 21256658]
[25]
Oldgren J, James SK, Siegbahn A, Wallentin L. Lipoprotein-associated phospholipase A2 does not predict mortality or new ischaemic events in acute coronary syndrome patients. Eur Heart J 2007; 28(6): 699-704.
[http://dx.doi.org/10.1093/eurheartj/ehl565] [PMID: 17314110]
[26]
Iraqi W, Rossignol P, Angioi M, et al. Extracellular Cardiac Matrix Biomarkers in Patients With Acute Myocardial Infarction Complicated by Left Ventricular Dysfunction and Heart Failure: Insights From the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) Study. Circulation 2009; 119(18): 2471-9.
[27]
Daubert MA, Jeremias A. The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag 2010; 6: 691-9.
[PMID: 20859540]
[28]
Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med 2010; 48(6): 757-67.
[http://dx.doi.org/10.1515/CCLM.2010.179] [PMID: 20518645]
[29]
Hendgen-Cotta UB, Merx MW, Shiva S, et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA 2008; 105(29): 10256-61.
[http://dx.doi.org/10.1073/pnas.0801336105] [PMID: 18632562]
[30]
Cavus U, Coskun F, Yavuz B, et al. Heart-type, fatty-acid binding protein can be a diagnostic marker in acute coronary syndromes. J Natl Med Assoc 2006; 98(7): 1067-70.
[PMID: 16895274]
[31]
Blankenberg S, McQueen MJ, Smieja M, et al. HOPE Study Investigators. Comparative impact of multiple biomarkers and N-Terminal pro-brain natriuretic peptide in the context of conventional risk factors for the prediction of recurrent cardiovascular events in the Heart Outcomes Prevention Evaluation (HOPE) Study. Circulation 2006; 114(3): 201-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.590927] [PMID: 16831981]
[32]
Federico C. Natriuretic Peptide system and cardiovascular disease. Heart Views 2010; 11(1): 10-5.
[PMID: 21042458]
[33]
Katan M, Christ-Crain M. The stress hormone copeptin: a new prognostic biomarker in acute illness. Swiss Med Wkly 2010; 140w13101
[http://dx.doi.org/10.4414/smw.2010.13101] [PMID: 20872295]
[34]
Khan SQ, Ng K, Dhillon O, et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur Heart J 2009; 30(9): 1057-65.
[http://dx.doi.org/10.1093/eurheartj/ehn600] [PMID: 19168526]
[35]
Mueller T, Dieplinger B, Gegenhuber A, Poelz W, Pacher R, Haltmayer M. Increased plasma concentrations of soluble ST2 are predictive for 1-year mortality in patients with acute destabilized heart failure. Clin Chem 2008; 54(4): 752-6.
[http://dx.doi.org/10.1373/clinchem.2007.096560] [PMID: 18375488]
[36]
González A, López B, Ravassa S, et al. Biochemical markers of myocardial remodelling in hypertensive heart disease. Cardiovasc Res 2009; 81(3): 509-18.
[http://dx.doi.org/10.1093/cvr/cvn235] [PMID: 18762556]
[37]
Rine J, Strathern JN, Hicks JB, Herskowitz I. A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. Genetics 1979; 93(4): 877-901.
[PMID: 397913]
[38]
Lu Y, Wang YD, Wang XY, Chen H, Cai ZJ, Xiang MX. SIRT3 in cardiovascular diseases: Emerging roles and therapeutic implications. Int J Cardiol 2016; 220: 700-5.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.236] [PMID: 27393852]
[39]
Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid Redox Signal 2018; 28(8): 643-61.
[http://dx.doi.org/10.1089/ars.2017.7290] [PMID: 28891317]
[40]
Khoury N, Koronowski KB, Young JI, Perez-Pinzon MA. The NAD+-Dependent Family of Sirtuins in Cerebral Ischemia and Preconditioning. Antioxid Redox Signal 2018; 28(8): 691-710.
[http://dx.doi.org/10.1089/ars.2017.7258] [PMID: 28683567]
[41]
Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology 2017; 18(4): 447-76.
[http://dx.doi.org/10.1007/s10522-017-9685-9] [PMID: 28258519]
[42]
Zullo A, Simone E, Grimaldi M, Musto V, Mancini FP. Sirtuins as Mediator of the Anti-Ageing Effects of Calorie Restriction in Skeletal and Cardiac Muscle. Int J Mol Sci 2018; 19(4): 928.
[http://dx.doi.org/10.3390/ijms19040928] [PMID: 29561771]
[43]
Morigi M, Perico L, Benigni A. Sirtuins in Renal Health and Disease. J Am Soc Nephrol 2018; 29(7): 1799-809.
[http://dx.doi.org/10.1681/ASN.2017111218] [PMID: 29712732]
[44]
Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol 2015; 309(9): H1375-89.
[http://dx.doi.org/10.1152/ajpheart.00053.2015] [PMID: 26232232]
[45]
Fang Y, Tang S, Li X. Sirtuins in Metabolic and Epigenetic Regulation of Stem Cells. Trends Endocrinol Metab 2019; 30(3): 177-88.
[http://dx.doi.org/10.1016/j.tem.2018.12.002] [PMID: 30630664]
[46]
Cacabelos R, Carril JC, Cacabelos N, et al. Sirtuins in Alzheimer’s Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics. Int J Mol Sci 2019; 20(5): 1249.
[http://dx.doi.org/10.3390/ijms20051249] [PMID: 30871086]
[47]
Garcia-Peterson LM, Wilking-Busch MJ, Ndiaye MA, Philippe CGA, Setaluri V, Ahmad N. Sirtuins in Skin and Skin Cancers. Skin Pharmacol Physiol 2017; 30(4): 216-24.
[http://dx.doi.org/10.1159/000477417] [PMID: 28704830]
[48]
Lin JB, Apte RS. NAD+ and sirtuins in retinal degenerative diseases: A look at future therapies. Prog Retin Eye Res 2018; 67: 118-29.
[http://dx.doi.org/10.1016/j.preteyeres.2018.06.002] [PMID: 29906612]
[49]
Ianni A, Yuan X, Bober E, Braun T. Sirtuins in the Cardiovascular System: Potential Targets in Pediatric Cardiology. Pediatr Cardiol 2018; 39(5): 983-92.
[http://dx.doi.org/10.1007/s00246-018-1848-1] [PMID: 29497772]
[50]
Kane AE, Sinclair DA. Sirtuins and NAD+ in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circ Res 2018; 123(7): 868-85.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312498] [PMID: 30355082]
[51]
D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxid Redox Signal 2018; 28(8): 711-32.
[http://dx.doi.org/10.1089/ars.2017.7178] [PMID: 28661724]
[52]
Winnik S, Auwerx J, Sinclair DA, Matter CM. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 2015; 36(48): 3404-12.
[http://dx.doi.org/10.1093/eurheartj/ehv290] [PMID: 26112889]
[53]
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16(10): 4623-35.
[http://dx.doi.org/10.1091/mbc.e05-01-0033] [PMID: 16079181]
[54]
North BJ, Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2007; 2(8)e784
[http://dx.doi.org/10.1371/journal.pone.0000784] [PMID: 17726514]
[55]
Chen S, Seiler J, Santiago-Reichelt M, Felbel K, Grummt I, Voit R. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol Cell 2013; 52(3): 303-13.
[http://dx.doi.org/10.1016/j.molcel.2013.10.010] [PMID: 24207024]
[56]
Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 2007; 282(9): 6823-32.
[http://dx.doi.org/10.1074/jbc.M609554200] [PMID: 17197703]
[57]
Hisahara S, Chiba S, Matsumoto H, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA 2008; 105(40): 15599-604.
[http://dx.doi.org/10.1073/pnas.0800612105] [PMID: 18829436]
[58]
Guarente L. Calorie restriction and sirtuins revisited. Genes Dev 2013; 27(19): 2072-85.
[http://dx.doi.org/10.1101/gad.227439.113] [PMID: 24115767]
[59]
Hsu CP, Zhai P, Yamamoto T, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 2010; 122(21): 2170-82.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.958033] [PMID: 21060073]
[60]
Guarani V, Deflorian G, Franco CA, et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 2011; 473(7346): 234-8.
[http://dx.doi.org/10.1038/nature09917] [PMID: 21499261]
[61]
Potente M, Ghaeni L, Baldessari D, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 2007; 21(20): 2644-58.
[http://dx.doi.org/10.1101/gad.435107] [PMID: 17938244]
[62]
Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 2003; 100(19): 10794-9.
[http://dx.doi.org/10.1073/pnas.1934713100] [PMID: 12960381]
[63]
Yuan X, Qi H, Li X, et al. Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice. J Clin Invest 2017; 127(6): 2235-48.
[http://dx.doi.org/10.1172/JCI88725] [PMID: 28436940]
[64]
Suter MA, Chen A, Burdine MS, et al. A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J 2012; 26(12): 5106-14.
[http://dx.doi.org/10.1096/fj.12-212878] [PMID: 22982377]
[65]
Zhang L, Han L, Ma R, et al. Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes. Cell Cycle 2015; 14(18): 2959-68.
[http://dx.doi.org/10.1080/15384101.2015.1026517] [PMID: 25790176]
[66]
Nguyen LT, Chen H, Pollock CA, Saad S. Sirtuins-mediators of maternal obesity-induced complications in offspring? FASEB J 2016; 30(4): 1383-90.
[http://dx.doi.org/10.1096/fj.15-280743] [PMID: 26667041]
[67]
Gui J, Potthast A, Rohrbach A, Borns K, Das AM, von Versen-Höynck F. Gestational diabetes induces alterations of sirtuins in fetal endothelial cells. Pediatr Res 2016; 79(5): 788-98.
[http://dx.doi.org/10.1038/pr.2015.269] [PMID: 26717002]
[68]
Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005; 310(5746): 314-7.
[http://dx.doi.org/10.1126/science.1117728] [PMID: 16224023]
[69]
Zhang QJ, Wang Z, Chen HZ, et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 2008; 80(2): 191-9.
[http://dx.doi.org/10.1093/cvr/cvn224] [PMID: 18689793]
[70]
Stein S, Lohmann C, Schäfer N, et al. SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur Heart J 2010; 31(18): 2301-9.
[http://dx.doi.org/10.1093/eurheartj/ehq107] [PMID: 20418343]
[71]
Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012; 13(4): 225-38.
[http://dx.doi.org/10.1038/nrm3293] [PMID: 22395773]
[72]
Carnevale I, Pellegrini L, D’Aquila P, et al. SIRT1-SIRT3 axis regulates cellular response to oxidative stress and etoposide. J Cell Physiol 2017; 232(7): 1835-44.
[http://dx.doi.org/10.1002/jcp.25711] [PMID: 27925196]
[73]
Hu Y, Wang L, Chen S, et al. Association between the SIRT1 mRNA expression and acute coronary syndrome. J Atheroscler Thromb 2015; 22(2): 165-82.
[http://dx.doi.org/10.5551/jat.24844] [PMID: 25342474]
[74]
Doulamis IP, Tzani AI, Konstantopoulos PS, et al. A sirtuin 1/MMP2 prognostic index for myocardial infarction in patients with advanced coronary artery disease. Int J Cardiol 2017; 230(230): 447-53.
[http://dx.doi.org/10.1016/j.ijcard.2016.12.086] [PMID: 28043667]
[75]
D’Onofrio N, Sardu C, Paolisso P, et al. MicroRNA-33 and SIRT1 influence the coronary thrombus burden in hyperglycemic STEMI patients. J Cell Physiol 2020; 253(2): 1438-52.
[PMID: 31294459]
[76]
Tang X, Chen XF, Wang NY, et al. SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation 2017; 136(21): 2051-67.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028728] [PMID: 28947430]
[77]
Yang W, Gao F, Zhang P, et al. Functional genetic variants within the SIRT2 gene promoter in acute myocardial infarction. PLoS One 2017; 12(4)e0176245
[http://dx.doi.org/10.1371/journal.pone.0176245] [PMID: 28445509]
[78]
Lemos V, de Oliveira RM, Naia L, et al. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Hum Mol Genet 2017; 26(21): 4105-17.
[http://dx.doi.org/10.1093/hmg/ddx298] [PMID: 28973648]
[79]
Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009; 119(9): 2758-71.
[http://dx.doi.org/10.1172/JCI39162] [PMID: 19652361]
[80]
Guo X, Yan F, Shan X, et al. SIRT3 inhibits Ang II-induced transdifferentiation of cardiac fibroblasts through β-catenin/PPAR-γ signaling. Life Sci 2017; 186: 111-7.
[http://dx.doi.org/10.1016/j.lfs.2017.07.030] [PMID: 28760678]
[81]
Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003; 5(6): 877-89.
[http://dx.doi.org/10.1016/S1534-5807(03)00363-0] [PMID: 14667410]
[82]
Dyer LA, Kirby ML. The role of secondary heart field in cardiac development. Dev Biol 2009; 336(2): 137-44.
[http://dx.doi.org/10.1016/j.ydbio.2009.10.009] [PMID: 19835857]
[83]
Vikram A, Lewarchik CM, Yoon JY, et al. Sirtuin 1 regulates cardiac electrical activity by deacetylating the cardiac sodium channel. Nat Med 2017; 23(3): 361-7.
[http://dx.doi.org/10.1038/nm.4284] [PMID: 28191886]
[84]
Ruan Y, Liu N, Priori SG. Sodium channel mutations and arrhythmias. Nat Rev Cardiol 2009; 6(5): 337-48.
[http://dx.doi.org/10.1038/nrcardio.2009.44] [PMID: 19377496]
[85]
Shan J, Pang S, Wanyan H, Xie W, Qin X, Yan B. Genetic analysis of the SIRT1 gene promoter in ventricular septal defects. Biochem Biophys Res Commun 2012; 425(4): 741-5.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.145] [PMID: 22885181]
[86]
Pillai JB, Isbatan A, Imai S, Gupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 2005; 280(52): 43121-30.
[http://dx.doi.org/10.1074/jbc.M506162200] [PMID: 16207712]
[87]
Luo YX, Tang X, An XZ, et al. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J 2017; 38(18): 1389-98.
[PMID: 27099261]
[88]
Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 2015; 88: 73-81.
[http://dx.doi.org/10.1016/j.yjmcc.2015.09.005] [PMID: 26388266]
[89]
Hershberger KA, Abraham DM, Martin AS, et al. Sirtuin 5 is required for mouse survival in response to cardiac pressure overload. J Biol Chem 2017; 292(48): 19767-81.
[http://dx.doi.org/10.1074/jbc.M117.809897] [PMID: 28972174]
[90]
Sadhukhan S, Liu X, Ryu D, et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci USA 2016; 113(16): 4320-5.
[http://dx.doi.org/10.1073/pnas.1519858113] [PMID: 27051063]
[91]
Zou R, Shi W, Tao J, et al. SIRT5 and post-translational protein modifications: A potential therapeutic target for myocardial ischemia-reperfusion injury with regard to mitochondrial dynamics and oxidative metabolism. Eur J Pharmacol 2018; 818: 410-8.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.005] [PMID: 29154835]
[92]
Cai Y, Yu SS, Chen SR, et al. Nmnat2 protects cardiomyocytes from hypertrophy via activation of SIRT6. FEBS Lett 2012; 586(6): 866-74.
[http://dx.doi.org/10.1016/j.febslet.2012.02.014] [PMID: 22449973]
[93]
Maksin-Matveev A, Kanfi Y, Hochhauser E, Isak A, Cohen HY, Shainberg A. Sirtuin 6 protects the heart from hypoxic damage. Exp Cell Res 2015; 330(1): 81-90.
[http://dx.doi.org/10.1016/j.yexcr.2014.07.013] [PMID: 25066211]
[94]
Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 2012; 18(11): 1643-50.
[http://dx.doi.org/10.1038/nm.2961] [PMID: 23086477]
[95]
Michishita E, McCord RA, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008; 452(7186): 492-6.
[http://dx.doi.org/10.1038/nature06736] [PMID: 18337721]
[96]
Zhong L, D’Urso A, Toiber D, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010; 140(2): 280-93.
[http://dx.doi.org/10.1016/j.cell.2009.12.041] [PMID: 20141841]
[97]
Kanfi Y, Peshti V, Gil R, et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 2010; 9(2): 162-73.
[http://dx.doi.org/10.1111/j.1474-9726.2009.00544.x] [PMID: 20047575]
[98]
Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY. Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev 2007; 21(24): 3244-57.
[http://dx.doi.org/10.1101/gad.1588507] [PMID: 18055696]
[99]
Beauharnois JM, Bolívar BE, Welch JT. Sirtuin 6: a review of biological effects and potential therapeutic properties. Mol Biosyst 2013; 9(7): 1789-806.
[http://dx.doi.org/10.1039/c3mb00001j] [PMID: 23592245]
[100]
Libby P, Ridker PM, Hansson GK. Leducq Transatlantic Network on Atherothrombosis. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009; 54(23): 2129-38.
[http://dx.doi.org/10.1016/j.jacc.2009.09.009] [PMID: 19942084]
[101]
Ryu D, Jo YS, Lo Sasso G, et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab 2014; 20(5): 856-69.
[http://dx.doi.org/10.1016/j.cmet.2014.08.001] [PMID: 25200183]
[102]
Araki S, Izumiya Y, Rokutanda T, et al. Sirt7 contributes to myocardial tissue repair by maintaining transforming growth factor-beta signaling pathway. Circulation 2015; 132(12): 1081-93.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.014821] [PMID: 26202810]
[103]
Testai L, Piragine E, Piano I, et al. The Citrus Flavonoid Naringenin Protects the Myocardium from Ageing-Dependent Dysfunction: Potential Role of SIRT1. Oxid Med Cell Longev 2020; 20204650207
[http://dx.doi.org/10.1155/2020/4650207] [PMID: 32047577]
[104]
Donniacuo M, Urbanek K, Nebbioso A, et al. Cardioprotective effect of a moderate and prolonged exercise training involves sirtuin pathway. Life Sci 2019; 222: 140-7.
[http://dx.doi.org/10.1016/j.lfs.2019.03.001] [PMID: 30849417]
[105]
Zhang M, Zhao Z, Shen M, et al. Polydatin protects cardiomyocytes against myocardial infarction injury by activating Sirt3. Biochim Biophys Acta Mol Basis Dis 2017; 1863(8): 1962-72.
[http://dx.doi.org/10.1016/j.bbadis.2016.09.003] [PMID: 27613967]
[106]
Liu J, Yan W, Zhao X, et al. Sirt3 attenuates post-infarction cardiac injury via inhibiting mitochondrial fission and normalization of AMPK-Drp1 pathways. Cell Signal 2019; 53: 1-13.
[http://dx.doi.org/10.1016/j.cellsig.2018.09.009] [PMID: 30219671]
[107]
Wu Y-Z, Zhang L, Wu Z-X, Shan TT, Xiong C. Berberine Ameliorates Doxorubicin-Induced Cardiotoxicity via a SIRT1/p66Shc-Mediated Pathway. Oxid Med Cell Longev 2019; 20192150394
[http://dx.doi.org/10.1155/2019/2150394] [PMID: 31885776]
[108]
Liu J, Ai Y, Niu X, et al. Taurine protects against cardiac dysfunction induced by pressure overload through SIRT1-p53 activation. Chem Biol Interact 2020; 317108972
[http://dx.doi.org/10.1016/j.cbi.2020.108972] [PMID: 32017914]
[109]
Yamamura S, Izumiya Y, Araki S, et al. Cardiomyocyte Sirt (Sirtuin) 7 Ameliorates Stress-Induced Cardiac Hypertrophy by Interacting With and Deacetylating GATA4. Hypertension 2020; 75(1): 98-108.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13357] [PMID: 31735083]
[110]
Guan XH, Liu XH, Hong X, et al. CD38 Deficiency Protects the Heart from Ischemia/Reperfusion Injury through Activating SIRT1/FOXOs-Mediated Antioxidative Stress Pathway. Oxid Med Cell Longev 2016; 20167410257
[http://dx.doi.org/10.1155/2016/7410257] [PMID: 27547294]
[111]
Lim SH, Lee J. Supplementation with psyllium seed husk reduces myocardial damage in a rat model of ischemia/reperfusion. Nutr Res Pract 2019; 13(3): 205-13.
[http://dx.doi.org/10.4162/nrp.2019.13.3.205] [PMID: 31214288]
[112]
Liu X, Yang R, Bai W, et al. Exploring the role of orexin B-sirtuin 1-HIF-1α in diabetes-mellitus induced vascular endothelial dysfunction and associated myocardial injury in rats. Life Sci 2020; 254117041
[http://dx.doi.org/10.1016/j.lfs.2019.117041] [PMID: 31715188]
[113]
Tao A, Xu X, Kvietys P, Kao R, Martin C, Rui T. Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: Role of down-regulation of myocardial Sirt1 and subsequent Akt/Drp1 interaction. Int J Biochem Cell Biol 2018; 105: 94-103.
[http://dx.doi.org/10.1016/j.biocel.2018.10.011] [PMID: 30381241]
[114]
Wang L, Quan N, Sun W, et al. Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Cardiovasc Res 2018; 114(6): 805-21.
[http://dx.doi.org/10.1093/cvr/cvy033] [PMID: 29409011]
[115]
Ding M, Lei J, Han H, et al. SIRT1 protects against myocardial ischemia-reperfusion injury via activating eNOS in diabetic rats. Cardiovasc Diabetol 2015; 14(143): 143.
[http://dx.doi.org/10.1186/s12933-015-0299-8] [PMID: 26489513]
[116]
Yu L, Li Q, Yu B, et al. Berberine Attenuates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Inflammation Response: Role of Silent Information Regulator 1. Oxid Med Cell Longev 2016; 20161689602
[http://dx.doi.org/10.1155/2016/1689602] [PMID: 26788242]
[117]
Deng M, Wang D, He S, Xu R, Xie Y. SIRT1 confers protection against ischemia/reperfusion injury in cardiomyocytes via regulation of uncoupling protein 2 expression. Mol Med Rep 2017; 16(5): 7098-104.
[http://dx.doi.org/10.3892/mmr.2017.7452] [PMID: 28901505]
[118]
Wu Y, Xia ZY, Zhao B, et al. (-)-Epigallocatechin-3-gallate attenuates myocardial injury induced by ischemia/reperfusion in diabetic rats and in H9c2 cells under hyperglycemic conditions. Int J Mol Med 2017; 40(2): 389-99.
[http://dx.doi.org/10.3892/ijmm.2017.3014] [PMID: 28714516]
[119]
Yu L, Li S, Tang X, et al. Diallyl trisulfide ameliorates myocardial ischemia-reperfusion injury by reducing oxidative stress and endoplasmic reticulum stress-mediated apoptosis in type 1 diabetic rats: role of SIRT1 activation. Apoptosis 2017; 22(7): 942-54.
[http://dx.doi.org/10.1007/s10495-017-1378-y] [PMID: 28455824]
[120]
Yu LM, Dong X, Xue XD, et al. Protection of the myocardium against ischemia/reperfusion injury by punicalagin through an SIRT1-NRF-2-HO-1-dependent mechanism. Chem Biol Interact 2019; 306: 152-62.
[http://dx.doi.org/10.1016/j.cbi.2019.05.003] [PMID: 31063767]
[121]
Yu LM, Dong X, Xue XD, et al. Naringenin improves mitochondrial function and reduces cardiac damage following ischemia-reperfusion injury: the role of the AMPK-SIRT3 signaling pathway. Food Funct 2019; 10(5): 2752-65.
[http://dx.doi.org/10.1039/C9FO00001A] [PMID: 31041965]
[122]
Lu Y, Feng Y, Liu D, et al. Thymoquinone Attenuates Myocardial Ischemia/Reperfusion Injury Through Activation of SIRT1 Signaling. Cell Physiol Biochem 2018; 47(3): 1193-206.
[http://dx.doi.org/10.1159/000490216] [PMID: 29913437]
[123]
Fourny N, Lan C, Sérée E, Bernard M, Desrois M. Protective Effect of Resveratrol against Ischemia-Reperfusion Injury via Enhanced High Energy Compounds and eNOS-SIRT1 Expression in Type 2 Diabetic Female Rat Heart. Nutrients 2019; 11(1)E105
[http://dx.doi.org/10.3390/nu11010105] [PMID: 30621358]
[124]
Meng H, Wang QY, Li N, et al. Danqi Tablet () Regulates Energy Metabolism in Ischemic Heart Rat Model through AMPK/SIRT1-PGC-1α Pathway. Chin J Integr Med 2019.
[http://dx.doi.org/10.1007/s11655-019-3040-8] [PMID: 31144160]
[125]
Tian L, Cao W, Yue R, et al. Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J Pharmacol Sci 2019; 139(4): 352-60.
[http://dx.doi.org/10.1016/j.jphs.2019.02.008] [PMID: 30910451]
[126]
Xiao J, Sheng X, Zhang X, Guo M, Ji X. Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro. Drug Des Devel Ther 2016; 10: 1267-77.
[PMID: 27099472]
[127]
Hou X, Zeng H, He X, Chen JX. Sirt3 is essential for apelin-induced angiogenesis in post-myocardial infarction of diabetes. J Cell Mol Med 2015; 19(1): 53-61.
[http://dx.doi.org/10.1111/jcmm.12453] [PMID: 25311234]
[128]
Koentges C, Pfeil K, Meyer-Steenbuck M, et al. Preserved recovery of cardiac function following ischemia-reperfusion in mice lacking SIRT3. Can J Physiol Pharmacol 2016; 94(1): 72-80.
[http://dx.doi.org/10.1139/cjpp-2015-0152] [PMID: 26524632]
[129]
Wei L, Sun X, Qi X, Zhang Y, Li Y, Xu Y. Dihydromyricetin Ameliorates Cardiac Ischemia/Reperfusion Injury through Sirt3 Activation. BioMed Res Int 2019; 20196803943
[http://dx.doi.org/10.1155/2019/6803943] [PMID: 31139646]
[130]
Sun D, Yang F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochem Biophys Res Commun 2017; 486(2): 329-35.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.036] [PMID: 28302481]
[131]
Dikalova AE, Pandey A, Xiao L, et al. Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circ Res 2020; 126(4): 439-52.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315767] [PMID: 31852393]
[132]
Zhang J, Yu J, Chen Y, et al. Exogenous Hydrogen Sulfide Supplement Attenuates Isoproterenol-Induced Myocardial Hypertrophy in a Sirtuin 3-Dependent Manner. Oxid Med Cell Longev 2018; 20189396089
[http://dx.doi.org/10.1155/2018/9396089] [PMID: 30647820]
[133]
Breitenstein A, Wyss CA, Spescha RD, et al. Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease. PLoS One 2013; 8(1)e53106
[http://dx.doi.org/10.1371/journal.pone.0053106] [PMID: 23382833]
[134]
Gorenne I, Kumar S, Gray K, et al. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation 2013; 127(3): 386-96.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.124404] [PMID: 23224247]
[135]
Yamaç AH, Kılıç Ü. Effect of statins on sirtuin 1 and endothelial nitric oxide synthase expression in young patients with a history of premature myocardial infarction. Turk Kardiyol Dern Ars 2018; 46(3): 205-15.
[http://dx.doi.org/10.5543/tkda.2018.32724] [PMID: 29664427]
[136]
Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y. Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 2007; 43(5): 571-9.
[http://dx.doi.org/10.1016/j.yjmcc.2007.08.008] [PMID: 17916362]
[137]
Kızıltunç E. Kösem, Özkan C, Ilgın BU, Kundi H, Çetin M, Ornek E. Serum Sirtuin 1, 3 and 6 Levels in Acute Myocardial Infarction Patients. Arq Bras Cardiol 2019; 113(1): 1-7.
[PMID: 31411286]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy