Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Diabetic Theory in Anti-Alzheimer’s Drug Research and Development. Part 2: Therapeutic Potential of cAMP-Specific Phosphodiesterase Inhibitors

Author(s): Agnieszka Jankowska, Maciej Pawłowski and Grażyna Chłoń-Rzepa*

Volume 28, Issue 18, 2021

Published on: 17 September, 2020

Page: [3535 - 3553] Pages: 19

DOI: 10.2174/0929867327666200917125857

Price: $65

Open Access Journals Promotions 2
Abstract

Alzheimer’s disease (AD) is one of the most prevalent age-related neurodegenerative disease that affects the cognition, behavior, and daily activities of individuals. Studies indicate that this disease is characterized by several pathological mechanisms, including the accumulation of amyloid-beta peptide, hyperphosphorylation of tau protein, impairment of cholinergic neurotransmission, and increase in inflammatory responses within the central nervous system. Chronic neuroinflammation associated with AD is closely related to disturbances in metabolic processes, including insulin release and glucose metabolism. As AD is also called type III diabetes, diverse compounds having antidiabetic effects have been investigated as potential drugs for its symptomatic and disease-modifying treatment. In addition to insulin and oral antidiabetic drugs, scientific attention has been paid to cyclic-3′,5′-adenosine monophosphate (cAMP)-specific phosphodiesterase (PDE) inhibitors that can modulate the concentration of glucose and related hormones and exert beneficial effects on memory, mood, and emotional processing. In this review, we present the most recent reports focusing on the involvement of cAMP-specific PDE4, PDE7, and PDE8 in glycemic and inflammatory response controls as well as the potential utility of the PDE inhibitors in the treatment of AD. Besides the results of in vitro and in vivo studies, the review also presents recent reports from clinical trials.

Keywords: Alzheimer's disease, PDE inhibitor, anti-inflammatory activity, antidiabetic activity, cAMP, cognitive impairment, neuroinflammation, phosphodiesterase.

[1]
Ferris, S.H.; Farlow, M. Language impairment in Alzheimer’s disease and benefits of acetylcholinesterase inhibitors. Clin. Interv. Aging, 2013, 8, 1007-1014.
[http://dx.doi.org/10.2147/CIA.S39959] [PMID: 23946647]
[2]
Prince, M.; Ali, G-C.; Guerchet, M.; Prina, A.M.; Albanese, E.; Wu, Y-T. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res. Ther., 2016, 8(1), 23.
[http://dx.doi.org/10.1186/s13195-016-0188-8] [PMID: 27473681]
[3]
Mukherjee, A.; Biswas, A.; Roy, A.; Biswas, S.; Gangopadhyay, G.; Das, S.K. Behavioural and psychological symptoms of dementia: correlates and impact on caregiver distress. Dement. Geriatr. Cogn. Disord. Extra, 2017, 7(3), 354-365.
[http://dx.doi.org/10.1159/000481568] [PMID: 29282408]
[4]
World Health Organization. Available at: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed at: 5th May, 2020).
[5]
Mayeux, R.; Stern, Y. Epidemiology of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(8), 137-152.
[http://dx.doi.org/10.1101/cshperspect.a006239] [PMID: 22908189]
[6]
Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, A.M.; Winblad, B.; Jönsson, L.; Liu, Z.; Prince, M. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement., 2017, 13(1), 1-7.
[http://dx.doi.org/10.1016/j.jalz.2016.07.150] [PMID: 27583652]
[7]
Vradenburg, G. A pivotal moment in Alzheimer’s disease and dementia: how global unity of purpose and action can beat the disease by 2025. Expert Rev. Neurother., 2015, 15(1), 73-82.
[http://dx.doi.org/10.1586/14737175.2015.995638] [PMID: 25576089]
[8]
Zou, Z.; Liu, C.; Che, C.; Huang, H. Clinical genetics of Alzheimer’s disease. BioMed Res. Int., 2014, 2014, 291862.
[http://dx.doi.org/10.1155/2014/291862] [PMID: 24955352]
[9]
Hampel, H.; Mesulam, M-M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[10]
Kametani, F.; Hasegawa, M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front. Neurosci., 2018, 12, 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[11]
Itzhaki, R.F. Corroboration of a major role for herpes simplex virus type 1 in Alzheimer’s disease. Front. Aging Neurosci., 2018, 10, 324.
[http://dx.doi.org/10.3389/fnagi.2018.00324] [PMID: 30405395]
[12]
Nasrabady, S.E.; Rizvi, B.; Goldman, J.E.; Brickman, A.M. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol. Commun., 2018, 6(1), 22.
[http://dx.doi.org/10.1186/s40478-018-0515-3] [PMID: 29499767]
[13]
Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+ T cells in neurodegenerative diseases. Front. Cell. Neurosci., 2018, 12, 114.
[http://dx.doi.org/10.3389/fncel.2018.00114] [PMID: 29755324]
[14]
González-Vera, J.A.; Medina, R.A.; Martín-Fontecha, M.; Gonzalez, A.; de la Fuente, T.; Vázquez-Villa, H.; García-Cárceles, J.; Botta, J.; McCormick, P.J.; Benhamú, B.; Pardo, L.; López-Rodríguez, M.L. A new serotonin 5-HT6 receptor antagonist with procognitive activity - Importance of a halogen bond interaction to stabilize the binding. Sci. Rep., 2017, 7(1), 41293.
[http://dx.doi.org/10.1038/srep41293] [PMID: 28117458]
[15]
Medhurst, A.D.; Roberts, J.C.; Lee, J.; Chen, C.P.L.H.; Brown, S.H.; Roman, S.; Lai, M.K.P. Characterization of histamine H3 receptors in Alzheimer’s disease brain and amyloid over-expressing TASTPM mice. Br. J. Pharmacol., 2009, 157(1), 130-138.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00075.x] [PMID: 19222483]
[16]
Lanctôt, K.L.; Herrmann, N.; Mazzotta, P.; Khan, L.R.; Ingber, N. GABAergic function in Alzheimer’s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can. J. Psychiatry, 2004, 49(7), 439-453.
[http://dx.doi.org/10.1177/070674370404900705] [PMID: 15362248]
[17]
Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci., 2019, 13, 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[18]
Gannon, M.; Che, P.; Chen, Y.; Jiao, K.; Roberson, E.D.; Wang, Q. Noradrenergic dysfunction in Alzheimer’s disease. Front. Neurosci., 2015, 9(6), 220.
[http://dx.doi.org/10.3389/fnins.2015.00220] [PMID: 26136654]
[19]
Dos Santos Picanco, L.C.; Ozela, P.F.; de Fatima de Brito Brito, M.; Pinheiro, A.A.; Padilha, E.C.; Braga, F.S.; de Paula da Silva, C.H.T.; Dos Santos, C.B.R.; Rosa, J.M.C.; da Silva Hage-Melim, L.I. Alzheimer’s disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr. Med. Chem., 2018, 25(26), 3141-3159.
[http://dx.doi.org/10.2174/0929867323666161213101126] [PMID: 30191777]
[20]
US National Library ot Medicine. Clinical Trials gov. Available at;https://clinicaltrials.gov (accessed on: 5th May, 2020).
[21]
Lo, D.; Grossberg, G.T. Use of memantine for the treatment of dementia. Expert Rev. Neurother., 2011, 11(10), 1359-1370.
[http://dx.doi.org/10.1586/ern.11.132] [PMID: 21955192]
[22]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Diabetic theory in anti-Alzheimer’s drug research and development. Part 1: therapeutic potential of antidiabetic agents. Curr. Med. Chem., 2019, 26.
[http://dx.doi.org/10.2174/0929867326666191011144818] [PMID: 31604406]
[23]
Li, Y.; Tian, Q.; Li, Z.; Dang, M.; Lin, Y.; Hou, X. Activation of Nrf2 signaling by sitagliptin and quercetin combination against β-amyloid induced Alzheimer’s disease in rats. Drug Dev. Res., 2019, 80(6), 837-845.
[http://dx.doi.org/10.1002/ddr.21567] [PMID: 31301179]
[24]
Bułdak, Ł.; Machnik, G.; Skudrzyk, E.; Bołdys, A.; Okopień, B. The impact of exenatide (a GLP-1 agonist) on markers of inflammation and oxidative stress in normal human astrocytes subjected to various glycemic conditions. Exp. Ther. Med., 2019, 17(4), 2861-2869.
[http://dx.doi.org/10.3892/etm.2019.7245] [PMID: 30906473]
[25]
Zhao, Y.; Wei, X.; Song, J.; Zhang, M.; Huang, T.; Qin, J. Peroxisome proliferator-activated receptor γ agonist rosiglitazone protects blood-brain barrier integrity following diffuse axonal injury by decreasing the levels of inflammatory mediators through a caveolin-1-dependent pathway. Inflammation, 2019, 42(3), 841-856.
[http://dx.doi.org/10.1007/s10753-018-0940-2] [PMID: 30488141]
[26]
Aksoz, E.; Gocmez, S.S.; Sahin, T.D.; Aksit, D.; Aksit, H.; Utkan, T. The protective effect of metformin in scopolamine-induced learning and memory impairment in rats. Pharmacol. Rep., 2019, 71(5), 818-825.
[http://dx.doi.org/10.1016/j.pharep.2019.04.015] [PMID: 31382167]
[27]
Araszkiewicz, A.; Bandurska-Stankiewicz, E.; Budzyński, A.; Cypryk, K.; Czech, A.; Czupryniak, L.; Drzewoski, J.; Dzida, G.; Dziedzic, T.; Franek, E.; Gajewska, D.; Górska, M.; Grzeszczak, W.; Gumprecht, J.; Idzior-Waluś, B.; Jarosz-Chobot, P.; Kalarus, Z.; Klupa, T.; Koblik, T.; Kokoszka, A.; Korzon-Burakowska, A.; Kowalska, I.; Krętowski, A.; Majkowska, L.; Małecki, M.; Mamcarz, A.; Mirkiewicz-Sieradzka, B.; Młynarski, W.; Moczulski, D.; Myśliwiec, M.; Narkiewicz, K.; Noczyńska, A.; Piątkiewicz, P.; Rymaszewska, J.; Sieradzki, J.; Solnica, B.; Strączkowski, M.; Strojek, K.; Szadkowska, A.; Szelachowska, M.; Wender-Ożegowska, E.; Wierusz-Wysocka, B.; Wolnik, B.; Wyleżoł, M.; Wylęgała, E.; Zozulińska-Ziółkiewicz, D. 2019 Guidelines on the management of diabetic patients. A position of diabetes Poland. Clin. Diabetol., 2019, 8(1), 1-95.
[http://dx.doi.org/10.5603/DK.2019.0001]
[28]
Mukai, N.; Ohara, T.; Hata, J.; Hirakawa, Y.; Yoshida, D.; Kishimoto, H.; Koga, M.; Nakamura, U.; Kitazono, T.; Kiyohara, Y.; Ninomiya, T. Alternative measures of hyperglycemia and risk of Alzheimer’s disease in the community: the Hisayama study. J. Clin. Endocrinol. Metab., 2017, 102(8), 3002-3010.
[http://dx.doi.org/10.1210/jc.2017-00439] [PMID: 28605542]
[29]
Fajemiroye, J.O.; da Cunha, L.C.; Saavedra-Rodríguez, R.; Rodrigues, K.L.; Naves, L.M.; Mourão, A.A.; da Silva, E.F.; Williams, N.E.E.; Martins, J.L.R.; Sousa, R.B.; Rebelo, A.C.S.; Reis, A.A.D.S.; Santos, R.D.S.; Ferreira-Neto, M.L.; Pedrino, G.R. Aging-induced biological changes and cardiovascular diseases. BioMed Res. Int., 2018, 2018, 7156435.
[http://dx.doi.org/10.1155/2018/7156435] [PMID: 29984246]
[30]
Bampi, S.R.; Casaril, A.M.; Domingues, M.; de Andrade Lourenço, D.; Pesarico, A.P.; Vieira, B.; Begnini, K.R.; Seixas, F.K.; Collares, T.V.; Lenardão, E.J.; Savegnago, L. Depression-like behavior, hyperglycemia, oxidative stress, and neuroinflammation presented in diabetic mice are reversed by the administration of 1-methyl-3-(phenylselanyl)-1H-indole. J. Psychiatr. Res., 2020, 120, 91-102.
[http://dx.doi.org/10.1016/j.jpsychires.2019.10.003] [PMID: 31654972]
[31]
de Rekeneire, N.; Peila, R.; Ding, J.; Colbert, L.H.; Visser, M.; Shorr, R.I.; Kritchevsky, S.B.; Kuller, L.H.; Strotmeyer, E.S.; Schwartz, A.V.; Vellas, B.; Harris, T.B. Diabetes, hyperglycemia, and inflammation in older individuals: the health, aging and body composition study. Diabetes Care, 2006, 29(8), 1902-1908.
[http://dx.doi.org/10.2337/dc05-2327] [PMID: 16873800]
[32]
Pickup, J.C.; Mattock, M.B.; Chusney, G.D.; Burt, D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia, 1997, 40(11), 1286-1292.
[http://dx.doi.org/10.1007/s001250050822] [PMID: 9389420]
[33]
Fiore, V.; De Rosa, A.; Falasca, P.; Marci, M.; Guastamacchia, E.; Licchelli, B.; Giagulli, V.A.; De Pergola, G.; Poggi, A.; Triggiani, V. Focus on the correlations between Alzheimer’s disease and type 2 diabetes. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 571-579.
[http://dx.doi.org/10.2174/1871530319666190311141855] [PMID: 30854980]
[34]
Massaccesi, L.; Galliera, E.; Galimberti, D.; Fenoglio, C.; Arcaro, M.; Goi, G.; Barassi, A.; Corsi Romanelli, M.M. Lag-time in Alzheimer’s disease patients: a potential plasmatic oxidative stress marker associated with ApoE4 isoform. Immun. ageing I A, 2019, 16, 7.
[http://dx.doi.org/10.1186/s12979-019-0147-x] [PMID: 30984280]
[35]
Bigagli, E.; Lodovici, M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxid. Med. Cell. Longev., 2019, 2019(6), 5953685.
[http://dx.doi.org/10.1155/2019/5953685] [PMID: 31214280]
[36]
Stefano, G.B.; Challenger, S.; Kream, R.M. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur. J. Nutr., 2016, 55(8), 2339-2345.
[http://dx.doi.org/10.1007/s00394-016-1212-2] [PMID: 27084094]
[37]
Macauley, S.L.; Stanley, M.; Caesar, E.E.; Yamada, S.A.; Raichle, M.E.; Perez, R.; Mahan, T.E.; Sutphen, C.L.; Holtzman, D.M. Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J. Clin. Invest., 2015, 125(6), 2463-2467.
[http://dx.doi.org/10.1172/JCI79742] [PMID: 25938784]
[38]
Kim, B.; Backus, C.; Oh, S.; Feldman, E.L. Hyperglycemia-induced tau cleavage in vitro and in vivo: a possible link between diabetes and Alzheimer’s disease. J. Alzheimers Dis., 2013, 34(3), 727-739.
[http://dx.doi.org/10.3233/JAD-121669] [PMID: 23254634]
[39]
Martinez-Valbuena, I.; Valenti-Azcarate, R.; Amat-Villegas, I.; Riverol, M.; Marcilla, I.; de Andrea, C.E.; Sánchez-Arias, J.A.; Del Mar Carmona-Abellan, M.; Marti, G.; Erro, M.E.; Martínez-Vila, E.; Tuñon, M-T.; Luquin, M-R. Amylin as a potential link between type 2 diabetes and alzheimer disease. Ann. Neurol., 2019, 86(4), 539-551.
[http://dx.doi.org/10.1002/ana.25570] [PMID: 31376172]
[40]
Akhtar, M.W.; Sanz-Blasco, S.; Dolatabadi, N.; Parker, J.; Chon, K.; Lee, M.S.; Soussou, W.; McKercher, S.R.; Ambasudhan, R.; Nakamura, T.; Lipton, S.A. Elevated glucose and oligomeric β-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation. Nat. Commun., 2016, 7(1), 10242.
[http://dx.doi.org/10.1038/ncomms10242] [PMID: 26743041]
[41]
Pintana, H.; Apaijai, N.; Kerdphoo, S.; Pratchayasakul, W.; Sripetchwandee, J.; Suntornsaratoon, P.; Charoenphandhu, N.; Chattipakorn, N.; Chattipakorn, S.C. Hyperglycemia induced the Alzheimer’s proteins and promoted loss of synaptic proteins in advanced-age female Goto-Kakizaki (GK) rats. Neurosci. Lett., 2017, 655, 41-45.
[http://dx.doi.org/10.1016/j.neulet.2017.06.041] [PMID: 28652187]
[42]
Carvalho, C.; Katz, P.S.; Dutta, S.; Katakam, P.V.G.; Moreira, P.I.; Busija, D.W. Increased susceptibility to amyloid-β toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions. J. Alzheimers Dis., 2014, 38(1), 75-83.
[http://dx.doi.org/10.3233/JAD-130464] [PMID: 23948922]
[43]
Hwang, I.K.; Choi, J.H.; Nam, S.M.; Park, O.K.; Yoo, D.Y.; Kim, W.; Yi, S.S.; Won, M-H.; Seong, J.K.; Yoon, Y.S. Activation of microglia and induction of pro-inflammatory cytokines in the hippocampus of type 2 diabetic rats. Neurol. Res., 2014, 36(9), 824-832.
[http://dx.doi.org/10.1179/1743132814Y.0000000330] [PMID: 24571083]
[44]
Sarlus, H.; Heneka, M.T. Microglia in Alzheimer’s disease. J. Clin. Invest., 2017, 127(9), 3240-3249.
[http://dx.doi.org/10.1172/JCI90606] [PMID: 28862638]
[45]
Li, Q.; Barres, B.A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol., 2018, 18(4), 225-242.
[http://dx.doi.org/10.1038/nri.2017.125] [PMID: 29151590]
[46]
Wang, L.; Pavlou, S.; Du, X.; Bhuckory, M.; Xu, H.; Chen, M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol. Neurodegener., 2019, 14(1), 2.
[http://dx.doi.org/10.1186/s13024-019-0305-9] [PMID: 30634998]
[47]
Scott Bitner, R. Cyclic AMP response element-binding protein (CREB) phosphorylation: a mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem. Pharmacol., 2012, 83(6), 705-714.
[http://dx.doi.org/10.1016/j.bcp.2011.11.009] [PMID: 22119240]
[48]
Yang, L. Neuronal cAMP/PKA signaling and energy homeostasis. Adv. Exp. Med. Biol., 2018, 1090, 31-48.
[http://dx.doi.org/10.1007/978-981-13-1286-1_3] [PMID: 30390284]
[49]
Ravnskjaer, K.; Madiraju, A.; Montminy, M. Role of the cAMP pathway in glucose and lipid metabolism. Handb. Exp. Pharmacol., 2016, 233, 29-49.
[http://dx.doi.org/10.1007/164_2015_32] [PMID: 26721678]
[50]
Yang, H.; Yang, L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J. Mol. Endocrinol., 2016, 57(2), R93-R108.
[http://dx.doi.org/10.1530/JME-15-0316] [PMID: 27194812]
[51]
Tsai, L-C.L.; Chan, G.C-K.; Nangle, S.N.; Shimizu-Albergine, M.; Jones, G.L.; Storm, D.R.; Beavo, J.A.; Zweifel, L.S. Inactivation of Pde8b enhances memory, motor performance, and protects against age-induced motor coordination decay. Genes Brain Behav., 2012, 11(7), 837-847.
[http://dx.doi.org/10.1111/j.1601-183X.2012.00836.x] [PMID: 22925203]
[52]
Peterkofsky, A.; Gazdar, C. Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B. Proc. Natl. Acad. Sci. USA, 1974, 71(6), 2324-2328.
[http://dx.doi.org/10.1073/pnas.71.6.2324] [PMID: 4366761]
[53]
Raoux, M.; Vacher, P.; Papin, J.; Picard, A.; Kostrzewa, E.; Devin, A.; Gaitan, J.; Limon, I.; Kas, M.J.; Magnan, C.; Lang, J. Multilevel control of glucose homeostasis by adenylyl cyclase 8. Diabetologia, 2015, 58(4), 749-757.
[http://dx.doi.org/10.1007/s00125-014-3445-z] [PMID: 25403481]
[54]
Carniglia, L.; Ramírez, D.; Durand, D.; Saba, J.; Turati, J.; Caruso, C.; Scimonelli, T.N.; Lasaga, M. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediators Inflamm., 2017, 2017, 5048616.
[http://dx.doi.org/10.1155/2017/5048616] [PMID: 28154473]
[55]
Chuai, M.; Ogata, T.; Morino, T.; Okumura, H.; Yamamoto, H.; Schubert, P. Prostaglandin E1 analog inhibits the microglia function: suppression of lipopolysaccharide-induced nitric oxide and TNF-α release. J. Orthop. Res., 2002, 20(6), 1246-1252.
[http://dx.doi.org/10.1016/S0736-0266(02)00068-2] [PMID: 12472236]
[56]
Lakics, V.; Karran, E.H.; Boess, F.G. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology, 2010, 59(6), 367-374.
[http://dx.doi.org/10.1016/j.neuropharm.2010.05.004] [PMID: 20493887]
[57]
Johnson, E.L.; Tang, L.; Yin, Q.; Asano, E.; Ofen, N. Direct brain recordings reveal prefrontal cortex dynamics of memory development. Sci. Adv., 2018, 4(12), eaat3702.
[http://dx.doi.org/10.1126/sciadv.aat3702] [PMID: 30585286]
[58]
Birur, B.; Kraguljac, N.V.; Shelton, R.C.; Lahti, A.C. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr., 2017, 3(1), 15.
[http://dx.doi.org/10.1038/s41537-017-0013-9] [PMID: 28560261]
[59]
Park, J.; Moghaddam, B. Impact of anxiety on prefrontal cortex encoding of cognitive flexibility. Neuroscience, 2017, 345, 193-202.
[http://dx.doi.org/10.1016/j.neuroscience.2016.06.013] [PMID: 27316551]
[60]
Liu, W.; Ge, T.; Leng, Y.; Pan, Z.; Fan, J.; Yang, W.; Cui, R. The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast., 2017, 2017, 6871089.
[http://dx.doi.org/10.1155/2017/6871089] [PMID: 28246558]
[61]
Torphy, T.J. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am. J. Respir. Crit. Care Med., 1998, 157(2), 351-370.
[http://dx.doi.org/10.1164/ajrccm.157.2.9708012] [PMID: 9476844]
[62]
Waddleton, D.; Wu, W.; Feng, Y.; Thompson, C.; Wu, M.; Zhou, Y-P.; Howard, A.; Thornberry, N.; Li, J.; Mancini, J.A. Phosphodiesterase 3 and 4 comprise the major CAMP metabolizing enzymes responsible for insulin secretion in INS-1 (832/13). Cells and Rat Islets. Biochem. Pharmacol., 2008, 76(7), 884-893.
[http://dx.doi.org/10.1016/j.bcp.2008.07.025] [PMID: 18706893]
[63]
Omori, K.; Kotera, J. Overview of PDEs and their regulation. Circ. Res., 2007, 100(3), 309-327.
[http://dx.doi.org/10.1161/01.RES.0000256354.95791.f1] [PMID: 17307970]
[64]
Beavo, J.A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev., 1995, 75(4), 725-748.
[http://dx.doi.org/10.1152/physrev.1995.75.4.725] [PMID: 7480160]
[65]
Wang, H.; Peng, M-S.; Chen, Y.; Geng, J.; Robinson, H.; Houslay, M.D.; Cai, J.; Ke, H. Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors. Biochem. J., 2007, 408(2), 193-201.
[http://dx.doi.org/10.1042/BJ20070970] [PMID: 17727341]
[66]
Ahmad, F.; Murata, T.; Shimizu, K.; Degerman, E.; Maurice, D.; Manganiello, V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis., 2015, 21(1), e25-e50.
[http://dx.doi.org/10.1111/odi.12275] [PMID: 25056711]
[67]
Rabe, K.F. Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br. J. Pharmacol., 2011, 163(1), 53-67.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01218.x] [PMID: 21232047]
[68]
Schafer, P.H.; Parton, A.; Capone, L.; Cedzik, D.; Brady, H.; Evans, J.F.; Man, H-W.; Muller, G.W.; Stirling, D.I.; Chopra, R. Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell. Signal., 2014, 26(9), 2016-2029.
[http://dx.doi.org/10.1016/j.cellsig.2014.05.014] [PMID: 24882690]
[69]
MacKenzie, S.J.; Houslay, M.D. Action of rolipram on specific PDE4 cAMP phosphodiesterase isoforms and on the phosphorylation of cAMP-response-element-binding protein (CREB) and p38 mitogen-activated protein (MAP) kinase in U937 monocytic cells. Biochem. J., 2000, 347(Pt 2), 571-578.
[http://dx.doi.org/10.1042/bj3470571] [PMID: 10749688]
[70]
Kawamatawong, T. Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. J. Thorac. Dis., 2017, 9(4), 1144-1154.
[http://dx.doi.org/10.21037/jtd.2017.03.116] [PMID: 28523172]
[71]
Huang, Z.; Dias, R.; Jones, T.; Liu, S.; Styhler, A.; Claveau, D.; Otu, F.; Ng, K.; Laliberte, F.; Zhang, L.; Goetghebeur, P.; Abraham, W.M.; Macdonald, D.; Dubé, D.; Gallant, M.; Lacombe, P.; Girard, Y.; Young, R.N.; Turner, M.J.; Nicholson, D.W.; Mancini, J.A. L-454,560, a potent and selective PDE4 inhibitor with in vivo efficacy in animal models of asthma and cognition. Biochem. Pharmacol., 2007, 73(12), 1971-1981.
[http://dx.doi.org/10.1016/j.bcp.2007.03.010] [PMID: 17428447]
[72]
Antoniu, S.A. New therapeutic options in the management of COPD - focus on roflumilast. Int. J. Chron. Obstruct. Pulmon. Dis., 2011, 6, 147-155.
[http://dx.doi.org/10.2147/COPD.S7336] [PMID: 21468165]
[73]
Nabavi, S.M.; Talarek, S.; Listos, J.; Nabavi, S.F.; Devi, K.P.; Roberto de Oliveira, M.; Tewari, D.; Argüelles, S.; Mehrzadi, S.; Hosseinzadeh, A.; D’onofrio, G.; Orhan, I.E.; Sureda, A.; Xu, S.; Momtaz, S.; Farzaei, M.H. Phosphodiesterase inhibitors say NO to Alzheimer’s disease. Food Chem. Toxicol., 2019, 134, 110822.
[http://dx.doi.org/10.1016/j.fct.2019.110822] [PMID: 31536753]
[74]
Möllmann, J.; Kahles, F.; Lebherz, C.; Kappel, B.; Baeck, C.; Tacke, F.; Werner, C.; Federici, M.; Marx, N.; Lehrke, M. The PDE4 inhibitor roflumilast reduces weight gain by increasing energy expenditure and leads to improved glucose metabolism. Diabetes Obes. Metab., 2017, 19(4), 496-508.
[http://dx.doi.org/10.1111/dom.12839] [PMID: 27917591]
[75]
Vollert, S.; Kaessner, N.; Heuser, A.; Hanauer, G.; Dieckmann, A.; Knaack, D.; Kley, H.P.; Beume, R.; Weiss-Haljiti, C. The glucose-lowering effects of the PDE4 inhibitors roflumilast and roflumilast-N-oxide in db/db mice. Diabetologia, 2012, 55(10), 2779-2788.
[http://dx.doi.org/10.1007/s00125-012-2632-z] [PMID: 22790061]
[76]
Omar, B.; Zmuda-Trzebiatowska, E.; Manganiello, V.; Göransson, O.; Degerman, E. Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell. Signal., 2009, 21(5), 760-766.
[http://dx.doi.org/10.1016/j.cellsig.2009.01.015] [PMID: 19167487]
[77]
Xu, B.; Qin, Y.; Li, D.; Cai, N.; Wu, J.; Jiang, L.; Jie, L.; Zhou, Z.; Xu, J.; Wang, H. Inhibition of PDE4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway. Redox Biol., 2020, 28, 101342.
[http://dx.doi.org/10.1016/j.redox.2019.101342] [PMID: 31639651]
[78]
Feng, H.; Wang, C.; He, W.; Wu, X.; Li, S.; Zeng, Z.; Wei, M.; He, B. Roflumilast ameliorates cognitive impairment in APP/PS1 mice via cAMP/CREB/BDNF signaling and anti-neuroinflammatory effects. Metab. Brain Dis., 2019, 34(2), 583-591.
[http://dx.doi.org/10.1007/s11011-018-0374-4] [PMID: 30610438]
[79]
Xiao, J.; Yao, R.; Xu, B.; Wen, H.; Zhong, J.; Li, D.; Zhou, Z.; Xu, J.; Wang, H. Inhibition of PDE4 attenuates TNF-α-triggered cell death through suppressing NF-κB and JNK activation in HT-22 neuronal cells. Cell. Mol. Neurobiol., 2020, 40(3), 421-435.
[http://dx.doi.org/10.1007/s10571-019-00745-w] [PMID: 31659561]
[80]
Tang, L.; Huang, C.; Zhong, J.; He, J.; Guo, J.; Liu, M.; Xu, J-P.; Wang, H-T.; Zhou, Z-Z. Discovery of arylbenzylamines as PDE4 inhibitors with potential neuroprotective effect. Eur. J. Med. Chem., 2019, 168, 221-231.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.026] [PMID: 30822711]
[81]
Xu, B.; Wang, T.; Xiao, J.; Dong, W.; Wen, H.Z.; Wang, X.; Qin, Y.; Cai, N.; Zhou, Z.; Xu, J.; Wang, H. FCPR03, a novel phosphodiesterase 4 inhibitor, alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β/β-catenin signaling pathway. Biochem. Pharmacol., 2019, 163, 234-249.
[http://dx.doi.org/10.1016/j.bcp.2019.02.023] [PMID: 30797872]
[82]
Ansari, M.N.; Ganaie, M.A.; Rehman, N.U.; Alharthy, K.M.; Khan, T.H.; Imam, F.; Ansari, M.A.; Al-Harbi, N.O.; Jan, B.L.; Sheikh, I.A.; Hamad, A.M. Protective role of Roflumilast against cadmium-induced cardiotoxicity through inhibition of oxidative stress and NF-κB signaling in rats. Saudi Pharm. J., 2019, 27(5), 673-681.
[http://dx.doi.org/10.1016/j.jsps.2019.04.002] [PMID: 31297022]
[83]
Xu, M.; Yu, X.; Meng, X.; Huang, S.; Zhang, Y.; Zhang, A.; Jia, Z. Inhibition of PDE4/PDE4B improves renal function and ameliorates inflammation in cisplatin-induced acute kidney injury. Am. J. Physiol. Renal Physiol., 2020, 318(3), F576-F588.
[http://dx.doi.org/10.1152/ajprenal.00477.2019] [PMID: 31961716]
[84]
Blokland, A.; Van Duinen, M.A.; Sambeth, A.; Heckman, P.R.A.; Tsai, M.; Lahu, G.; Uz, T.; Prickaerts, J. Acute treatment with the PDE4 inhibitor roflumilast improves verbal word memory in healthy old individuals: a double-blind placebo-controlled study. Neurobiol. Aging, 2019, 77, 37-43.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.01.014] [PMID: 30776650]
[85]
Azam, M.A.; Tripuraneni, N.S. Selective phosphodiesterase 4B inhibitors: a review. Sci. Pharm., 2014, 82(3), 453-481.
[http://dx.doi.org/10.3797/scipharm.1404-08] [PMID: 25853062]
[86]
Zhang, C.; Xu, Y.; Zhang, H-T.; Gurney, M.E.; O’Donnell, J.M. Comparison of the pharmacological profiles of selective PDE4B and PDE4D inhibitors in the central nervous system. Sci. Rep., 2017, 7(1), 40115.
[http://dx.doi.org/10.1038/srep40115] [PMID: 28054669]
[87]
Gurney, M.E.; Nugent, R.A.; Mo, X.; Sindac, J.A.; Hagen, T.J.; Fox, D., III; O’Donnell, J.M.; Zhang, C.; Xu, Y.; Zhang, H-T.; Groppi, V.E.; Bailie, M.; White, R.E.; Romero, D.L.; Vellekoop, A.S.; Walker, J.R.; Surman, M.D.; Zhu, L.; Campbell, R.F. Design and synthesis of selective phosphodiesterase 4D (PDE4D) allosteric inhibitors for the treatment of fragile X syndrome and other brain disorders. J. Med. Chem., 2019, 62(10), 4884-4901.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00193] [PMID: 31013090]
[88]
de Medeiros, A.S.; Wyman, A.R.; Alaamery, M.A.; Allain, C.; Ivey, F.D.; Wang, L.; Le, H.; Morken, J.P.; Habara, A.; Le, C.; Cui, S.; Lerner, A.; Hoffman, C.S. Identification and characterization of a potent and biologically-active PDE4/7 inhibitor via fission yeast-based assays. Cell. Signal., 2017, 40, 73-80.
[http://dx.doi.org/10.1016/j.cellsig.2017.08.011] [PMID: 28867658]
[89]
Jindal, A.; Mahesh, R.; Bhatt, S. Etazolate, a phosphodiesterase-4 enzyme inhibitor produces antidepressant-like effects by blocking the behavioral, biochemical, neurobiological deficits and histological abnormalities in hippocampus region caused by olfactory bulbectomy. Psychopharmacology (Berl.), 2015, 232(3), 623-637.
[http://dx.doi.org/10.1007/s00213-014-3705-0] [PMID: 25120105]
[90]
Marcade, M.; Bourdin, J.; Loiseau, N.; Peillon, H.; Rayer, A.; Drouin, D.; Schweighoffer, F.; Désiré, L. Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J. Neurochem., 2008, 106(1), 392-404.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05396.x] [PMID: 18397369]
[91]
Ichimura, M.; Kase, H. A new cyclic nucleotide phosphodiesterase isozyme expressed in the T-lymphocyte cell lines. Biochem. Biophys. Res. Commun., 1993, 193(3), 985-990.
[http://dx.doi.org/10.1006/bbrc.1993.1722] [PMID: 8391815]
[92]
Bloom, T.J.; Beavo, J.A. Identification and tissue-specific expression of PDE7 phosphodiesterase splice variants. Proc. Natl. Acad. Sci. USA, 1996, 93(24), 14188-14192.
[http://dx.doi.org/10.1073/pnas.93.24.14188] [PMID: 8943082]
[93]
Sasaki, T.; Kotera, J.; Omori, K. Novel alternative splice variants of rat phosphodiesterase 7B showing unique tissue-specific expression and phosphorylation. Biochem. J., 2002, 361(Pt 2), 211-220.
[http://dx.doi.org/10.1042/bj3610211] [PMID: 11772393]
[94]
Hetman, J.M.; Soderling, S.H.; Glavas, N.A.; Beavo, J.A. Cloning and characterization of PDE7B, a cAMP-specific phosphodiesterase. Proc. Natl. Acad. Sci. USA, 2000, 97(1), 472-476.
[http://dx.doi.org/10.1073/pnas.97.1.472] [PMID: 10618442]
[95]
RCSB, Protein Data Bank. Available at: https://www.rcsb.org (accessed on: 5th May, 2020).
[96]
Redondo, M.; Soteras, I.; Brea, J.; González-García, A.; Cadavid, M.I.; Loza, M.I.; Martinez, A.; Gil, C.; Campillo, N.E. Unraveling phosphodiesterase surfaces. Identification of phosphodiesterase 7 allosteric modulation cavities. Eur. J. Med. Chem., 2013, 70, 781-788.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.035] [PMID: 24239625]
[97]
Gil, C.; Campillo, N.E.; Perez, D.I.; Martinez, A. PDE7 Inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin. Ther. Pat., 2008, 18(10), 1127-1139.
[http://dx.doi.org/10.1517/13543776.18.10.1127]
[98]
Martínez, A.; Castro, A.; Gil, C.; Miralpeix, M.; Segarra, V.; Doménech, T.; Beleta, J.; Palacios, J.M.; Ryder, H.; Miró, X.; Bonet, C.; Casacuberta, J.M.; Azorín, F.; Piña, B.; Puigdoménech, P. Benzyl derivatives of 2,1,3-benzo- and benzothieno[3,2-a]thiadiazine 2,2-dioxides: first phosphodiesterase 7 inhibitors. J. Med. Chem., 2000, 43(4), 683-689.
[http://dx.doi.org/10.1021/jm990382n] [PMID: 10691694]
[99]
Castro, A.; Abasolo, M.I.; Gil, C.; Segarra, V.; Martinez, A. CoMFA of benzyl derivatives of 2,1,3-benzo and benzothieno[3,2-alpha]thiadiazine 2,2-dioxides: clues for the design of phosphodiesterase 7 inhibitors. Eur. J. Med. Chem., 2001, 36(4), 333-338.
[http://dx.doi.org/10.1016/S0223-5234(01)01227-2] [PMID: 11461758]
[100]
Barnes, M.J.; Cooper, N.; Davenport, R.J.; Dyke, H.J.; Galleway, F.P.; Galvin, F.C.A.; Gowers, L.; Haughan, A.F.; Lowe, C.; Meissner, J.W.G.; Montana, J.G.; Morgan, T.; Picken, C.L.; Watson, R.J. Synthesis and structure-activity relationships of guanine analogues as phosphodiesterase 7 (PDE7) inhibitors. Bioorg. Med. Chem. Lett., 2001, 11(8), 1081-1083.
[http://dx.doi.org/10.1016/S0960-894X(01)00125-1] [PMID: 11327595]
[101]
Pitts, W.J.; Vaccaro, W.; Huynh, T.; Leftheris, K.; Roberge, J.Y.; Barbosa, J.; Guo, J.; Brown, B.; Watson, A.; Donaldson, K.; Starling, G.C.; Kiener, P.A.; Poss, M.A.; Dodd, J.H.; Barrish, J.C. Identification of purine inhibitors of phosphodiesterase 7 (PDE7). Bioorg. Med. Chem. Lett., 2004, 14(11), 2955-2958.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.021] [PMID: 15125967]
[102]
Kempson, J.; Pitts, W.J.; Barbosa, J.; Guo, J.; Omotoso, O.; Watson, A.; Stebbins, K.; Starling, G.C.; Dodd, J.H.; Barrish, J.C.; Felix, R.; Fischer, K. Fused pyrimidine based inhibitors of phosphodiesterase 7 (PDE7): synthesis and initial structure-activity relationships. Bioorg. Med. Chem. Lett., 2005, 15(7), 1829-1833.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.025] [PMID: 15780616]
[103]
Guo, J.; Watson, A.; Kempson, J.; Carlsen, M.; Barbosa, J.; Stebbins, K.; Lee, D.; Dodd, J.; Nadler, S.G.; McKinnon, M.; Barrish, J.; Pitts, W.J. Identification of potent pyrimidine inhibitors of phosphodiesterase 7 (PDE7) and their ability to inhibit T cell proliferation. Bioorg. Med. Chem. Lett., 2009, 19(7), 1935-1938.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.060] [PMID: 19272774]
[104]
Smith, S.J.; Cieslinski, L.B.; Newton, R.; Donnelly, L.E.; Fenwick, P.S.; Nicholson, A.G.; Barnes, P.J.; Barnette, M.S.; Giembycz, M.A. Discovery of BRL 50481 [3-(N,N-dimethylsulfonamido)-4-methyl-nitrobenzene], a selective inhibitor of phosphodiesterase 7: in vitro studies in human monocytes, lung macrophages, and CD8+ T-lymphocytes. Mol. Pharmacol., 2004, 66(6), 1679-1689.
[http://dx.doi.org/10.1124/mol.104.002246] [PMID: 15371556]
[105]
Lorthiois, E.; Bernardelli, P.; Vergne, F.; Oliveira, C.; Mafroud, A.K.; Proust, E.; Heuze, L.; Moreau, F.; Idrissi, M.; Tertre, A.; Bertin, B.; Coupe, M.; Wrigglesworth, R.; Descours, A.; Soulard, P.; Berna, P. Spiroquinazolinones as novel, potent, and selective PDE7 inhibitors. Part 1. Bioorg. Med. Chem. Lett., 2004, 14(18), 4623-4626.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.011] [PMID: 15324876]
[106]
Bernardelli, P.; Lorthiois, E.; Vergne, F.; Oliveira, C.; Mafroud, A.K.; Proust, E.; Pham, N.; Ducrot, P.; Moreau, F.; Idrissi, M.; Tertre, A.; Bertin, B.; Coupe, M.; Chevalier, E.; Descours, A.; Berlioz-Seux, F.; Berna, P.; Li, M. Spiroquinazolinones as novel, potent, and selective PDE7 inhibitors. Part 2: optimization of 5,8-disubstituted derivatives. Bioorg. Med. Chem. Lett., 2004, 14(18), 4627-4631.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.010] [PMID: 15324877]
[107]
Daga, P.R.; Doerksen, R.J. Stereoelectronic properties of spiroquinazolinones in differential PDE7 inhibitory activity. J. Comput. Chem., 2010, 31(16), 2967-2970.
[http://dx.doi.org/10.1002/jcc.21576] [PMID: 20928852]
[108]
Banerjee, A.; Yadav, P.S.; Bajpai, M.; Sangana, R.R.; Gullapalli, S.; Gudi, G.S.; Gharat, L.A. Isothiazole and isoxazole fused pyrimidones as PDE7 inhibitors: SAR and pharmacokinetic evaluation. Bioorg. Med. Chem. Lett., 2012, 22(9), 3223-3228.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.025] [PMID: 22487174]
[109]
Banerjee, A.; Patil, S.; Pawar, M.Y.; Gullapalli, S.; Gupta, P.K.; Gandhi, M.N.; Bhateja, D.K.; Bajpai, M.; Sangana, R.R.; Gudi, G.S.; Khairatkar-Joshi, N.; Gharat, L.A. Imidazopyridazinones as novel PDE7 inhibitors: SAR and in vivo studies in Parkinson’s disease model. Bioorg. Med. Chem. Lett., 2012, 22(19), 6286-6291.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.077] [PMID: 22944118]
[110]
García, A.M.; Brea, J.; Morales-García, J.A.; Perez, D.I.; González, A.; Alonso-Gil, S.; Gracia-Rubio, I.; Ros-Simó, C.; Conde, S.; Cadavid, M.I.; Loza, M.I.; Perez-Castillo, A.; Valverde, O.; Martinez, A.; Gil, C. Modulation of cAMP-specific PDE without emetogenic activity: new sulfide-like PDE7 inhibitors. J. Med. Chem., 2014, 57(20), 8590-8607.
[http://dx.doi.org/10.1021/jm501090m] [PMID: 25264825]
[111]
Vergne, F.; Bernardelli, P.; Lorthiois, E.; Pham, N.; Proust, E.; Oliveira, C.; Mafroud, A.K.; Royer, F.; Wrigglesworth, R.; Schellhaas, J.; Barvian, M.; Moreau, F.; Idrissi, M.; Tertre, A.; Bertin, B.; Coupe, M.; Berna, P.; Soulard, P. Discovery of thiadiazoles as a novel structural class of potent and selective PDE7 inhibitors. Part 1: design, synthesis and structure-activity relationship studies. Bioorg. Med. Chem. Lett., 2004, 14(18), 4607-4613.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.008] [PMID: 15324874]
[112]
Vergne, F.; Bernardelli, P.; Lorthiois, E.; Pham, N.; Proust, E.; Oliveira, C.; Mafroud, A-K.; Ducrot, P.; Wrigglesworth, R.; Berlioz-Seux, F.; Coleon, F.; Chevalier, E.; Moreau, F.; Idrissi, M.; Tertre, A.; Descours, A.; Berna, P.; Li, M. Discovery of thiadiazoles as a novel structural class of potent and selective PDE7 inhibitors. Part 2: metabolism-directed optimization studies towards orally bioavailable derivatives. Bioorg. Med. Chem. Lett., 2004, 14(18), 4615-4621.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.009] [PMID: 15324875]
[113]
Gewald, R.; Rueger, C.; Grunwald, C.; Egerland, U.; Hoefgen, N. Synthesis and structure-activity relationship studies of dihydronaphthyridinediones as a novel structural class of potent and selective PDE7 inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(22), 6652-6656.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.065] [PMID: 21983442]
[114]
Kawai, K.; Endo, Y.; Asano, T.; Amano, S.; Sawada, K.; Ueo, N.; Takahashi, N.; Sonoda, Y.; Nagai, M.; Kamei, N.; Nagata, N. Discovery of 2-(cyclopentylamino)thieno[3,2-d]pyrimidin-4(3H)-one derivatives as a new series of potent phosphodiesterase 7 inhibitors. J. Med. Chem., 2014, 57(23), 9844-9854.
[http://dx.doi.org/10.1021/jm5008215] [PMID: 25383422]
[115]
Sánchez, A.I.; Meneses, R.; Mínguez, J.M.; Núñez, A.; Castillo, R.R.; Filace, F.; Burgos, C.; Vaquero, J.J.; Álvarez-Builla, J.; Cortés-Cabrera, A.; Gago, F.; Terricabras, E.; Segarra, V. Microwave-assisted synthesis of potent PDE7 inhibitors containing a thienopyrimidin-4-amine scaffold. Org. Biomol. Chem., 2014, 12(24), 4233-4242.
[http://dx.doi.org/10.1039/C4OB00175C] [PMID: 24838636]
[116]
Endo, Y.; Kawai, K.; Asano, T.; Amano, S.; Asanuma, Y.; Sawada, K.; Ogura, K.; Nagata, N.; Ueo, N.; Takahashi, N.; Sonoda, Y.; Kamei, N. Discovery and SAR study of 2-(4-pyridylamino)thieno[3,2-d]pyrimidin-4(3H)-ones as soluble and highly potent PDE7 inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(3), 649-653.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.090] [PMID: 25529739]
[117]
Endo, Y.; Kawai, K.; Asano, T.; Amano, S.; Asanuma, Y.; Sawada, K.; Onodera, Y.; Ueo, N.; Takahashi, N.; Sonoda, Y.; Kamei, N.; Irie, T. 2-(Isopropylamino)thieno[3,2-d]pyrimidin-4(3H)-one derivatives as selective phosphodiesterase 7 inhibitors with potent in vivo efficacy. Bioorg. Med. Chem. Lett., 2015, 25(9), 1910-1914.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.031] [PMID: 25866242]
[118]
Kadoshima-Yamaoka, K.; Murakawa, M.; Goto, M.; Tanaka, Y.; Inoue, H.; Murafuji, H.; Nagahira, A.; Hayashi, Y.; Nagahira, K.; Miura, K.; Nakatsuka, T.; Chamoto, K.; Fukuda, Y.; Nishimura, T. ASB16165, a novel inhibitor for phosphodiesterase 7A (PDE7A), suppresses IL-12-induced IFN-γ production by mouse activated T lymphocytes. Immunol. Lett., 2009, 122(2), 193-197.
[http://dx.doi.org/10.1016/j.imlet.2009.01.004] [PMID: 19195485]
[119]
Redondo, M.; Brea, J.; Perez, D.I.; Soteras, I.; Val, C.; Perez, C.; Morales-García, J.A.; Alonso-Gil, S.; Paul-Fernandez, N.; Martin-Alvarez, R.; Cadavid, M.I.; Loza, M.I.; Perez-Castillo, A.; Mengod, G.; Campillo, N.E.; Martinez, A.; Gil, C. Effect of phosphodiesterase 7 (PDE7) inhibitors in experimental autoimmune encephalomyelitis mice. Discovery of a new chemically diverse family of compounds. J. Med. Chem., 2012, 55(7), 3274-3284.
[http://dx.doi.org/10.1021/jm201720d] [PMID: 22385507]
[120]
Jankowska, A.; Świerczek, A.; Chłoń-Rzepa, G.; Pawłowski, M.; Wyska, E. PDE7-selective and dual inhibitors: advances in chemical and biological research. Curr. Med. Chem., 2017, 24(7), 673-700.
[http://dx.doi.org/10.2174/0929867324666170116125159] [PMID: 28093982]
[121]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Multifunctional ligands targeting phosphodiesterase as the future strategy for the symptomatic and disease-modifying treatment of Alzheimer’s disease. Curr. Med. Chem., 2019, 27(32), 5351-5373.
[http://dx.doi.org/10.2174/0929867326666190620095623] [PMID: 31250747]
[122]
Jankowska, A.; Satała, G.; Bojarski, A.J.; Pawłowski, M.; Chłoń-Rzepa, G. Multifunctional ligands with glycogen synthase kinase 3 inhibitory activity as a new direction in drug research for Alzheimer’s disease. Curr. Med. Chem., 2021, 28(9), 1731-1745.
[http://dx.doi.org/10.2174/0929867327666200427100453] [PMID: 32338201]
[123]
Perez-Gonzalez, R.; Pascual, C.; Antequera, D.; Bolos, M.; Redondo, M.; Perez, D.I.; Pérez-Grijalba, V.; Krzyzanowska, A.; Sarasa, M.; Gil, C.; Ferrer, I.; Martinez, A.; Carro, E. Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2013, 34(9), 2133-2145.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.03.011] [PMID: 23582662]
[124]
Namazi Sarvestani, N.; Saberi Firouzi, S.; Falak, R.; Karimi, M.Y.; Davoodzadeh Gholami, M.; Rangbar, A.; Hosseini, A. Phosphodiesterase 4 and 7 inhibitors produce protective effects against high glucose-induced neurotoxicity in PC12 cells via modulation of the oxidative stress, apoptosis and inflammation pathways. Metab. Brain Dis., 2018, 33(4), 1293-1306.
[http://dx.doi.org/10.1007/s11011-018-0241-3] [PMID: 29713919]
[125]
Nakata, A.; Ogawa, K.; Sasaki, T.; Koyama, N.; Wada, K.; Kotera, J.; Kikkawa, H.; Omori, K.; Kaminuma, O. Potential role of phosphodiesterase 7 in human T cell function: comparative effects of two phosphodiesterase inhibitors. Clin. Exp. Immunol., 2002, 128(3), 460-466.
[http://dx.doi.org/10.1046/j.1365-2249.2002.01856.x] [PMID: 12067300]
[126]
Goto, M.; Murakawa, M.; Kadoshima-Yamaoka, K.; Tanaka, Y.; Inoue, H.; Murafuji, H.; Hayashi, Y.; Miura, K.; Nakatsuka, T.; Nagahira, K.; Chamoto, K.; Fukuda, Y.; Nishimura, T. Phosphodiesterase 7A inhibitor ASB16165 suppresses proliferation and cytokine production of NKT cells. Cell. Immunol., 2009, 258(2), 147-151.
[http://dx.doi.org/10.1016/j.cellimm.2009.04.005] [PMID: 19477436]
[127]
Mestre, L.; Redondo, M.; Carrillo-Salinas, F.J.; Morales-García, J.A.; Alonso-Gil, S.; Pérez-Castillo, A.; Gil, C.; Martínez, A.; Guaza, C. PDE7 inhibitor TC3.6 ameliorates symptomatology in a model of primary progressive multiple sclerosis. Br. J. Pharmacol., 2015, 172(17), 4277-4290.
[http://dx.doi.org/10.1111/bph.13192] [PMID: 25994655]
[128]
Morales-Garcia, J.A.; Aguilar-Morante, D.; Hernandez-Encinas, E.; Alonso-Gil, S.; Gil, C.; Martinez, A.; Santos, A.; Perez-Castillo, A. Silencing phosphodiesterase 7B gene by lentiviral-shRNA interference attenuates neurodegeneration and motor deficits in hemiparkinsonian mice. Neurobiol. Aging, 2015, 36(2), 1160-1173.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.008] [PMID: 25457552]
[129]
Redondo, M.; Zarruk, J.G.; Ceballos, P.; Pérez, D.I.; Pérez, C.; Perez-Castillo, A.; Moro, M.A.; Brea, J.; Val, C.; Cadavid, M.I.; Loza, M.I.; Campillo, N.E.; Martínez, A.; Gil, C. Neuroprotective efficacy of quinazoline type phosphodiesterase 7 inhibitors in cellular cultures and experimental stroke model. Eur. J. Med. Chem., 2012, 47(1), 175-185.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.040] [PMID: 22100138]
[130]
Medina-Rodríguez, E.M.; Arenzana, F.J.; Pastor, J.; Redondo, M.; Palomo, V.; García de Sola, R.; Gil, C.; Martínez, A.; Bribián, A.; de Castro, F. Inhibition of endogenous phosphodiesterase 7 promotes oligodendrocyte precursor differentiation and survival. Cell. Mol. Life Sci., 2013, 70(18), 3449-3462.
[http://dx.doi.org/10.1007/s00018-013-1340-2] [PMID: 23661015]
[131]
Morales-Garcia, J.A.; Redondo, M.; Alonso-Gil, S.; Gil, C.; Perez, C.; Martinez, A.; Santos, A.; Perez-Castillo, A. Phosphodiesterase 7 inhibition preserves dopaminergic neurons in cellular and rodent models of Parkinson disease. PLoS One, 2011, 6(2), e17240.
[http://dx.doi.org/10.1371/journal.pone.0017240] [PMID: 21390306]
[132]
Morales-Garcia, J.A.; Echeverry-Alzate, V.; Alonso-Gil, S.; Sanz-SanCristobal, M.; Lopez-Moreno, J.A.; Gil, C.; Martinez, A.; Santos, A.; Perez-Castillo, A. Phosphodiesterase7 inhibition activates adult neurogenesis in hippocampus and subventricular zone in vitro and in vivo. Stem Cells, 2017, 35(2), 458-472.
[http://dx.doi.org/10.1002/stem.2480] [PMID: 27538853]
[133]
Morales-Garcia, J.A.; Palomo, V.; Redondo, M.; Alonso-Gil, S.; Gil, C.; Martinez, A.; Perez-Castillo, A. Crosstalk between phosphodiesterase 7 and glycogen synthase kinase-3: two relevant therapeutic targets for neurological disorders. ACS Chem. Neurosci., 2014, 5(3), 194-204.
[http://dx.doi.org/10.1021/cn400166d] [PMID: 24437940]
[134]
Valdés-Moreno, M.I.; Alcántara-Alonso, V.; Estrada-Camarena, E.; Mengod, G.; Amaya, M.I.; Matamoros-Trejo, G.; de Gortari, P. Phosphodiesterase-7 inhibition affects accumbal and hypothalamic thyrotropin-releasing hormone expression, feeding and anxiety behavior of rats. Behav. Brain Res., 2017, 319, 165-173.
[http://dx.doi.org/10.1016/j.bbr.2016.11.027] [PMID: 27864049]
[135]
Biospace.com. Omeros corporation announces positive results from phase 1 study of its lead PDE7 inhibitor in development for addiction., Available at: https://www.biospace.com/article/releases/omeros-corporation-announces-positive-results-from-phase-1-study-of-its-lead-pde7-inhibitor-in-development-for-addiction/ (accessed on: 5th May, 2020).
[136]
Fisher, D.A.; Smith, J.F.; Pillar, J.S.; St Denis, S.H.; Cheng, J.B. Isolation and characterization of PDE8A, a novel human cAMP-specific phosphodiesterase. Biochem. Biophys. Res. Commun., 1998, 246(3), 570-577.
[http://dx.doi.org/10.1006/bbrc.1998.8684] [PMID: 9618252]
[137]
Hayashi, M.; Matsushima, K.; Ohashi, H.; Tsunoda, H.; Murase, S.; Kawarada, Y.; Tanaka, T. Molecular cloning and characterization of human PDE8B, a novel thyroid-specific isozyme of 3′,5′-cyclic nucleotide phosphodiesterase. Biochem. Biophys. Res. Commun., 1998, 250(3), 751-756.
[http://dx.doi.org/10.1006/bbrc.1998.9379] [PMID: 9784418]
[138]
Wang, P.; Wu, P.; Egan, R.W.; Billah, M.M. Human phosphodiesterase 8A splice variants: cloning, gene organization, and tissue distribution. Gene, 2001, 280(1-2), 183-194.
[http://dx.doi.org/10.1016/S0378-1119(01)00783-1] [PMID: 11738832]
[139]
Kobayashi, T.; Gamanuma, M.; Sasaki, T.; Yamashita, Y.; Yuasa, K.; Kotera, J.; Omori, K. Molecular comparison of rat cyclic nucleotide phosphodiesterase 8 family: unique expression of PDE8B in rat brain. Gene, 2003, 319, 21-31.
[http://dx.doi.org/10.1016/S0378-1119(03)00809-6] [PMID: 14597168]
[140]
Vang, A.G.; Basole, C.; Dong, H.; Nguyen, R.K.; Housley, W.; Guernsey, L.; Adami, A.J.; Thrall, R.S.; Clark, R.B.; Epstein, P.M.; Brocke, S. Differential expression and function of PDE8 and PDE4 in effector T cells: implications for PDE8 as a drug target in inflammation. Front. Pharmacol., 2016, 7, 259.
[http://dx.doi.org/10.3389/fphar.2016.00259] [PMID: 27601994]
[141]
Brown, K.M.; Day, J.P.; Huston, E.; Zimmermann, B.; Hampel, K.; Christian, F.; Romano, D.; Terhzaz, S.; Lee, L.C.Y.; Willis, M.J.; Morton, D.B.; Beavo, J.A.; Shimizu-Albergine, M.; Davies, S.A.; Kolch, W.; Houslay, M.D.; Baillie, G.S. Phosphodiesterase-8A binds to and regulates Raf-1 kinase. Proc. Natl. Acad. Sci. USA, 2013, 110(16), E1533-E1542.
[http://dx.doi.org/10.1073/pnas.1303004110] [PMID: 23509299]
[142]
Heimann, E.; Jones, H.A.; Resjö, S.; Manganiello, V.C.; Stenson, L.; Degerman, E. Expression and regulation of cyclic nucleotide phosphodiesterases in human and rat pancreatic islets. PLoS One, 2010, 5(12), e14191.
[http://dx.doi.org/10.1371/journal.pone.0014191] [PMID: 21152070]
[143]
Dov, A.; Abramovitch, E.; Warwar, N.; Nesher, R. Diminished phosphodiesterase-8B potentiates biphasic insulin response to glucose. Endocrinology, 2008, 149(2), 741-748.
[http://dx.doi.org/10.1210/en.2007-0968] [PMID: 17991719]
[144]
Tian, G.; Sågetorp, J.; Xu, Y.; Shuai, H.; Degerman, E.; Tengholm, A. Role of phosphodiesterases in the shaping of sub-plasma-membrane cAMP oscillations and pulsatile insulin secretion. J. Cell Sci., 2012, 125(Pt 21), 5084-5095.
[http://dx.doi.org/10.1242/jcs.107201] [PMID: 22946044]
[145]
Pratt, E.P.S.; Harvey, K.E.; Salyer, A.E.; Hockerman, G.H. Regulation of cAMP accumulation and activity by distinct phosphodiesterase subtypes in INS-1 cells and human pancreatic β-cells. PLoS One, 2019, 14(8), e0215188.
[http://dx.doi.org/10.1371/journal.pone.0215188] [PMID: 31442224]
[146]
DeNinno, M.P.; Wright, S.W.; Visser, M.S.; Etienne, J.B.; Moore, D.E.; Olson, T.V.; Rocke, B.N.; Andrews, M.P.; Zarbo, C.; Millham, M.L.; Boscoe, B.P.; Boyer, D.D.; Doran, S.D.; Houseknecht, K.L. 1,5-Substituted nipecotic amides: selective PDE8 inhibitors displaying diastereomer-dependent microsomal stability. Bioorg. Med. Chem. Lett., 2011, 21(10), 3095-3098.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.022] [PMID: 21459572]
[147]
DeNinno, M.P.; Wright, S.W.; Etienne, J.B.; Olson, T.V.; Rocke, B.N.; Corbett, J.W.; Kung, D.W.; DiRico, K.J.; Andrews, K.M.; Millham, M.L.; Parker, J.C.; Esler, W.; van Volkenburg, M.; Boyer, D.D.; Houseknecht, K.L.; Doran, S.D. Discovery of triazolopyrimidine-based PDE8B inhibitors: exceptionally ligand-efficient and lipophilic ligand-efficient compounds for the treatment of diabetes. Bioorg. Med. Chem. Lett., 2012, 22(17), 5721-5726.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.079] [PMID: 22858141]
[148]
Zuo, H.; Cattani-Cavalieri, I.; Musheshe, N.; Nikolaev, V.O.; Schmidt, M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol. Ther., 2019, 197, 225-242.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.002] [PMID: 30759374]
[149]
Johnstone, T.B.; Smith, K.H.; Koziol-White, C.J.; Li, F.; Kazarian, A.G.; Corpuz, M.L.; Shumyatcher, M.; Ehlert, F.J.; Himes, B.E.; Panettieri, R.A. Jr.; Ostrom, R.S. PDE8 is expressed in human airway smooth muscle and selectively regulates cAMP signaling by β2-adrenergic receptors and adenylyl cyclase 6. Am. J. Respir. Cell Mol. Biol., 2018, 58(4), 530-541.
[http://dx.doi.org/10.1165/rcmb.2017-0294OC] [PMID: 29262264]
[150]
Zuo, H.; Schmidt, M.; Gosens, R. PDE8: a novel target in airway smooth muscle. Am. J. Respir. Cell Mol. Biol., 2018, 58(4), 426-427.
[http://dx.doi.org/10.1165/rcmb.2017-0427ED] [PMID: 29600901]
[151]
Beltejar, M.G.; Lau, H.T.; Golkowski, M.G.; Ong, S.E.; Beavo, J.A. Analyses of PDE-regulated phosphoproteomes reveal unique and specific cAMP-signaling modules in T cells. Proc. Natl. Acad. Sci. USA, 2017, 114(30), E6240-E6249.
[http://dx.doi.org/10.1073/pnas.1703939114] [PMID: 28634298]
[152]
Tengholm, A.; Gylfe, E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes. Metab., 2017, 19(Suppl. 1), 42-53.
[http://dx.doi.org/10.1111/dom.12993] [PMID: 28466587]
[153]
Jankowska, A.; Świerczek, A.; Wyska, E.; Gawalska, A.; Bucki, A.; Pawłowski, M.; Chłoń-Rzepa, G. advances in discovery of pde10a inhibitors for cns-related disorders. Part 1: overview of the chemical and biological research. Curr. Drug Targets, 2019, 20(1), 122-143.
[http://dx.doi.org/10.2174/1389450119666180808105056] [PMID: 30091414]
[154]
Świerczek, A.; Jankowska, A.; Chłoń-Rzepa, G.; Pawłowski, M.; Wyska, E. Advances in the discovery of PDE10A inhibitors for CNS-related disorders. Part 2: focus on schizophrenia. Curr. Drug Targets, 2019, 20(16), 1652-1669.
[http://dx.doi.org/10.2174/1389450120666190801114210] [PMID: 31368871]
[155]
Derbenev, A.V.; Zsombok, A. Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity. Semin. Immunopathol., 2016, 38(3), 397-406.
[http://dx.doi.org/10.1007/s00281-015-0529-x] [PMID: 26403087]
[156]
Chłoń-Rzepa, G.; Ślusarczyk, M.; Jankowska, A.; Gawalska, A.; Bucki, A.; Kołaczkowski, M.; Świerczek, A.; Pociecha, K.; Wyska, E.; Zygmunt, M.; Kazek, G.; Sałat, K.; Pawłowski, M. Novel amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids as multifunctional TRPA1 antagonists and PDE4/7 inhibitors: A new approach for the treatment of pain. Eur. J. Med. Chem., 2018, 158, 517-533.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.021] [PMID: 30245393]
[157]
Jankowska, A.; Satała, G.; Kołaczkowski, M.; Bucki, A.; Głuch-Lutwin, M.; Świerczek, A.; Pociecha, K.; Partyka, A.; Jastrzębska-Więsek, M.; Lubelska, A.; Latacz, G.; Gawalska, A.; Bojarski, A.J.; Wyska, E.; Chłoń-Rzepa, G. Novel anilide and benzylamide derivatives of arylpiperazinylalkanoic acids as 5-HT1A/5-HT7 receptor antagonists and phosphodiesterase 4/7 inhibitors with procognitive and antidepressant activity. Eur. J. Med. Chem., 2020, 201, 112437.
[http://dx.doi.org/10.1016/j.ejmech.2020.112437] [PMID: 32673902]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy