Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Berberine as a Potential Multi-Target Agent for Metabolic Diseases: A Review of Investigations for Berberine

Author(s): Shengju Wang, Zhang Xu, Baochao Cai and Qiu Chen*

Volume 21, Issue 6, 2021

Published on: 10 September, 2020

Page: [971 - 979] Pages: 9

DOI: 10.2174/1871530320666200910105612

Price: $65

Open Access Journals Promotions 2
Abstract

Berberine (BBR) is a botanic alkaloid extracted from Coptis chinensis (Huanglian), which has various properties, compassing anti-hyperglycemia, anti-obesity, anti-inflammation, and improves insulin resistance, etc. Several researches have confirmed that BBR has effective actions in treating glycolipid metabolic abnormalities. BBR is also beneficial in regulating intestinal flora. Metabolic diseases are strongly associated with metabolic disorders, which are growing in the population and dramatically impacting human health, which also have been considered as a leading cause of diseases and death globally. This review is to evaluate the metabolic properties of BBR, and its potential application to the treatment of metabolic diseases by its effective actions on metabolic disorders.

Keywords: Berberine, metabolic disorders, insulin resistance, chronic inflammatory, type 2 diabetes, nonalcoholic fatty liver disease, intestinal flora.

Graphical Abstract
[1]
Cicero, A.F.; Derosa, G.; D’angelo, A.; Bove, M.; Gaddi, A.V.; Borghi, C. Gender-specific haemodynamic and metabolic effects of a sequential training programme on overweight-obese hypertensives. Blood Press., 2009, 18(3), 111-116.
[http://dx.doi.org/10.1080/08037050902903355] [PMID: 19396644]
[2]
Scotti, L.; Monteiro, A.F.M.; de Oliveira Viana, J.; Mendonça Junior, F.J.B.; Ishiki, H.M.; Tchouboun, E.N.; Santos, R.; Scotti, M.T. Multi-target drugs against metabolic disorders. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(4), 402-418.
[http://dx.doi.org/10.2174/1871530319666181217123357] [PMID: 30556507]
[3]
Lee, Y.S.; Kim, W.S.; Kim, K.H.; Yoon, M.J.; Cho, H.J.; Shen, Y.; Ye, J.M.; Lee, C.H.; Oh, W.K.; Kim, C.T.; Hohnen-Behrens, C.; Gosby, A.; Kraegen, E.W.; James, D.E.; Kim, J.B. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes, 2006, 55(8), 2256-2264.
[http://dx.doi.org/10.2337/db06-0006] [PMID: 16873688]
[4]
Kim, W.S.; Lee, Y.S.; Cha, S.H.; Jeong, H.W.; Choe, S.S.; Lee, M.R.; Oh, G.T.; Park, H.S.; Lee, K.U.; Lane, M.D.; Kim, J.B. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. Am. J. Physiol. Endocrinol. Metab., 2009, 296(4), E812-E819.
[http://dx.doi.org/10.1152/ajpendo.90710.2008] [PMID: 19176354]
[5]
Kong, W.J.; Wei, J.; Zuo, Z.Y.; Wang, Y.M.; Song, D.Q.; You, X.F.; Zhao, L.X.; Pan, H.N.; Jiang, J.D. Combination of simvastatin with berberine improves the lipid-lowering efficacy. Metabolism, 2008, 57(8), 1029-1037.
[http://dx.doi.org/10.1016/j.metabol.2008.01.037] [PMID: 18640378]
[6]
Wan, X.; Chen, X.; Liu, L.; Zhao, Y.; Huang, W.J.; Zhang, Q.; Miao, G.G.; Chen, W.; Xie, H.G.; Cao, C.C. Berberine ameliorates chronic kidney injury caused by atherosclerotic renovascular disease through the suppression of NFκB signaling pathway in rats. PLoS One, 2013, 8(3), e59794.
[http://dx.doi.org/10.1371/journal.pone.0059794] [PMID: 23555784]
[7]
Kong, W.; Wei, J.; Abidi, P.; Lin, M.; Inaba, S.; Li, C.; Wang, Y.; Wang, Z.; Si, S.; Pan, H.; Wang, S.; Wu, J.; Wang, Y.; Li, Z.; Liu, J.; Jiang, J.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med., 2004, 10(12), 1344-1351.
[http://dx.doi.org/10.1038/nm1135] [PMID: 15531889]
[8]
Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 2008, 57(5), 712-717.
[http://dx.doi.org/10.1016/j.metabol.2008.01.013] [PMID: 18442638]
[9]
Dong, H.; Wang, N.; Zhao, L.; Lu, F. Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evid. Based Complement. Alternat. Med., 2012, 2012, 591654.
[http://dx.doi.org/10.1155/2012/591654] [PMID: 23118793]
[10]
Derosa, G.; D’Angelo, A.; Bonaventura, A.; Bianchi, L.; Romano, D.; Maffioli, P. Effects of berberine on lipid profile in subjects with low cardiovascular risk. Expert Opin. Biol. Ther., 2013, 13(4), 475-482.
[http://dx.doi.org/10.1517/14712598.2013.776037] [PMID: 23441841]
[11]
Pérez-Rubio, K.G.; González-Ortiz, M.; Martínez-Abundis, E.; Robles-Cervantes, J.A.; Espinel-Bermúdez, M.C. Effect of berberine administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab. Syndr. Relat. Disord., 2013, 11(5), 366-369.
[http://dx.doi.org/10.1089/met.2012.0183] [PMID: 23808999]
[12]
Li, H.; Dong, B.; Park, S.W.; Lee, H.S.; Chen, W.; Liu, J. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J. Biol. Chem., 2009, 284(42), 28885-28895.
[http://dx.doi.org/10.1074/jbc.M109.052407] [PMID: 19687008]
[13]
Yao, J.; Kong, W.; Jiang, J. Learning from berberine: Treating chronic diseases through multiple targets. Sci. China Life Sci., 2015, 58(9), 854-859.
[http://dx.doi.org/10.1007/s11427-013-4568-z] [PMID: 24174332]
[14]
Derosa, G.; Maffioli, P.; Cicero, A.F. Berberine on metabolic and cardiovascular risk factors: an analysis from preclinical evidences to clinical trials. Expert Opin. Biol. Ther., 2012, 12(8), 1113-1124.
[http://dx.doi.org/10.1517/14712598.2012.704014] [PMID: 22780092]
[15]
Chen, W.; Miao, Y.Q.; Fan, D.J.; Yang, S.S.; Lin, X.; Meng, L.K.; Tang, X. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech, 2011, 12(2), 705-711.
[http://dx.doi.org/10.1208/s12249-011-9632-z] [PMID: 21637946]
[16]
Wu, X.; Peng, J.; Fan, B.; Yu, Y. [Pharmacokinetics of three alkaloids in Huanglianjiedu decoction in rat serum by LC-MS-MS]. Zhongguo Zhongyao Zazhi, 2009, 34(10), 1276-1280.
[PMID: 19673395]
[17]
Battu, S.K.; Repka, M.A.; Maddineni, S.; Chittiboyina, A.G.; Avery, M.A.; Majumdar, S. Physicochemical characterization of berberine chloride: a perspective in the development of a solution dosage form for oral delivery. AAPS PharmSciTech, 2010, 11(3), 1466-1475.
[http://dx.doi.org/10.1208/s12249-010-9520-y] [PMID: 20842541]
[18]
Pan, G.Y.; Wang, G.J.; Liu, X.D.; Fawcett, J.P.; Xie, Y.Y. The involvement of P-glycoprotein in berberine absorption. Pharmacol. Toxicol., 2002, 91(4), 193-197.
[http://dx.doi.org/10.1034/j.1600-0773.2002.t01-1-910403.x] [PMID: 12530470]
[19]
Endicott, J.A.; Ling, V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem., 1989, 58, 137-171.
[http://dx.doi.org/10.1146/annurev.bi.58.070189.001033] [PMID: 2570548]
[20]
Gottesman, M.M.; Pastan, I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem., 1993, 62, 385-427.
[http://dx.doi.org/10.1146/annurev.bi.62.070193.002125] [PMID: 8102521]
[21]
Hardie, D.G.; Carling, D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur. J. Biochem., 1997, 246(2), 259-273.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00259.x] [PMID: 9208914]
[22]
Ruderman, N.; Prentki, M. AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat. Rev. Drug Discov., 2004, 3(4), 340-351.
[http://dx.doi.org/10.1038/nrd1344] [PMID: 15060529]
[23]
Brusq, J.M.; Ancellin, N.; Grondin, P.; Guillard, R.; Martin, S.; Saintillan, Y.; Issandou, M. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J. Lipid Res., 2006, 47(6), 1281-1288.
[http://dx.doi.org/10.1194/jlr.M600020-JLR200] [PMID: 16508037]
[24]
Ruderman, N.B.; Saha, A.K.; Kraegen, E.W. Minireview: malonyl CoA, AMP-activated protein kinase, and adiposity. Endocrinology, 2003, 144(12), 5166-5171.
[http://dx.doi.org/10.1210/en.2003-0849] [PMID: 14500570]
[25]
Smith, A.C.; Bruce, C.R.; Dyck, D.J. AMP kinase activation with AICAR further increases fatty acid oxidation and blunts triacylglycerol hydrolysis in contracting rat soleus muscle. J. Physiol., 2005, 565(Pt 2), 547-553.
[http://dx.doi.org/10.1113/jphysiol.2004.081687] [PMID: 15774529]
[26]
Savini, I.; Catani, M.V.; Evangelista, D.; Gasperi, V.; Avigliano, L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int. J. Mol. Sci., 2013, 14(5), 10497-10538.
[http://dx.doi.org/10.3390/ijms140510497] [PMID: 23698776]
[27]
Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord., 2015, 13(10), 423-444.
[http://dx.doi.org/10.1089/met.2015.0095] [PMID: 26569333]
[28]
Wang, Q.; Zhang, M.; Liang, B.; Shirwany, N.; Zhu, Y.; Zou, M.H. Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: the role of uncoupling protein 2. PLoS One, 2011, 6(9), e25436.
[http://dx.doi.org/10.1371/journal.pone.0025436] [PMID: 21980456]
[29]
Alberici, L.C.; Vercesi, A.E.; Oliveira, H.C. Mitochondrial energy metabolism and redox responses to hypertriglyceridemia. J. Bioenerg. Biomembr., 2011, 43(1), 19-23.
[http://dx.doi.org/10.1007/s10863-011-9326-y] [PMID: 21258853]
[30]
Kaneto, H.; Xu, G.; Fujii, N.; Kim, S.; Bonner-Weir, S.; Weir, G.C. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J. Biol. Chem., 2002, 277(33), 30010-30018.
[http://dx.doi.org/10.1074/jbc.M202066200] [PMID: 12011047]
[31]
Scivittaro, V.; Ganz, M.B.; Weiss, M.F. AGEs induce oxidative stress and activate protein kinase C-beta(II) in neonatal mesangial cells. Am. J. Physiol. Renal Physiol., 2000, 278(4), F676-F683.
[http://dx.doi.org/10.1152/ajprenal.2000.278.4.F676] [PMID: 10751230]
[32]
Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes, 2003, 52(1), 1-8.
[http://dx.doi.org/10.2337/diabetes.52.1.1] [PMID: 12502486]
[33]
Cheng, F.; Wang, Y.; Li, J.; Su, C.; Wu, F.; Xia, W.H.; Yang, Z.; Yu, B.B.; Qiu, Y.X.; Tao, J. Berberine improves endothelial function by reducing endothelial microparticles-mediated oxidative stress in humans. Int. J. Cardiol., 2013, 167(3), 936-942.
[http://dx.doi.org/10.1016/j.ijcard.2012.03.090] [PMID: 22465347]
[34]
Sarna, L.K.; Wu, N.; Hwang, S.Y.; Siow, Y.L.; O, K. Berberine inhibits NADPH oxidase mediated superoxide anion production in macrophages. Can. J. Physiol. Pharmacol., 2010, 88(3), 369-378.
[http://dx.doi.org/10.1139/Y09-136] [PMID: 20393601]
[35]
Hsieh, Y.S.; Kuo, W.H.; Lin, T.W.; Chang, H.R.; Lin, T.H.; Chen, P.N.; Chu, S.C. Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells. J. Agric. Food Chem., 2007, 55(25), 10437-10445.
[http://dx.doi.org/10.1021/jf071868c] [PMID: 18001034]
[36]
Chen, Y.; Wang, Y.; Zhang, J.; Sun, C.; Lopez, A. Berberine improves glucose homeostasis in streptozotocin-induced diabetic rats in association with multiple factors of insulin resistance. ISRN Endocrinol., 2011, 2011, 519371.
[http://dx.doi.org/10.5402/2011/519371] [PMID: 22363882]
[37]
Xing, L.J.; Zhang, L.; Liu, T.; Hua, Y.Q.; Zheng, P.Y.; Ji, G. Berberine reducing insulin resistance by up-regulating IRS-2 mRNA expression in nonalcoholic fatty liver disease (NAFLD) rat liver. Eur. J. Pharmacol., 2011, 668(3), 467-471.
[http://dx.doi.org/10.1016/j.ejphar.2011.07.036] [PMID: 21839075]
[38]
Meng, S.; Wang, L.S.; Huang, Z.Q.; Zhou, Q.; Sun, Y.G.; Cao, J.T.; Li, Y.G.; Wang, C.Q. Berberine ameliorates inflammation in patients with acute coronary syndrome following percutaneous coronary intervention. Clin. Exp. Pharmacol. Physiol., 2012, 39(5), 406-411.
[http://dx.doi.org/10.1111/j.1440-1681.2012.05670.x] [PMID: 22220931]
[39]
Ni, Y.X. Therapeutic effect of berberine on 60 patients with type II diabetes mellitus and experimental research. Zhong Xi Yi Jie He Za Zhi, 1988, 8(12), 711-713.
[PMID: 3248329]
[40]
Rosen, E.D.; Spiegelman, B.M. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol., 2000, 16, 145-171.
[http://dx.doi.org/10.1146/annurev.cellbio.16.1.145] [PMID: 11031233]
[41]
Rosen, E.D.; Walkey, C.J.; Puigserver, P.; Spiegelman, B.M. Transcriptional regulation of adipogenesis. Genes Dev., 2000, 14(11), 1293-1307.
[PMID: 10837022]
[42]
Chang, X.X.; Yan, H.M.; Xu, Q.; Xia, M.F.; Bian, H.; Zhu, T.F.; Gao, X. The effects of berberine on hyperhomocysteinemia and hyperlipidemia in rats fed with a long-term high-fat diet. Lipids Health Dis., 2012, 11, 86.
[http://dx.doi.org/10.1186/1476-511X-11-86] [PMID: 22762542]
[43]
Leng, S.H.; Lu, F.E.; Xu, L.J. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol. Sin., 2004, 25(4), 496-502.
[PMID: 15066220]
[44]
Li, G.S.; Liu, X.H.; Zhu, H.; Huang, L.; Liu, Y.L.; Ma, C.M.; Qin, C. Berberine-improved visceral white adipose tissue insulin resistance associated with altered sterol regulatory element-binding proteins, liver x receptors, and peroxisome proliferator-activated receptors transcriptional programs in diabetic hamsters. Biol. Pharm. Bull., 2011, 34(5), 644-654.
[http://dx.doi.org/10.1248/bpb.34.644] [PMID: 21532151]
[45]
Calkin, A.C.; Tontonoz, P.; Liver, X. Liver x receptor signaling pathways and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2010, 30(8), 1513-1518.
[http://dx.doi.org/10.1161/ATVBAHA.109.191197] [PMID: 20631351]
[46]
Pan, M.; Han, Y.; Basu, A.; Dai, A.; Si, R.; Willson, C.; Balistrieri, A.; Scott, B.T.; Makino, A. Overexpression of hexokinase 2 reduces mitochondrial calcium overload in coronary endothelial cells of type 2 diabetic mice. Am. J. Physiol. Cell Physiol., 2018, 314(6), C732-C740.
[http://dx.doi.org/10.1152/ajpcell.00350.2017] [PMID: 29513568]
[47]
Hanson, R.W.; Reshef, L. Glyceroneogenesis revisited. Biochimie, 2003, 85(12), 1199-1205.
[http://dx.doi.org/10.1016/j.biochi.2003.10.022] [PMID: 14739071]
[48]
Franckhauser, S.; Muñoz, S.; Elias, I.; Ferre, T.; Bosch, F. Adipose overexpression of phosphoenolpyruvate carboxykinase leads to high susceptibility to diet-induced insulin resistance and obesity. Diabetes, 2006, 55(2), 273-280.
[http://dx.doi.org/10.2337/diabetes.55.02.06.db05-0482] [PMID: 16443757]
[49]
Eberlé, D.; Hegarty, B.; Bossard, P.; Ferré, P.; Foufelle, F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie, 2004, 86(11), 839-848.
[http://dx.doi.org/10.1016/j.biochi.2004.09.018] [PMID: 15589694]
[50]
Hwang, D. Fatty acids and immune responses--a new perspective in searching for clues to mechanism. Annu. Rev. Nutr., 2000, 20, 431-456.
[http://dx.doi.org/10.1146/annurev.nutr.20.1.431] [PMID: 10940341]
[51]
Reddy, J.K.; Hashimoto, T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu. Rev. Nutr., 2001, 21, 193-230.
[http://dx.doi.org/10.1146/annurev.nutr.21.1.193] [PMID: 11375435]
[52]
Berry, D.C.; Noy, N. All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol. Cell. Biol., 2009, 29(12), 3286-3296.
[http://dx.doi.org/10.1128/MCB.01742-08] [PMID: 19364826]
[53]
Rodríguez-Calvo, R.; Serrano, L.; Coll, T.; Moullan, N.; Sánchez, R.M.; Merlos, M.; Palomer, X.; Laguna, J.C.; Michalik, L.; Wahli, W.; Vázquez-Carrera, M. Activation of peroxisome proliferator-activated receptor beta/delta inhibits lipopolysaccharide-induced cytokine production in adipocytes by lowering nuclear factor-kappaB activity via extracellular signal-related kinase 1/2. Diabetes, 2008, 57(8), 2149-2157.
[http://dx.doi.org/10.2337/db08-0176] [PMID: 18443198]
[54]
Zhang, Z.; Zhang, H.; Li, B.; Meng, X.; Wang, J.; Zhang, Y.; Yao, S.; Ma, Q.; Jin, L.; Yang, J.; Wang, W.; Ning, G. Berberine activates thermogenesis in white and brown adipose tissue. Nat. Commun., 2014, 5, 5493.
[http://dx.doi.org/10.1038/ncomms6493] [PMID: 25423280]
[55]
Kong, W.J.; Zhang, H.; Song, D.Q.; Xue, R.; Zhao, W.; Wei, J.; Wang, Y.M.; Shan, N.; Zhou, Z.X.; Yang, P.; You, X.F.; Li, Z.R.; Si, S.Y.; Zhao, L.X.; Pan, H.N.; Jiang, J.D. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism, 2009, 58(1), 109-119.
[http://dx.doi.org/10.1016/j.metabol.2008.08.013] [PMID: 19059538]
[56]
Turner, N.; Li, J.Y.; Gosby, A.; To, S.W.; Cheng, Z.; Miyoshi, H.; Taketo, M.M.; Cooney, G.J.; Kraegen, E.W.; James, D.E.; Hu, L.H.; Li, J.; Ye, J.M. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes, 2008, 57(5), 1414-1418.
[http://dx.doi.org/10.2337/db07-1552] [PMID: 18285556]
[57]
Zhang, H.; Wei, J.; Xue, R.; Wu, J.D.; Zhao, W.; Wang, Z.Z.; Wang, S.K.; Zhou, Z.X.; Song, D.Q.; Wang, Y.M.; Pan, H.N.; Kong, W.J.; Jiang, J.D. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism, 2010, 59(2), 285-292.
[http://dx.doi.org/10.1016/j.metabol.2009.07.029] [PMID: 19800084]
[58]
Gu, J.J.; Gao, F.Y.; Zhao, T.Y. A preliminary investigation of the mechanisms underlying the effect of berberine in preventing high-fat diet-induced insulin resistance in rats. J. Physiol. Pharmacol., 2012, 63(5), 505-513.
[PMID: 23211304]
[59]
Liu, C.; Wang, Z.; Song, Y.; Wu, D.; Zheng, X.; Li, P.; Jin, J.; Xu, N.; Li, L. Effects of berberine on amelioration of hyperglycemia and oxidative stress in high glucose and high fat diet-induced diabetic hamsters in vivo. BioMed Res. Int., 2015, 2015, 313808.
[http://dx.doi.org/10.1155/2015/313808] [PMID: 25705654]
[60]
Zhang, Q.; Xiao, X.; Feng, K.; Wang, T.; Li, W.; Yuan, T.; Sun, X.; Sun, Q.; Xiang, H.; Wang, H. Berberine moderates glucose and lipid metabolism through multi pathway mechanism. Evid. Based Complement. Alternat. Med., 2011, 2011, 924851.
[http://dx.doi.org/10.1155/2011/924851] [PMID: 20953398]
[61]
Wu, H.; Sui, C.; Xu, H.; Xia, F.; Zhai, H.; Zhang, H.; Weng, P.; Han, B.; Du, S.; Lu, Y. The GLP-1 analogue exenatide improves hepatic and muscle insulin sensitivity in diabetic rats: tracer studies in the basal state and during hyperinsulinemic-euglycemic clamp. J. Diabetes Res., 2014, 2014, 524517.
[http://dx.doi.org/10.1155/2014/524517] [PMID: 25580440]
[62]
Xie, W.; Gu, D.; Li, J.; Cui, K.; Zhang, Y. Effects and action mechanisms of berberine and Rhizoma coptidis on gut microbes and obesity in high-fat diet-fed C57BL/6J mice. PLoS One, 2011, 6(9), e24520.
[http://dx.doi.org/10.1371/journal.pone.0024520] [PMID: 21915347]
[63]
Guo, T.; Woo, S.L.; Guo, X.; Li, H.; Zheng, J.; Botchlett, R.; Liu, M.; Pei, Y.; Xu, H.; Cai, Y.; Zeng, T.; Chen, L.; Li, X.; Li, Q.; Xiao, X.; Huo, Y.; Wu, C. Berberine Ameliorates Hepatic Steatosis and Suppresses Liver and Adipose Tissue Inflammation in Mice with Diet-induced Obesity. Sci. Rep., 2016, 6, 22612.
[http://dx.doi.org/10.1038/srep22612] [PMID: 26936230]
[64]
Hu, Y.; Young, A.J.; Ehli, E.A.; Nowotny, D.; Davies, P.S.; Droke, E.A.; Soundy, T.J.; Davies, G.E. Metformin and berberine prevent olanzapine-induced weight gain in rats. PLoS One, 2014, 9(3), e93310.
[http://dx.doi.org/10.1371/journal.pone.0093310] [PMID: 24667776]
[65]
Liu, Y.T.; Hao, H.P.; Xie, H.G.; Lai, L.; Wang, Q.; Liu, C.X.; Wang, G.J. Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats. Drug Metab. Dispos., 2010, 38(10), 1779-1784.
[http://dx.doi.org/10.1124/dmd.110.033936] [PMID: 20634337]
[66]
Yan, H.M.; Xia, M.F.; Wang, Y.; Chang, X.X.; Yao, X.Z.; Rao, S.X.; Zeng, M.S.; Tu, Y.F.; Feng, R.; Jia, W.P.; Liu, J.; Deng, W.; Jiang, J.D.; Gao, X. Efficacy of Berberine in Patients with Non-Alcoholic Fatty Liver Disease. PLoS One, 2015, 10(8), e0134172.
[http://dx.doi.org/10.1371/journal.pone.0134172] [PMID: 26252777]
[67]
Zhao, W.; Xue, R.; Zhou, Z.X.; Kong, W.J.; Jiang, J.D. Reduction of blood lipid by berberine in hyperlipidemic patients with chronic hepatitis or liver cirrhosis. Biomed. Pharmacother., 2008, 62(10), 730-731.
[http://dx.doi.org/10.1016/j.biopha.2008.01.007] [PMID: 18337056]
[68]
Sunny, N.E.; Bril, F.; Cusi, K. Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies. Trends Endocrinol. Metab., 2017, 28(4), 250-260.
[http://dx.doi.org/10.1016/j.tem.2016.11.006] [PMID: 27986466]
[69]
Kang, K.; Reilly, S.M.; Karabacak, V.; Gangl, M.R.; Fitzgerald, K.; Hatano, B.; Lee, C.H. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab., 2008, 7(6), 485-495.
[http://dx.doi.org/10.1016/j.cmet.2008.04.002] [PMID: 18522830]
[70]
Menghini, R.; Menini, S.; Amoruso, R.; Fiorentino, L.; Casagrande, V.; Marzano, V.; Tornei, F.; Bertucci, P.; Iacobini, C.; Serino, M.; Porzio, O.; Hribal, M.L.; Folli, F.; Khokha, R.; Urbani, A.; Lauro, R.; Pugliese, G.; Federici, M. Tissue inhibitor of metalloproteinase 3 deficiency causes hepatic steatosis and adipose tissue inflammation in mice. Gastroenterology, 2009, 136(2), 663-72.e4.
[http://dx.doi.org/10.1053/j.gastro.2008.10.079] [PMID: 19027012]
[71]
Odegaard, J.I.; Ricardo-Gonzalez, R.R.; Red Eagle, A.; Vats, D.; Morel, C.R.; Goforth, M.H.; Subramanian, V.; Mukundan, L.; Ferrante, A.W.; Chawla, A. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab., 2008, 7(6), 496-507.
[http://dx.doi.org/10.1016/j.cmet.2008.04.003] [PMID: 18522831]
[72]
Park, E.J.; Lee, J.H.; Yu, G.Y.; He, G.; Ali, S.R.; Holzer, R.G.; Osterreicher, C.H.; Takahashi, H.; Karin, M. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell, 2010, 140(2), 197-208.
[http://dx.doi.org/10.1016/j.cell.2009.12.052] [PMID: 20141834]
[73]
Jeong, H.W.; Hsu, K.C.; Lee, J.W.; Ham, M.; Huh, J.Y.; Shin, H.J.; Kim, W.S.; Kim, J.B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab., 2009, 296(4), E955-E964.
[http://dx.doi.org/10.1152/ajpendo.90599.2008] [PMID: 19208854]
[74]
Sivori, S.; Vitale, M.; Morelli, L.; Sanseverino, L.; Augugliaro, R.; Bottino, C.; Moretta, L.; Moretta, A. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J. Exp. Med., 1997, 186(7), 1129-1136.
[http://dx.doi.org/10.1084/jem.186.7.1129] [PMID: 9314561]
[75]
Nabel, E.G. Cardiovascular disease. N. Engl. J. Med., 2003, 349(1), 60-72.
[http://dx.doi.org/10.1056/NEJMra035098] [PMID: 12840094]
[76]
Muoio, D.M.; Seefeld, K.; Witters, L.A.; Coleman, R.A. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem. J., 1999, 338(Pt 3), 783-791.
[http://dx.doi.org/10.1042/bj3380783] [PMID: 10051453]
[77]
Wang, Y.; Yi, X.; Ghanam, K.; Zhang, S.; Zhao, T.; Zhu, X. Berberine decreases cholesterol levels in rats through multiple mechanisms, including inhibition of cholesterol absorption. Metabolism, 2014, 63(9), 1167-1177.
[http://dx.doi.org/10.1016/j.metabol.2014.05.013] [PMID: 25002181]
[78]
Hu, Y.; Davies, G.E. Berberine inhibits adipogenesis in high-fat diet-induced obesity mice. Fitoterapia, 2010, 81(5), 358-366.
[http://dx.doi.org/10.1016/j.fitote.2009.10.010] [PMID: 19861153]
[79]
Tilg, H.; Kaser, A. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Invest., 2011, 121(6), 2126-2132.
[http://dx.doi.org/10.1172/JCI58109] [PMID: 21633181]
[80]
Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; Smith, J.D.; DiDonato, J.A.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Warrier, M.; Brown, J.M.; Krauss, R.M.; Tang, W.H.; Bushman, F.D.; Lusis, A.J.; Hazen, S.L. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med., 2013, 19(5), 576-585.
[http://dx.doi.org/10.1038/nm.3145] [PMID: 23563705]
[81]
Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489(7415), 242-249.
[http://dx.doi.org/10.1038/nature11552] [PMID: 22972297]
[82]
Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; Wu, Y.; Schauer, P.; Smith, J.D.; Allayee, H.; Tang, W.H.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472(7341), 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
[83]
Kang, M.J.; Kim, H.G.; Kim, J.S.; Oh, D.G.; Um, Y.J.; Seo, C.S.; Han, J.W.; Cho, H.J.; Kim, G.H.; Jeong, T.C.; Jeong, H.G. The effect of gut microbiota on drug metabolism. Expert Opin. Drug Metab. Toxicol., 2013, 9(10), 1295-1308.
[http://dx.doi.org/10.1517/17425255.2013.807798] [PMID: 24033282]
[84]
Sousa, T.; Paterson, R.; Moore, V.; Carlsson, A.; Abrahamsson, B.; Basit, A.W. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm., 2008, 363(1-2), 1-25.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.009] [PMID: 18682282]
[85]
Parks, B.W.; Nam, E.; Org, E.; Kostem, E.; Norheim, F.; Hui, S.T.; Pan, C.; Civelek, M.; Rau, C.D.; Bennett, B.J.; Mehrabian, M.; Ursell, L.K.; He, A.; Castellani, L.W.; Zinker, B.; Kirby, M.; Drake, T.A.; Drevon, C.A.; Knight, R.; Gargalovic, P.; Kirchgessner, T.; Eskin, E.; Lusis, A.J. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab., 2013, 17(1), 141-152.
[http://dx.doi.org/10.1016/j.cmet.2012.12.007] [PMID: 23312289]
[86]
Zhang, C.; Zhang, M.; Pang, X.; Zhao, Y.; Wang, L.; Zhao, L. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J., 2012, 6(10), 1848-1857.
[http://dx.doi.org/10.1038/ismej.2012.27] [PMID: 22495068]
[87]
Zhang, C.; Zhang, M.; Wang, S.; Han, R.; Cao, Y.; Hua, W.; Mao, Y.; Zhang, X.; Pang, X.; Wei, C.; Zhao, G.; Chen, Y.; Zhao, L. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J., 2010, 4(2), 232-241.
[http://dx.doi.org/10.1038/ismej.2009.112] [PMID: 19865183]
[88]
McFall-Ngai, M. Are biologists in ‘future shock’? Symbiosis integrates biology across domains. Nat. Rev. Microbiol., 2008, 6(10), 789-792.
[http://dx.doi.org/10.1038/nrmicro1982] [PMID: 18794916]
[89]
Perry, R.J.; Peng, L.; Barry, N.A.; Cline, G.W.; Zhang, D.; Cardone, R.L.; Petersen, K.F.; Kibbey, R.G.; Goodman, A.L.; Shulman, G.I. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature, 2016, 534(7606), 213-217.
[http://dx.doi.org/10.1038/nature18309] [PMID: 27279214]
[90]
Rajpal, D.K.; Klein, J.L.; Mayhew, D.; Boucheron, J.; Spivak, A.T.; Kumar, V.; Ingraham, K.; Paulik, M.; Chen, L.; Van Horn, S.; Thomas, E.; Sathe, G.; Livi, G.P.; Holmes, D.J.; Brown, J.R. Selective Spectrum Antibiotic Modulation of the Gut Microbiome in Obesity and Diabetes Rodent Models. PLoS One, 2015, 10(12), e0145499.
[http://dx.doi.org/10.1371/journal.pone.0145499] [PMID: 26709835]
[91]
Zhao, L.; Cang, Z.; Sun, H.; Nie, X.; Wang, N.; Lu, Y. Berberine improves glucogenesis and lipid metabolism in nonalcoholic fatty liver disease. BMC Endocr. Disord., 2017, 17(1), 13.
[http://dx.doi.org/10.1186/s12902-017-0165-7] [PMID: 28241817]
[92]
Sun, H.; Wang, N.; Cang, Z.; Zhu, C.; Zhao, L.; Nie, X.; Cheng, J.; Xia, F.; Zhai, H.; Lu, Y. Modulation of Microbiota-Gut-Brain Axis by Berberine Resulting in Improved Metabolic Status in High-Fat Diet-Fed Rats. Obes. Facts, 2016, 9(6), 365-378.
[http://dx.doi.org/10.1159/000449507] [PMID: 27898425]
[93]
Feng, R.; Shou, J.W.; Zhao, Z.X.; He, C.Y.; Ma, C.; Huang, M.; Fu, J.; Tan, X.S.; Li, X.Y.; Wen, B.Y.; Chen, X.; Yang, X.Y.; Ren, G.; Lin, Y.; Chen, Y.; You, X.F.; Wang, Y.; Jiang, J.D. Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci. Rep., 2015, 5, 12155.
[http://dx.doi.org/10.1038/srep12155] [PMID: 26174047]
[94]
Wei, S.C.; Dong, S.; Xu, L.J.; Zhang, C.Y. Intestinal absorption of berberine and 8-hydroxy dihydroberberine and their effects on sugar absorption in rat small intestine. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2014, 34(2), 186-189.
[http://dx.doi.org/10.1007/s11596-014-1256-6] [PMID: 24710930]
[95]
Delzenne, N.M.; Cani, P.D. Nutritional modulation of gut microbiota in the context of obesity and insulin resistance: Potential interest of prebiotics. Int. Dairy J., 2010, 20(4), 277-280.
[http://dx.doi.org/10.1016/j.idairyj.2009.11.006]
[96]
Zhang, X.; Zhao, Y.; Zhang, M.; Pang, X.; Xu, J.; Kang, C.; Li, M.; Zhang, C.; Zhang, Z.; Zhang, Y.; Li, X.; Ning, G.; Zhao, L. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One, 2012, 7(8), e42529.
[http://dx.doi.org/10.1371/journal.pone.0042529] [PMID: 22880019]
[97]
André, M.; Kuang, Y.W. Utilization of organic acids to optimize microecological balance of digestive tract. Feed Husb., 2012, (7), 20-23.
[98]
Cui, H.X.; Hu, Y.N.; Li, J.W.; Yuan, K.; Guo, Y. Preparation and Evaluation of Antidiabetic Agents of Berberine Organic Acid Salts for Enhancing the Bioavailability. Molecules, 2018, 24(1), E103.
[http://dx.doi.org/10.3390/molecules24010103] [PMID: 30597911]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy