[4]
Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning., MIT Press, 2016, 22(4), 351-354. https://doi.org/10.4258/hir.2016.22.4.351.
[15]
McCann, B.; Bradbury, J.; Xiong, C.; Socher, R. In: Learned in translation: contextualized word vectors, NeurIPS Proceedings; Advances in Neural Information Processing Systems30 (NIPS 2017), 2017, 6294-6305..
[34]
Roy, K.; Kar, S.; Das, R.N. Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment, 1st ed; Elsevier Academic Press, 2015.
[36]
Duvenaud, D. In: Convolutional networks on graphs for learning molecular fingerprints, NeurIPS Proceedings; Advances in Neural Information Processing Systems28 (NIPS 2015), 2015, pp. 2224-2232..
[38]
Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks
and locally connected networks on graphs arXiv.
2013:1312-6203, 2013. Preprint Paper..
[40]
Pope, P.; Kolouri, S.; Rostrami, M.; Martin, C.; Hoffman, H. Discovering molecular functional groups using graph convolutional
neural networks. arXiv preprint arXiv:1812.00265,
2018. [Preprint paper]..
[41]
Ryu, S.; Lim, J.; Hong, S.H.; Kim, W.Y. Deeply learning
molecular structure-property relationships using attentionand
gate-augmented graph convolutional network arXiv
preprint arXiv:1805.10988, 2018. [Preprint paper]..
[42]
Li, R.; Wang, S.; Zhu, F.; Huang, J. Adaptive graph convolutional neural networks. Thirty-Second AAAI Conference on Artificial Intelligence, 2018 , 32(1).
[51]
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. In: Distributed representations of words and phrases and their compositionality, NeurIPS Proceedings; , 2013, pp. 3111-3119.
[53]
Howard, J.; Ruder, S. .Universal language model fine-tuning
for text classification. arXiv preprint arXiv:1801.06146,
2018. [Preprint paper]..
[58]
Bahdanau, D.; Cho, K.; Bengio, Y. In: Neural machine translation by jointly learning to align and translate, International Conference on Learning Representations (ICLR), 2015.
[62]
Feng, Q.; Dueva, E.; Cherkasov, A.; Ester, M. A deep learning- based framework for drug-target interaction prediction
arXiv preprint arXiv:1807.09741, 2018. Preprint Paper..
[63]
Shin, B.; Park, S.; Kang, K.; Ho, J.C. Self-attention based molecule representation for predicting drug-target interaction. Proceedings of the 4th Machine Learning for Healthcare Conference, PMLR 106, 2019, 230-248..
[73]
Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks. International Conference on Machine Learning, 2017, pp. 2208-2217.
[77]
Chadha, A.; Andreopoulos, Y. Improving adversarial discriminative domain adaptation arXiv preprint arXiv:1809.03625, 2018. [Preprint paper].