Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biosensors and Bioanalytical Devices based on Magnetic Particles: A Review

Author(s): Miroslav Pohanka*

Volume 28, Issue 14, 2021

Published on: 30 July, 2020

Page: [2828 - 2841] Pages: 14

DOI: 10.2174/0929867327666200730213721

Price: $65

Open Access Journals Promotions 2
Abstract

Magnetic particles play an important role in current technology, and this field of technology extends to a broader progression. The term magnetic particles typically cover the paramagnetic particles and super-paramagnetic particles. Various materials like iron oxide are common, but other materials are available as well; a survey of such materials has been included in this work. They can serve for technological purposes like separation and isolation of chemical products or toxic waste, their use in the diagnosis of pathologies, drug delivery and other similar applications. In this review, biosensors, bioanalytical devices and bioassays, have been discussed. Materials for magnetic particles preparation, methods of assay, biosensors and bioassays working in stationary as well as flow-through arrangements are described here. A survey of actual literature has been provided as well.

Keywords: Antibody, bioassay, biosensor, enzyme, flow-through, magnetic separation, magnetism, magnetoresistance, nanoparticle, probe.

[1]
Mirzaei, M.; Akbari, M.E.; Mohagheghi, M.A.; Ziaee, S.A.M.; Mohseni, M. A novel biocompatible nanoprobe based on lipoproteins for breast cancer cell imaging. Nanomed. J., 2020, 7(1), 73-79.
[http://dx.doi.org/10.22038/nmj.2020.07.09]]
[2]
Chen, J.; Zhang, T.H.; Hua, W.K. 3D Porous poly(lactic acid)/regenerated cellulose composite scaffolds based on electrospun nanofibers for biomineralization. Colloid Surf. A-Physicochem. Eng. Asp., 2020, 585, 124048.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124048]
[3]
Pohanka, M. Quantum dots in the therapy: current trends and perspectives. Mini Rev. Med. Chem., 2017, 17(8), 650-656.
[http://dx.doi.org/10.2174/1389557517666170120153342] [PMID: 28117021]
[4]
Pohanka, M. Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratisl. Lek Listy, 2019, 120(6), 397-409.
[http://dx.doi.org/10.4149/BLL_2019_065] [PMID: 31223019]
[5]
Garcia-Vera, V.E.; Tenza-Abril, A.J.; Solak, A.M.; Lanzon, M. Calcium hydroxide nanoparticles coatings applied on cultural heritage materials: their influence on physical characteristics of earthen plasters. Appl. Surf. Sci., 2020, 504, 144195.
[http://dx.doi.org/10.1016/j.apsusc.2019.144195]
[6]
Wei, X.X.; Liu, Y.H.; Zhao, D.J.; Mao, X.W.; Jiang, W.Y.; Ge, S.S. Net-shaped barium and strontium ferrites by 3D printing with enhanced magnetic performance from milled powders. J. Magn. Magn. Mater., 2020, 493, 165664.
[http://dx.doi.org/10.1016/j.jmmm.2019.165664]
[7]
Hu, Y.; Huang, C.; Jiang, S.; Qin, Y.; Chen, H.C. Hierarchi-cal nickel-cobalt selenide nanoparticles/nanosheets as ad-vanced electroactive battery materials for hybrid superca-pacitors. J. Colloid Interface Sci., 2020, 558, 291-300.
[http://dx.doi.org/10.1016/j.jcis.2019.09.115] [PMID: 31604157]
[8]
Qiao, J.; Zhang, X.; Xu, D.M.; Kong, L.X.; Lv, L.F.; Yang, F.; Wang, F.L.; Liu, W.; Liu, J.R. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J., 2020, 380, 122591.
[http://dx.doi.org/10.1016/j.cej.2019.122591]
[9]
Li, M.; Wang, J.Y.; Chen, Q.Q.; Lin, L.H.; Radjenovic, P.; Zhang, H.; Luo, S.Y.; Tian, Z.Q.; Li, J.F. Background-free quantitative surface enhanced raman spectroscopy analysis using core-shell nanoparticles with an inherent internal standard. Anal. Chem., 2019, 91(23), 15025-15031.
[http://dx.doi.org/10.1021/acs.analchem.9b03703] [PMID: 31682106]
[10]
Elancheziyan, M.; Senthilkumar, S. Covalent immobilization and enhanced electrical wiring of hemoglobin using gold nanoparticles encapsulated PAMAM dendrimer for electrochemical sensing of hydrogen peroxide. Appl. Surf. Sci., 2019, 495, 143540.
[http://dx.doi.org/10.1016/j.apsusc.2019.143540]
[11]
Pohanka, M. Magnetic particles in electrochemical analyses. Int. J. Electrochem. Sci., 2018, 13(12), 12000-12009.
[http://dx.doi.org/10.20964/2018.12.259]
[12]
Liu, J.; Su, G.D.; Wang, Z. Synthesis of magnetic Ni 0.3 Mg 0.3 Zn 0.4 Fe2O4 nanoparticles and their adsorption performances of congo red. J. Nanosci. Nanotechnol., 2020, 20(5), 2878-2886.
[http://dx.doi.org/10.1166/jnn.2020.17470] [PMID: 31635624]
[13]
Yu, T.L.; Halouane, F.; Mathias, D.; Barras, A.; Wang, Z.W.; Lv, A.Q.; Lu, S.X.; Xu, W.G.; Meziane, D.; Tiercelin, N.; Szunerits, S.; Boukherroub, R. Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: separation of oil/water mixture and demulsification. Chem. Eng. J., 2020, 384, 123339.
[http://dx.doi.org/10.1016/j.cej.2019.123339]
[14]
Xiong, Y.; Huang, X.; Lu, B.; Wu, B.; Lu, L.; Liu, J.; Peng, K. Acceleration of floc-water separation and floc reduction with magnetic nanoparticles during demulsification of complex waste cutting emulsions. J. Environ. Sci. (China), 2020, 89, 80-89.
[http://dx.doi.org/10.1016/j.jes.2019.10.011] [PMID: 31892403]
[15]
Shariati-Rad, M.; Haghparast, N. Synthesis of a novel magnetic nanocomposite and its application to the efficient preconcentration and determination of malachite green in fish samples using response surface methodology. Anal. Bioanal. Chem. Res., 2020, 7(1), 131-150.
[http://dx.doi.org/10.22036/ABCR.2019.154958.1271]
[16]
Zhang, J.; Huang, L.L.; Zheng, J.; Xu, J.L.; Asiri, A.M.; Marwani, H.D.; Zhang, M. SiO2-assisted synthesis of Fe3O4@SiO2@C-Ni nanochains for effective catalysis and protein adsorption. J. Magn. Magn. Mater., 2020, 497, 166011.
[http://dx.doi.org/10.1016/j.jmmm.2019.166011]
[17]
Hernández, P.; Lucero-Acuña, A.; Moreno-Cortez, I.E.; Esquivel, R.; Álvarez-Ramos, E. Thermo-magnetic properties of Fe3O4@Poly(N-Isopropylacrylamide) core-shell nanoparticles and their cytotoxic effects on HeLa and MDA-MB-231 cell lines. J. Nanosci. Nanotechnol., 2020, 20(4), 2063-2071.
[http://dx.doi.org/10.1166/jnn.2020.17324] [PMID: 31492213]
[18]
Feng, X.Q.; Xu, W.; Zhang, C.; Tan, S.; Zhang, J.; Zhang, P.; Zhang, Y. Facile synthesis of yolk-shell structured Fe3O4@C-Au nanoparticles for thermotherapic application. Mater. Lett., 2020, 258, 126809.
[http://dx.doi.org/10.1016/j.matlet.2019.126809]
[19]
Fotukian, S.M.; Barati, A.; Soleymani, M.; Alizadeh, M. Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. J. Alloys Compd., 2020, 816, 152548.
[http://dx.doi.org/10.1016/j.jallcom.2019.152548]
[20]
Radu, T.; Petran, A.; Olteanu, D.; Baldea, I.; Potara, M.; Turcu, R. Evaluation of physico-chemical properties and biocompatibility of new surface functionalized Fe3O4 clusters of nanoparticles. Appl. Surf. Sci., 2020, 501, 144267.
[http://dx.doi.org/10.1016/j.apsusc.2019.144267]
[21]
Pohanka, M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap., 2015, 69(1), 4-16.
[http://dx.doi.org/10.2478/s11696-014-0542-x]
[22]
Pohanka, M. The piezoelectric biosensors: principles and applications, a review. Int. J. Electrochem. Sci., 2017, 12, 496-506.
[http://dx.doi.org/10.20964/2017.01.44]
[23]
Pohanka, M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials (Basel), 2018, 11(3), 448.
[http://dx.doi.org/10.3390/ma11030448] [PMID: 29562700]
[24]
Pohanka, M. Biosensors and bioassays based on lipases, principles and applications, a review. Molecules, 2019, 24(3), E616.
[http://dx.doi.org/10.3390/molecules24030616] [PMID: 30744203]
[25]
Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater., 2010, 22(25), 2729-2742.
[http://dx.doi.org/10.1002/adma.201000260] [PMID: 20473985]
[26]
Park, S.; Cho, B.B.; Anusha, J.R.; Jung, S.; Justin Raj, C.; Kim, B.C.; Yu, K.H. Synthesis of 64Cu-radiolabeled folate-conjugated iron oxide nanoparticles for cancer diagnosis. J. Nanosci. Nanotechnol., 2020, 20(4), 2040-2044.
[http://dx.doi.org/10.1166/jnn.2020.17205] [PMID: 31492210]
[27]
Tomke, P.D.; Rathod, V.K. Facile fabrication of silver on magnetic nanocomposite (Fe3O4@Chitosan -AgNP nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural pathogens. Int. J. Biol. Macromol., 2020, 149(19), 989-999.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.183] [PMID: 31972199]
[28]
Cao, W.; Xia, S.; Jiang, X.; Appold, M.; Opel, M.; Plank, M.; Schaffrinna, R.; Kreuzer, L.P.; Yin, S.; Gallei, M.; Schwartzkopf, M.; Roth, S.V.; Müller-Buschbaum, P. Self-assembly of large magnetic nanoparticles in ultrahigh molecular weight linear diblock copolymer films. ACS Appl. Mater. Interfaces, 2020, 12(6), 7557-7564.
[http://dx.doi.org/10.1021/acsami.9b20905] [PMID: 31967448]
[29]
Barcaro, G.; Monti, S. Modeling generation and growth of iron oxide nanoparticles from representative precursors through ReaxFF molecular dynamics. Nanoscale, 2020, 12(5), 3103-3111.
[http://dx.doi.org/10.1039/C9NR09381H] [PMID: 31965131]
[30]
Sayadi, M.H.; Mansouri, B.; Shahri, E.; Tyler, C.R.; Shekari, H.; Kharkan, J. Exposure effects of iron oxide nanoparticles and iron salts in blackfish (Capoeta fusca): acute toxicity, bioaccumulation, depuration, and tissue histopathology. Chemosphere, 2020, 247, 125900.
[http://dx.doi.org/10.1016/j.chemosphere.2020.125900] [PMID: 31951957]
[31]
Seifi, M.M.; Iranmanesh, E.; Asadollahi, M.A.; Arpanaei, A. Biotransformation of benzaldehyde into Lphenylacetylcarbinol using magnetic nanoparticles-coated yeast cells. Biotechnol. Lett., 2020, 16(10), 020-02798.
[http://dx.doi.org/10.1007/s10529-020-02798-0] [PMID: 31950407]
[32]
Ebrahiminezhad, A.; Taghizadeh, S.M.; Ghasemi, Y.; Berenjian, A. Immobilization of cells by magnetic nanoparticles. Methods Mol. Biol., 2020, 2100, 427-435.
[http://dx.doi.org/10.1007/978-1-0716-0215-7_29] [PMID: 31939141]
[33]
Muniz-Miranda, M.; Muniz-Miranda, F.; Giorgetti, E. Spectroscopic and microscopic analyses of Fe3O4/Au nanoparticles obtained by laser ablation in water. Nanomaterials (Basel), 2020, 10(1), E132.
[http://dx.doi.org/10.3390/nano10010132] [PMID: 31936852]
[34]
Ingle, A.P.; Philippini, R.R.; Rai, M.; Silvério da Silva, S. Catalytic hydrolysis of cellobiose using different acid-functionalised Fe3O4 magnetic nanoparticles. IET Nanobiotechnol., 2020, 14(1), 40-46.
[http://dx.doi.org/10.1049/iet-nbt.2019.0181] [PMID: 31935676]
[35]
Askaripour, H.; Vossoughi, M.; Khajeh, K.; Alemzadeh, I. Examination of chondroitinase ABC I immobilization onto dextran-coated Fe3O4 nanoparticles and its in vitro release. J. Biotechnol., 2020, 309, 131-141.
[http://dx.doi.org/10.1016/j.jbiotec.2019.12.020] [PMID: 31935418]
[36]
Wu, S.; Gu, L.; Qin, J.; Zhang, L.; Sun, F.; Liu, Z.; Wang, Y.; Shi, D. Rapid label-free isolation of circulating tumor cells from patients’ peripheral blood using electrically charged Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces, 2020, 12(4), 4193-4203.
[http://dx.doi.org/10.1021/acsami.9b16385] [PMID: 31935069]
[37]
Liu, J.; Wang, Z.; Wang, Y. A novel type of magnetic Fe2O3/Fe3O4 heterogeneous microparticles prepared via the ethanol-water reflux and rapid combustion process. J. Nanosci. Nanotechnol., 2020, 20(5), 2998-3003.
[http://dx.doi.org/10.1166/jnn.2020.17439] [PMID: 31635639]
[38]
Li, S.S.; Wang, Z. Adsorption performance of reactive red 2BF onto magnetic NiFe2O4 nanoparticles prepared via the coprecipitation process. J. Nanosci. Nanotechnol., 2020, 20(5), 2832-2839.
[http://dx.doi.org/10.1166/jnn.2020.17434] [PMID: 31635619]
[39]
Ma, X.R.; Dang, R.; Liu, J.Y.; Yang, F.; Li, H.G.; Zhang, Y.X.; Luo, J. Facile synthesis and characterization of spinel NiFe2O4 nanoparticles and studies of their photocatalytic activity for oxidation of alcohols. Sci. Adv. Mater., 2020, 12(3), 357-365.
[http://dx.doi.org/10.1166/sam.2020.3549]
[40]
Singh Yadav, R.; Kuřitka, I.; Vilcakova, J.; Jamatia, T.; Machovsky, M.; Skoda, D.; Urbánek, P.; Masař, M.; Urbánek, M.; Kalina, L.; Havlica, J. Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrason. Sonochem., 2020, 61, 104839.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104839] [PMID: 31683238]
[41]
Zhang, W.; Sun, A.M.; Zhao, X.Q.; Pan, X.G.; Han, Y.Q.; Suo, N.Z.X.; Yu, L.C.; Zuo, Z. Structural and magnetic properties of Ni-Cu-Co ferrites prepared from sol-gel auto combustion method with different complexing agents. J. Alloys Compd., 2020, 816, 152501.
[http://dx.doi.org/10.1016/j.jallcom.2019.152501]
[42]
Elhamali, S.M.; Ibrahim, N.B.; Radiman, S. Oxygen vacancy-dependent microstructural, optical and magnetic properties of sol-gel Tb0.2 Er1 Y2.8 Fe5 O12 films. J. Magn. Magn. Mater., 2020, 497, 166048.
[http://dx.doi.org/10.1016/j.jmmm.2019.166048]
[43]
Pena-Garcia, R.; Guerra, Y.; Milani, R.; Oliveira, D.M.; Rodrigues, A.R.; Padron-Hernandez, E. The role of Y on the structural, magnetic and optical properties of Fe-doped ZnO nanoparticles synthesized by sol gel method. J. Magn. Magn. Mater., 2020, 498, 166085.
[http://dx.doi.org/10.1016/j.jmmm.2019.166085]
[44]
Ansari, M.; Bigham, A.; Ahangar, H.A. Super-paramagnetic nanostructured Cu Zn Mg mixed spinel ferrite for bone tissue regeneration. Mater. Sci. Eng. C, 2019, 105, 110084.
[http://dx.doi.org/10.1016/j.msec.2019.110084] [PMID: 31546418]
[45]
Mohanty, P.; Venter, A.M.; Sheppard, C.J.; Prinsloo, A.R.E. Structure and magnetic phase transitions in (Ni1-xCox)Cr2O4 spinel nanoparticles. J. Magn. Magn. Mater., 2020, 498, 166217.
[http://dx.doi.org/10.1016/j.jmmm.2019.166217]
[46]
Shogh, S.; Eshraghi, M. The effect of particle size on the structural, magnetic and electrical properties of La0.9Ba0.1MNO3 manganite samples. Phase Transit., 2019, 92(11), 949-959.
[http://dx.doi.org/10.1080/01411594.2019.1678036]
[47]
Ma, F.; Zhao, H.J. Optical, magnetic, ferroelectric properties and photocatalytic activity of Bi2Fe4O9 nanoparticles through a hydrothermal assisted sol-gel method. Russ. J. Phys. Chem. A, 2019, 93(10), 2079-2086.
[http://dx.doi.org/10.1134/S0036024419100169]
[48]
Pedro, L.; Harmer, Q.; Mayes, E.; Shields, J.D. impact of locally administered carboxydextran-coated super-paramagnetic iron nanoparticles on cellular immune function. Small, 2019, 15(20), e1900224.
[http://dx.doi.org/10.1002/smll.201900224] [PMID: 30985079]
[49]
Victory, M.; Pant, R.P.; Phanjoubam, S. Synthesis and characterization of oleic acid coated Fe-Mn ferrite based ferrofluid. Mater. Chem. Phys., 2020, 240, 122210.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122210]
[50]
Zhou, J.; Wu, W.; Caruntu, D.; Yu, M.H.; Martin, A.; Chen, J.F.; O’Connor, C.J.; Zhou, W.L. Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application. J. Phys. Chem. C, 2007, 111(47), 17473-17477.
[http://dx.doi.org/10.1021/jp074123i]
[51]
Podrouzkova, H.; Feitova, V.; Panovsky, R.; Meluzin, J.; Orban, M. Superparamagnetic iron oxide-enhanced magnetic resonance for imaging cardiac inflammation. A minireview. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2015, 159(3), 378-381.
[http://dx.doi.org/10.5507/bp.2014.030] [PMID: 24993740]
[52]
Jahangirian, H.; Kalantari, K.; Izadiyan, Z.; Rafiee-Moghaddam, R.; Shameli, K.; Webster, T.J. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int. J. Nanomedicine, 2019, 14, 1633-1657.
[http://dx.doi.org/10.2147/IJN.S184723] [PMID: 30880970]
[53]
Wu, L.C.; Zhang, Y.; Steinberg, G.; Qu, H.; Huang, S.; Cheng, M.; Bliss, T.; Du, F.; Rao, J.; Song, G.; Pisani, L.; Doyle, T.; Conolly, S.; Krishnan, K.; Grant, G.; Wintermark, M. A review of magnetic particle imaging and perspectives on neuroimaging. AJNR Am. J. Neuroradiol., 2019, 40(2), 206-212.
[http://dx.doi.org/10.3174/ajnr.A5896] [PMID: 30655254]
[54]
Bulte, J.W.M. Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Adv. Drug Deliv. Rev., 2019, 138, 293-301.
[http://dx.doi.org/10.1016/j.addr.2018.12.007] [PMID: 30552918]
[55]
Ruffert, C. Magnetic bead-magic bullet. Micromachines (Basel), 2016, 7(2), E21.
[http://dx.doi.org/10.3390/mi7020021] [PMID: 30407394]
[56]
Ehresmann, A.; Koch, I.; Holzinger, D. Manipulation of superparamagnetic beads on patterned exchange-bias layer systems for biosensing applications. Sensors (Basel), 2015, 15(11), 28854-28888.
[http://dx.doi.org/10.3390/s151128854] [PMID: 26580625]
[57]
Alam, S.R.; Stirrat, C.; Richards, J.; Mirsadraee, S.; Semple, S.I.; Tse, G.; Henriksen, P.; Newby, D.E. Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide. J. Cardiovasc. Magn. Reson., 2015, 17(83), 015-0183.
[http://dx.doi.org/10.1186/s12968-015-0183-4] [PMID: 26381872]
[58]
Panagiotopoulos, N.; Duschka, R.L.; Ahlborg, M.; Bringout, G.; Debbeler, C.; Graeser, M.; Kaethner, C.; Lüdtke-Buzug, K.; Medimagh, H.; Stelzner, J.; Buzug, T.M.; Barkhausen, J.; Vogt, F.M.; Haegele, J. Magnetic particle imaging: current developments and future directions. Int. J. Nanomedicine, 2015, 10, 3097-3114.
[http://dx.doi.org/10.2147/IJN.S70488] [PMID: 25960650]
[59]
Suwa, M.; Watarai, H. Magnetoanalysis of micro/nanoparticles: a review. Anal. Chim. Acta, 2011, 690(2), 137-147.
[http://dx.doi.org/10.1016/j.aca.2011.02.019] [PMID: 21435469]
[60]
Timonen, J.V.I.; Grzybowski, B.A. Tweezing of magnetic and non-magnetic objects with magnetic fields. Adv. Mater., 2017, 29(18), 15.
[http://dx.doi.org/10.1002/adma.201603516] [PMID: 28198579]
[61]
Colombo, S.; Lebedev, V.; Tonyushkin, A.; Pengue, S.; Weis, A. Imaging Magnetic nanoparticle distributions by atomic magnetometry-based susceptometry. IEEE Trans. Med. Imaging, 2019, 26(10), 2937670.
[http://dx.doi.org/10.1109/TMI.2019.2937670] [PMID: 31478841]
[62]
Iranmanesh, M. Hulliger, J. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry. Chem. Soc. Rev., 2017, 46(19), 5925-5934.
[http://dx.doi.org/10.1039/C7CS00230K] [PMID: 28730213]
[63]
Grützkau, A.; Radbruch, A. Small but mighty: how the MACS-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry A, 2010, 77(7), 643-647.
[http://dx.doi.org/10.1002/cyto.a.20918] [PMID: 20583279]
[64]
Norina, S.B.; Park, S.H.; Kim, J.; Cho, S.; Shalygin, A.N.; Soh, K.S. Image analysis of bioparticles accumulation and diamagnetic alignment in high-gradient magnetic field. J. Biomed. Opt., 2005, 10(5), 051702.
[http://dx.doi.org/10.1117/1.2070127] [PMID: 16292954]
[65]
Hardwick, R.A.; Kulcinski, D.; Mansour, V.; Ishizawa, L.; Law, P.; Gee, A.P. Design of large-scale separation systems for positive and negative immunomagnetic selection of cells using superparamagnetic microspheres. J. Hematother., 1992, 1(4), 379-386.
[http://dx.doi.org/10.1089/scd.1.1992.1.379] [PMID: 1345680]
[66]
Kemshead, J.T.; Ugelstad, J. Magnetic separation techniques: their application to medicine. Mol. Cell. Biochem., 1985, 67(1), 11-18.
[http://dx.doi.org/10.1007/BF00220980] [PMID: 3894931]
[67]
Buzug, T.M.; Bringout, G.; Erbe, M.; Gräfe, K.; Graeser, M.; Grüttner, M.; Halkola, A.; Sattel, T.F.; Tenner, W.; Wojtczyk, H.; Haegele, J.; Vogt, F.M.; Barkhausen, J.; Lüdtke-Buzug, K. Magnetic particle imaging: introduction to imaging and hardware realization. Z. Med. Phys., 2012, 22(4), 323-334.
[http://dx.doi.org/10.1016/j.zemedi.2012.07.004] [PMID: 22909418]
[68]
Bagheri, H.; Hayden, M.E. Resolution enhancement in magnetic particle imaging via phase-weighting. J. Magn. Magn. Mater., 2020, 498, 166021.
[http://dx.doi.org/10.1016/j.jmmm.2019.166021]
[69]
Zelepukin, I.V.; Nikitin, M.P.; Nechaev, A.V.; Zvyagin, A.V.; Nikitin, P.I.; Deyev, S.M. Near infrared luminescent-magnetic nanoparticles for bimodal imaging in vivo. International Conference Laser Optics, New York2016.
[70]
Griese, F.; Knopp, T.; Gruettner, C.; Thieben, F.; Muller, K.; Loges, S.; Ludewig, P.; Gdaniec, N. Simultaneous magnetic particle imaging and navigation of large superparamagnetic nanoparticles in bifurcation flow experiments. J. Magn. Magn. Mater., 2020, 498, 166206.
[http://dx.doi.org/10.1016/j.jmmm.2019.166206]
[71]
Polikarpov, M.A.; Ustinin, M.N.; Rykunov, S.D.; Yurenya, A.Y.; Naurzakov, S.P.; Grebenkin, A.P.; Panchenko, V.Y. 3D imaging of magnetic particles using the 7-channel magnetoencephalography device without pre-magnetization or displacement of the sample. J. Magn. Magn. Mater., 2017, 427, 139-143.
[http://dx.doi.org/10.1016/j.jmmm.2016.10.055]
[72]
Vogel, P.; Markert, J.; Rückert, M.A.; Herz, S.; Keßler, B.; Dremel, K.; Althoff, D.; Weber, M.; Buzug, T.M.; Bley, T.A.; Kullmann, W.H.; Hanke, R.; Zabler, S.; Behr, V.C. Magnetic particle imaging meets computed tomography: first simultaneous imaging. Sci. Rep., 2019, 9(1), 12627.
[http://dx.doi.org/10.1038/s41598-019-48960-1] [PMID: 31477758]
[73]
Talebloo, N.; Gudi, M.; Robertson, N.; Wang, P. Magnetic particle imaging: current applications in biomedical research. J. Magn. Reson. Imaging, 2020, 51(6), 1659-1668.
[http://dx.doi.org/10.1002/jmri.26875] [PMID: 31332868]
[74]
Illert, P.; Wangler, B.; Wangler, C.; Zollner, F.; Uhrig, T.; Litau, S.; Pretze, M.; Roder, T. Functionalizable composite nanoparticles as a dual magnetic resonance imaging/computed tomography contrast agent for medical imaging. J. Appl. Polym. Sci., 2019, 136(19), 47571.
[http://dx.doi.org/10.1002/app.47571]
[75]
Hu, J.; Gorsak, T.; Rodriguez, E.M.; Calle, D.; Munoz-Ortiz, T.; Jaque, D.; Fernandez, N.; Cusso, L.; Rivero, F.; Torres, R.A.; Sole, J.G.; Mertelj, A.; Makovec, D.; Desco, M.; Lisjak, D.; Alfonso, F.; Sanz-Rodriguez, F.; Ortgies, D.H. Magnetic nanoplatelets for high contrast cardiovascular imaging by magnetically modulated optical coherence tomography. Chem. Photo. Chem., 2019, 3(7), 529-539.
[http://dx.doi.org/10.1002/cptc.201900071]
[76]
Xu, J.; Jiao, J.Q.; Li, Q.; Li, S.D. Ultralow detection limit of giant magnetoresistance biosensor using Fe3O4-graphene composite nanoparticle label. Chin. Phys. B, 2017, 26(1)
[http://dx.doi.org/10.1088/1674-1056/26/1/010701]
[77]
Liang, Y.C.; Chang, L.; Qiu, W.; Kolhatkar, A.G.; Vu, B.; Kourentzi, K.; Lee, T.R.; Zu, Y.; Willson, R.; Litvinov, D. Ultrasensitive magnetic nanoparticle detector for biosensor applications. Sensors (Basel), 2017, 17(6), E1296.
[http://dx.doi.org/10.3390/s17061296] [PMID: 28587265]
[78]
Pohanka, M. Construction of a QCM biosensor for free hemoglobin assay. Int. J. Electrochem. Sci., 2019, 14(6), 5237-5246.
[http://dx.doi.org/10.20964/2019.06.48]
[79]
Pohanka, M. Piezoelectric biosensor for the determination of tumor necrosis factor alpha. Talanta, 2018, 178, 970-973.
[http://dx.doi.org/10.1016/j.talanta.2017.10.031] [PMID: 29136925]
[80]
Fujiwara, M.; Chie, K.; Sawai, J.; Shimizu, D.; Tanimoto, Y. On the movement of paramagnetic ions in an inhomogeneous magnetic field. J. Phys. Chem. B, 2004, 108(11), 3531-3534.
[http://dx.doi.org/10.1021/jp0303523]
[81]
Liu, J.; Xia, T.; Wang, S.; Yang, G.; Dong, B.; Wang, C.; Ma, Q.; Sun, Y.; Wang, R. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties. Nanoscale, 2016, 8(22), 11432-11440.
[http://dx.doi.org/10.1039/C6NR00883F] [PMID: 26971675]
[82]
Shen, B.; Sun, S. Chemical synthesis of magnetic nanoparticles for permanent magnet applications. Chemistry, 2020, 26(30), 6757-6766.
[http://dx.doi.org/10.1002/chem.201902916] [PMID: 31529572]
[83]
Pamme, N. Magnetism and microfluidics. Lab Chip, 2006, 6(1), 24-38.
[http://dx.doi.org/10.1039/B513005K] [PMID: 16372066]
[84]
Hernández-Neuta, I.; Pereiro, I.; Ahlford, A.; Ferraro, D.; Zhang, Q.; Viovy, J.L.; Descroix, S.; Nilsson, M. Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode. Biosens. Bioelectron., 2018, 102, 531-539.
[http://dx.doi.org/10.1016/j.bios.2017.11.064] [PMID: 29216580]
[85]
van Reenen, A.; de Jong, A.M.; den Toonder, J.M.; Prins, M.W. Integrated lab-on-chip biosensing systems based on magnetic particle actuation--a comprehensive review. Lab Chip, 2014, 14(12), 1966-1986.
[http://dx.doi.org/10.1039/C3LC51454D] [PMID: 24806093]
[86]
Weddemann, A.; Albon, C.; Auge, A.; Wittbracht, F.; Hedwig, P.; Akemeier, D.; Rott, K.; Meissner, D.; Jutzi, P.; Hütten, A. How to design magneto-based total analysis systems for biomedical applications. Biosens. Bioelectron., 2010, 26(4), 1152-1163.
[http://dx.doi.org/10.1016/j.bios.2010.06.031] [PMID: 20638263]
[87]
Moerland, C.P.; van IJzendoorn, L.J.; Prins, M.W.J. Rotating magnetic particles for lab-on-chip applications - a comprehensive review. Lab Chip, 2019, 19(6), 919-933.
[http://dx.doi.org/10.1039/C8LC01323C] [PMID: 30785138]
[88]
Ranzoni, A.; Janssen, X.J.; Ovsyanko, M.; van IJzendoorn, L.J.; Prins, M.W. Magnetically controlled rotation and torque of uniaxial microactuators for lab-on-a-chip applications. Lab Chip, 2010, 10(2), 179-188.
[http://dx.doi.org/10.1039/B909998K] [PMID: 20066245]
[89]
Arlt, C.R.; Tschope, A.; Franzreb, M. Size fractionation of magnetic nanoparticles by magnetic chromatography. J. Magn. Magn. Mater., 2020, 497, 165967.
[http://dx.doi.org/10.1016/j.jmmm.2019.165967]
[90]
Xuan, X. Recent advances in continuous-flow particle manipulations using magnetic fluids. Micromachines (Basel), 2019, 10(11), E744.
[http://dx.doi.org/10.3390/mi10110744] [PMID: 31683660]
[91]
Shyam, S.; Mehta, B.; Mondal, P.K.; Wongwises, S. Investigation into the thermo-hydrodynamics of ferrofluid flow under the influence of constant and alternating magnetic field by InfraRed Thermography. Int. J. Heat Mass Transf., 2019, 135, 1233-1247.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.02.050]
[92]
Jalili, B.; Sadighi, S.; Jalili, P.; Ganji, D.D. Characteristics of ferrofluid flow over a stretching sheet with suction and injection. Case Stud. Therm. Eng., 2019, 14, 100470.
[http://dx.doi.org/10.1016/j.csite.2019.100470]
[93]
Yadav, P.K.; Jaiswal, S.; Puchakatla, J.Y. Micropolar fluid flow through the membrane composed of impermeable cylindrical particles coated by porous layer under the effect of magnetic field. Math. Methods Appl. Sci., 2020, 43(4), 1925-1937.
[http://dx.doi.org/10.1002/mma.6016]
[94]
Castillo-Torres, K.Y.; McLamore, E.S.; Arnold, D.P. A high-throughput microfluidic magnetic separation (µFMS) platform for water quality monitoring. Micromachines (Basel), 2019, 11(1), E16.
[http://dx.doi.org/10.3390/mi11010016] [PMID: 31877902]
[95]
Mahmoud, M.; Laufer, S.; Deigner, H.P. Visual aptamer-based capillary assay for ethanolamine using magnetic particles and strand displacement. Mikrochim. Acta, 2019, 186(11), 690.
[http://dx.doi.org/10.1007/s00604-019-3795-9] [PMID: 31595372]
[96]
Xu, H.; Liao, C.; Zuo, P.; Liu, Z.; Ye, B.C. Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes. Anal. Chem., 2018, 90(22), 13451-13458.
[http://dx.doi.org/10.1021/acs.analchem.8b03272] [PMID: 30234974]
[97]
Bechstein, D.J.; Lee, J.R.; Ooi, C.C.; Gani, A.W.; Kim, K.; Wilson, R.J.; Wang, S.X. High performance wash-free magnetic bioassays through microfluidically enhanced particle specificity. Sci. Rep., 2015, 5(11693), 11693.
[http://dx.doi.org/10.1038/srep11693] [PMID: 26123868]
[98]
Kwon, K.; Gwak, H.; Hyun, K.A.; Kwak, B.S.; Jung, H.I. High-throughput microfluidic chip for magnetic enrichment and photothermal DNA extraction of foodborne bacteria. Sens. Actuator B-Chem., 2019, 294, 62-68.
[http://dx.doi.org/10.1016/j.snb.2019.05.007]
[99]
Blomgren, J.; Ahrentorp, F.; Ilver, D.; Jonasson, C.; Sepehri, S.; Kalaboukhov, A.; Winkler, D.; Zardán Gómez de la Torre, T.; Strømme, M.; Johansson, C. Development of a sensitive induction-based magnetic nanoparticle biodetection method. Nanomaterials (Basel), 2018, 8(11), E887.
[http://dx.doi.org/10.3390/nano8110887] [PMID: 30388776]
[100]
Doswald, S.; Stark, W.J.; Beck-Schimmer, B. Biochemical functionality of magnetic particles as nanosensors: how far away are we to implement them into clinical practice? J. Nanobiotechnology, 2019, 17(1), 73.
[http://dx.doi.org/10.1186/s12951-019-0506-y] [PMID: 31151445]
[101]
Xianyu, Y.; Wang, Q.; Chen, Y. Magnetic particles-enabled biosensors for point-of-care testing. TrAC. Trends Analyt. Chem., 2018, 106, 213-224.
[http://dx.doi.org/10.1016/j.trac.2018.07.010]
[102]
Krishnan, S.; Goud, K.Y. Magnetic particle bioconjugates: a versatile sensor approach. Magnetochemistry, 2019, 5(4), 64.
[http://dx.doi.org/10.3390/magnetochemistry5040064]
[103]
Zhu, F.; Li, D.; Ding, Q.F.; Lei, C.; Ren, L.Z.; Ding, X.G. Sun, X. 2D magnetic MoS2-Fe3O4 hybrid nanostructures for ultrasensitive exosome detection in GMR sensor. Biosens. Bioelectron., 2020, 147, 111787.
[http://dx.doi.org/10.1016/j.bios.2019.111787] [PMID: 31655381]
[104]
Galkin, O.Y.; Besarab, O.B.; Pysmenna, M.O.; Gorshunov, Y.V.; Dugan, O.M. Modern magnetic immunoassay: biophysical and biochemical aspects. Regul. Mech. Biosyst., 2018, 9(1), 47-55.
[http://dx.doi.org/10.15421/021806]
[105]
Bertok, T.; Lorencova, L.; Hroncekova, S.; Gajdosova, V.; Jane, E.; Hires, M.; Kasak, P.; Kaman, O.; Sokol, R.; Bella, V.; Eckstein, A.A.; Mosnacek, J.; Vikartovska, A.; Tkac, J. Advanced impedimetric biosensor configuration and assay protocol for glycoprofiling of a prostate oncomarker using Au nanoshells with a magnetic core. Biosens. Bioelectron., 2019, 131, 24-29.
[http://dx.doi.org/10.1016/j.bios.2019.01.052] [PMID: 30798249]
[106]
Chen, L.; Liu, M.; Tang, Y.; Chen, C.; Wang, X.; Hu, Z. Preparation and properties of a low fouling magnetic nanoparticle and its application to the HPV genotypes assay in whole serum. ACS Appl. Mater. Interfaces, 2019, 11(20), 18637-18644.
[http://dx.doi.org/10.1021/acsami.9b04147] [PMID: 31026394]
[107]
Valera, E.; García-Febrero, R.; Elliott, C.T.; Sánchez-Baeza, F.; Marco, M.P. Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples. Anal. Bioanal. Chem., 2019, 411(9), 1915-1926.
[http://dx.doi.org/10.1007/s00216-018-1538-0] [PMID: 30610251]
[108]
Gao, M.L.; He, F.; Yin, B.C.; Ye, B.C. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly. Analyst (Lond.), 2019, 144(6), 1995-2002.
[http://dx.doi.org/10.1039/C8AN02383B] [PMID: 30698587]
[109]
Uliana, C.V.; de Oliveira, T.R.; Cominetti, M.R.; Faria, R.C. Label-free evaluation of small-molecule-protein interaction using magnetic capture and electrochemical detection. Anal. Bioanal. Chem., 2019, 411(10), 2111-2119.
[http://dx.doi.org/10.1007/s00216-019-01636-1] [PMID: 30739194]
[110]
Kostelnik, A.; Kopel, P.; Cegan, A.; Pohanka, M. Construction of an acetylcholinesterase sensor based on synthesized paramagnetic nanoparticles, a simple tool for neurotoxic compounds assay. Sensors (Basel), 2017, 17(4), E676.
[http://dx.doi.org/10.3390/s17040676] [PMID: 28338634]
[111]
Martinkova, P.; Kostelnik, A.; Pohanka, M. Nanomaterials as pseudocatalyst replacing enzymes in construction of electrochemiccal non-enzymatic sensor intended for healthcare: a review. Anal. Lett., 2019, 52(9), 1396-1417.
[http://dx.doi.org/10.1080/00032719.2018.1542434]
[112]
Martinkova, P.; Pohanka, M. Determination of peroxidase-like activity of magnetic particles: basic platforms for peroxidase biosensors. Int. J. Electrochem. Sci., 2015, 10(9), 7033-7048.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy