Review Article

系统性红斑狼疮的药物治疗进展

卷 28, 期 6, 2021

发表于: 25 June, 2020

页: [1251 - 1268] 页: 18

弟呕挨: 10.2174/0929867327666200625150408

价格: $65

Open Access Journals Promotions 2
摘要

背景:系统性红斑狼疮(SLE)是一种以局部或全身炎症反应为特征的自身免疫性疾病。目前,越来越多的研究结果表明该病发病机制复杂,临床治疗方法也呈现多样化。本文对现有的机制研究和药物治疗方法进行分析和总结,以期为进一步的药物研发提供参考价值。 方法:我们利用数据库进行了全面的文献检索。根据本文的主要目的,经过进一步的检查,排除不相关的文章,纳入直接相关的文章。最后,对本文的相关信息进行了总结。 结果:这篇文章包括74篇文章。根据相关文献,主要有四种药物,即抗疟药、糖皮质激素、免疫抑制剂和生物制剂。综述了治疗系统性红斑狼疮的药物55篇左右。其余文章就系统性红斑狼疮发病机制的研究进展进行综述。 结论:本文对系统性红斑狼疮的发病机制进行了阐述,并对传统和新型治疗药物进行了总结,不仅有利于红斑狼疮患者的治疗,而且对今后开发新的系统性红斑狼疮药物也具有重要的参考意义。

关键词: 全身性红斑狼疮,发病机理,治疗药物,抗疟药物,糖皮质激素药物,免疫抑制剂,生物制剂

« Previous
[1]
Khattri, S.; Zandman-Goddard, G. Statins and autoimmunity. Immunol. Res., 2013, 56(2-3), 348-357.
[http://dx.doi.org/10.1007/s12026-013-8409-8] [PMID: 23572428]
[2]
Somers, E.C.; Marder, W.; Cagnoli, P.; Lewis, E.E.; DeGuire, P.; Gordon, C.; Helmick, C.G.; Wang, L.; Wing, J.J.; Dhar, J.P.; Leisen, J.; Shaltis, D.; McCune, W.J.; McCune, W.G. Population-based incidence and prevalence of systemic lupus erythematosus: the michigan lupus epidemiology and surveillance program. Arthritis Rheumatol., 2014, 66(2), 369-378.
[http://dx.doi.org/10.1002/art.38238] [PMID: 24504809]
[3]
Zhu, Q.; Wu, B.; Zhang, L.; Wang, Y.; Xie, C. The role of B cells in the pathogenesis of systemic lupus erythematosus. J. Qiqihar Med. Uni., 2019, 40(03), 351-354.
[4]
Meiqing, L.; Qilin, G.; Tao, S. The study of relativity between abnormal expression of cytokineTh1、Th2 which in systimic lupus erythematiosus patients and dysfunction of T cell subpopulation. Med. Lab. Sci. Clin., 2007, 2007(05), 4-6.
[5]
Lu, F.; Ji, H.; Sun, H.; Liu, B. Analysis on the correlation between the changes of T cell subset, IL-6, IL-18 and IFN-γ and the morbidity of systemic lupus erythematosus and on its possible pathogenesis. China Med. Equ., 2019, 16(03), 88-91.
[6]
Ramsköld, D.; Parodis, I.; Lakshmikanth, T.; Sippl, N.; Khademi, M.; Chen, Y.; Zickert, A.; Mikeš, J.; Achour, A.; Amara, K.; Piehl, F.; Brodin, P.; Gunnarsson, I.; Malmström, V. B cell alterations during BAFF inhibition with belimumab in SLE. EBioMedicine, 2019, 40, 517-527.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.035] [PMID: 30593436]
[7]
Chen, X.; Sun, X.; Yang, W.; Yang, B.; Zhao, X.; Chen, S.; He, L.; Chen, H.; Yang, C.; Xiao, L.; Chang, Z.; Guo, J.; He, J.; Zhang, F.; Zheng, F.; Hu, Z.; Yang, Z.; Lou, J.; Zheng, W.; Qi, H.; Xu, C.; Zhang, H.; Shan, H.; Zhou, X.J.; Wang, Q.; Shi, Y.; Lai, L.; Li, Z.; Liu, W. An autoimmune disease variant of IgG1 modulates B cell activation and differentiation. Science, 2018, 362(6415), 700-705.
[http://dx.doi.org/10.1126/science.aap9310] [PMID: 30287618]
[8]
Mahto, H.; Tripathy, R.; Meher, B.R.; Prusty, B.K.; Sharma, M.; Deogharia, D.; Saha, A.K.; Panda, A.K.; Das, B.K. TNF-α promoter polymorphisms (G-238A and G-308A) are associated with susceptibility to systemic lupus erythematosus (SLE) and P. falciparum malaria: a study in malaria endemic area. Sci. Rep., 2019, 9(1), 11752.
[http://dx.doi.org/10.1038/s41598-019-48182-5] [PMID: 31409832]
[9]
Rönnblom, L.; Alm, G.V. An etiopathogenic role for the type I IFN system in SLE. Trends Immunol., 2001, 22(8), 427-431.
[http://dx.doi.org/10.1016/S1471-4906(01)01955-X] [PMID: 11473831]
[10]
I-Tsu. C.; Tzeng, H.; Chen, J. Signaling pathways of type I and type III interferons and targeted therapies in systemic lupus erythematosus. Cells, 2019, 8(9), 963.
[http://dx.doi.org/10.3390/cells8090963] [PMID: 31450787]
[11]
Karampetsou, M.P.; Comte, D.; Suárez-Fueyo, A.; Katsuyama, E.; Yoshida, N.; Kono, M.; Kyttaris, V.C.; Tsokos, G.C. SLAMF1 engagement inhibits T cell-B cell interaction and diminishes IL-6 production and plasmablast differentiation in systemic lupus erythematosus. Arthritis Rheumatol., 2019, 71(1), 99-108.
[http://dx.doi.org/10.1002/art.40682]] [PMID: 30058241]
[12]
Qiao, Y.; Wang, J.; Liang, Z.; Jing, X.; Hao, M.; Chen, J. Effects of regulatory B cells on CD4~+ T cell subsets in systemic lupus erythematosus. Zhonghua Linchuang Yishi Zazhi, 2017, 11(07), 1208-1211.
[13]
Zumaquero, E.; Stone, S.L.; Scharer, C.D.; Jenks, S.A.; Nellore, A.; Mousseau, B.; Rosal-Vela, A.; Botta, D.; Bradley, J.E.; Wojciechowski, W.; Ptacek, T.; Danila, M.I.; Edberg, J.C.; Bridges, S.L. Jr.; Kimberly, R.P.; Chatham, W.W.; Schoeb, T.R.; Rosenberg, A.F.; Boss, J.M.; Sanz, I.; Lund, F.E. IFNγ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8 and IL-21 induced differentiation. eLife, 2019, 8e41641
[http://dx.doi.org/10.7554/eLife.41641] [PMID: 31090539]
[14]
Li, S.; Xiao, W. Research progress of chemokine CXCL13 in systemic lupus erythematosus. Chin. J. Immunol., 2019, 35(12), 1528-1532.
[15]
Luo, B.; Zeng, H.; Zhang, Y.; Ye, Z. Research progress of long-chain non-coding RNA in systemic lupus erythematosus. Rheumat. Arthritis, 2019, 8(08), 68-72.
[16]
Ding, S.; Zhang, Q.; Luo, S. Gao. L.;Huang, J.;Lu, J.;Chen, J.;Zeng, Q.;Guo, A.;Zeng, J.;Lu, Q. BCL-6 suppresses miR-142-3p/5p expression in SLE CD4+ T cells by modulating histone methylation and acetylation of the miR-142 promoter. Cell. Mol. Immunol., 2019, 17(5), 474-482.
[http://dx.doi.org/10.1038/s41423-019-0268-3]] [PMID: 31431691]
[17]
Qian, T.; Yang, Y.; Qianjin, L. Research progress on microRNAs’ role in the pathogenesis of systemic lupus erythematosus. J. Prac. Derma., 2014, 7(05), 367-369.
[18]
Dong, Y.; Wang, S.; Liu, H. Current situation and progress of application of hydroxychloroquine and its blood concentration in the treatment of systemic lupus erythematosus. Med. Recapitulate, 2018, 24(15), 3039-3044.
[19]
Li, W.D.; Dong, Y.J.; Tu, Y.Y.; Lin, Z.B. Dihydroarteannuin ameliorates lupus symptom of BXSB mice by inhibiting production of TNF-alpha and blocking the signaling pathway NF-kappa B translocation. Int. Immunopharmacol., 2006, 6(8), 1243-1250.
[http://dx.doi.org/10.1016/j.intimp.2006.03.004] [PMID: 16782536]
[20]
Yang, L.; Zhang, D. Summary of dihydroartemisinin and its application for the treatment of lupus erythematosus. Chin. Sci. Bull., 2017, 62(18), 2007-2012.
[http://dx.doi.org/10.1360/N972017-00172]
[21]
Zuo, Y.; Jin, H. Expert consensus on the treatment of immune-related dermatosis with glucocorticoid. Chin. J. Allergy Clin. Immunol., 2018, 12(01), 1-7.
[22]
Deng, J.; Chalhoub, N.E.; Sherwin, C.M.; Li, C.; Brunner, H.I. Glucocorticoids pharmacology and their application in the treatment of childhood-onset systemic lupus erythematosus. Semin. Arthritis Rheum., 2019, 49(2), 251-259.
[http://dx.doi.org/10.1016/j.semarthrit.2019.03.010] [PMID: 30987856]
[23]
Tang, J.; Zheng, X. Investigation of the effects of dexamethasone on STAT1 in monocytes of patients with SLE. Chin. J. Microbiol. Immunol., 2004, (07), 26-29.
[24]
Huang, Y.; Zhang, Y.; Tao, J. Updates on application and clinical research of glucocorticoids in the treatment of systemic lupus erythematosus. Derma. Bulletin, 2018, 35(03), 296-304 + 238,,
[25]
Yang, D. Clinical research of low-dosage hormone combined with cyclophosphamide in the treatment of systemic lupus erythematosus. J. Snake, 2019, 31(02), 213-214.
[26]
Liu, J.; Luo, D. Prevention and side effects of the medication treatment for systemic lupus erythematosus. Derma. Bulletin, 2018, 35(03), 328-334+241,
[27]
Yang, Q. Commonly used immunosuppressive agents and their immunosuppressive mechanism. Biol. Teach., 2019, 44(07), 2-3.
[28]
Li, Q.; Zhang, K.; Lao, M.; Lian, S.; Liu, K. Efficacy and safety of methotrexate treatment of systemic lupus erythematosus. Jilin Med. J., 2014, 35(13), 2762-2765.
[29]
Yan, T. Analysis of the research progress of biotechnology drugs in the treatment of systemic lupus erythematosus. Chin. Comm. Doc., 2017, 33(01), 6-7.
[30]
Lourdudoss, C.; Vollenhoven, Rv. Mycophenolate mofetil in the treatment of SLE and systemic vasculitis: experience at a single university center. Lupus, 2014, 23(3), 299-304.
[http://dx.doi.org/10.1177/0961203313519158] [PMID: 24399811]
[31]
Kim, C.; Kim, E. Rational drug design approach of receptor tyrosine kinase type III inhibitors. Curr. Med. Chem., 2019, 26(42), 7623-7640.
[http://dx.doi.org/10.2174/0929867325666180622143548] [PMID: 29932031]
[32]
Olgen, S. Overview on anticancer drug design and development. Curr. Med. Chem., 2018, 25(15), 1704-1719.
[http://dx.doi.org/10.2174/0929867325666171129215610] [PMID: 29189124]
[33]
de Azevedo, W.F. Jr Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr. Med. Chem., 2011, 18(9), 1353-1366.
[http://dx.doi.org/10.2174/092986711795029519] [PMID: 21366529]
[34]
Canduri, F.; Perez, P.C.; Caceres, R.A.; de Azevedo, W.F., Jr Protein kinases as targets for antiparasitic chemotherapy drugs. Curr. Drug Targets, 2007, 8(3), 389-398.
[http://dx.doi.org/10.2174/138945007780058979] [PMID: 17348832]
[35]
Wu, W.; Tao, D.; Zhang, R. Curative efficacy of leflunomide in treatment of systemic lupus erythematosus and effects on serum BAFF MCP-4 IL-8 and IL-10 levels. Hebei Med., 2018, 24(12), 1957-1960.
[36]
Ren, Y.; Luo, Y. A new immunomodulator: leflunomide. Chi. J. Drugs Clin. Rem., 2004, 2004(07), 451-454.
[37]
Zhou, X. The efficacy of mycophenolate mofetil (MMF) combined with prednisone in the treatment of chronic glomerulonephritis. Contemp. Med., 2019, 25(28), 185-186.
[38]
Liu, C.; Ge, X.G.; Hao, Q.X.; Guo, L.P.; Yuan, Q.J.; Huang, L.Q. Investigation report of Tripterygium wilfordii and Tripterygium hypoglaucum. Zhong Yao Cai, 2015, 38(2), 249-253.
[PMID: 26415397]
[39]
Feng, Y.; Li, D.; Li, X. Efficacy of mycophenolate mofetil in the treatment of systemic lupus erythematosus and its influence on immune function. Hainan Med. J., 2018, 29(23), 3280-3282.
[40]
Tang, B. Clinical effect analysis of hormone combined with cyclophosphamide in the treatment of systemic lupus erythematosus nephritis. Sys. Med., 2018, 3(19), 47-49.
[41]
Xie, W.; Zhang, Z. Research status of therapeutic drug monitoring in systemic lupus erythematosus. Zhongguo Lin Chuang Yao Li Xue Za Zhi, 2019, 35(01), 87-90.
[42]
Wu, Y. The effects of SM934 a water-soluble artemisinin derivative, on the treatment of systemic lupus erythematosus; Shanghai Institute of Materia Medica, 2016.
[43]
Gordon, C.; Bassi, R.; Chang, P.; Kao, A.; Jayne, D.; Wofsy, D.; Fleuranceau-Morel, P. Integrated safety profile of atacicept: An analysis of pooled data from the atacicept clinical trial programme. Rheumatol. Adv. Pract., 2019, 3(2)rkz021
[http://dx.doi.org/10.1093/rap/rkz021]] [PMID: 31528843]
[44]
Finck, B.K.; Linsley, P.S.; Wofsy, D. Treatment of murine lupus with CTLA4Ig. Science, 1994, 265(5176), 1225-1227.
[http://dx.doi.org/10.1126/science.7520604] [PMID: 7520604]
[45]
Merrill, J.T.; Burgos-Vargas, R.; Westhovens, R.; Chalmers, A.; D’Cruz, D.; Wallace, D.J.; Bae, S.C.; Sigal, L.; Becker, J.C.; Kelly, S.; Raghupathi, K.; Li, T.; Peng, Y.; Kinaszczuk, M.; Nash, P. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum., 2010, 62(10), 3077-3087.
[http://dx.doi.org/10.1002/art.27601] [PMID: 20533545]
[46]
Wang, L.; Cheng, H.; Li, D.; Li, B.; Lyu, L. Advances in biological treatments for systemic lupus erythematosus. Prog. Pharma. Sci., 2018, 42(10), 744-753.
[47]
Du, Y.; Du, L.; He, Z.; Zhou, J.; Wen, C.; Zhang, Y. Cryptotanshinone ameliorates the pathogenesis of systemic lupus erythematosus by blocking T cell proliferation. Int. Immunopharmacol., 2019, 74105677
[http://dx.doi.org/10.1016/j.intimp.2019.105677] [PMID: 31177018]
[48]
Li, J.; Wei, M.M.; Song, Q.; Guo, X.H.; Shao, L.; Liu, Y. Anti-CD22 epratuzumab for systemic lupus erythematosus: A systematic review and meta-analysis of randomized controlled trials. Exp. Ther. Med., 2019, 18(2), 1500-1506.
[http://dx.doi.org/10.3892/etm.2019.7630] [PMID: 31316634]
[49]
Geh, D.; Gordon, C. Epratuzumab for the treatment of systemic lupus erythematosus. Expert Rev. Clin. Immunol., 2018, 14(4), 245-258.
[http://dx.doi.org/10.1080/1744666X.2018.1450141] [PMID: 29542345]
[50]
Fleischer, V.; Sieber, J.; Fleischer, S.J.; Shock, A.; Heine, G.; Daridon, C.; Dörner, T. Epratuzumab inhibits the production of the proinflammatory cytokines IL-6 and TNF-α, but not the regulatory cytokine IL-10, by B cells from healthy donors and SLE patients. Arthritis Res. Ther., 2015, 17(32), 185.
[http://dx.doi.org/10.1186/s13075-015-0686-2] [PMID: 26183319]
[51]
Clowse, M.E.; Wallace, D.J.; Furie, R.A.; Petri, M.A.; Pike, M.C.; Leszczyński, P.; Neuwelt, C.M.; Hobbs, K.; Keiserman, M.; Duca, L.; Kalunian, K.C.; Galateanu, C.; Bongardt, S.; Stach, C.; Beaudot, C.; Kilgallen, B.; Gordon, C. EMBODY Investigator Group. Efficacy and safety of epratuzumab in moderately to severely active systemic lupus erythematosus: results from two phase III randomized, double-blind, placebo-controlled trials. Arthritis Rheumatol., 2017, 69(2), 362-375.
[http://dx.doi.org/10.1002/art.39856] [PMID: 27598855]
[52]
Dennis, G.J. Belimumab: a BLyS-specific inhibitor for the treatment of systemic lupus erythematosus. Clin. Pharmacol. Ther., 2012, 91(1), 143-149.
[http://dx.doi.org/10.1038/clpt.2011.290] [PMID: 22130121]
[53]
Furie, R.; Petri, M.; Zamani, O.; Cervera, R.; Wallace, D.J.; Tegzová, D.; Sanchez-Guerrero, J.; Schwarting, A.; Merrill, J.T.; Chatham, W.W.; Stohl, W.; Ginzler, E.M.; Hough, D.R.; Zhong, Z.J.; Freimuth, W.; van Vollenhoven, R.F. BLISS-76 Study Group. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum., 2011, 63(12), 3918-3930.
[http://dx.doi.org/10.1002/art.30613] [PMID: 22127708]
[54]
Hsu, H.; Khare, S.D.; Lee, F.; Miner, K.; Hu, Y.L.; Stolina, M.; Hawkins, N.; Chen, Q.; Ho, S.Y.; Min, H.; Xiong, F.; Boone, T.; Zack, D.J. A novel modality of BAFF-specific inhibitor AMG623 peptibody reduces B-cell number and improves outcomes in murine models of autoimmune disease. Clin. Exp. Rheumatol., 2012, 30(2), 197-201.
[PMID: 22325420]
[55]
Merrill, J.T.; Shanahan, W.R.; Scheinberg, M.; Kalunian, K.C.; Wofsy, D.; Martin, R.S. Phase III trial results with blisibimod, a selective inhibitor of B-cell activating factor, in subjects with systemic lupus erythematosus (SLE): results from a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis., 2018, 77(6), 883-889.
[http://dx.doi.org/10.1136/annrheumdis-2018-213032] [PMID: 29563108]
[56]
Ginzler, E.M.; Wax, S.; Rajeswaran, A.; Copt, S.; Hillson, J.; Ramos, E.; Singer, N.G. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res. Ther., 2012, 14(1), R33-R33.
[http://dx.doi.org/10.1186/ar3738] [PMID: 22325903]
[57]
Merrill, J.T.; Wallace, D.J.; Wax, S.; Kao, A.; Fraser, P.A.; Chang, P.; Isenberg, D. ADDRESS II Investigators. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, phase IIb study. Arthritis Rheumatol., 2018, 70(2), 266-276.
[http://dx.doi.org/10.1002/art.40360] [PMID: 29073347]
[58]
Volkart, P.A.; Bitencourt-Ferreira, G.; Souto, A.A.; de Azevedo, W.F. Cyclin-dependent kinase 2 in cellular senescence and cancer. a structural and functional review. Curr. Drug Targets, 2019, 20(7), 716-726.
[http://dx.doi.org/10.2174/1389450120666181204165344] [PMID: 30516105]
[59]
de Azevedo, W.F. Jr. Opinion paper: targeting multiple cyclin-dependent kinases (CDKS): a new strategy for molecular docking studies. Curr. Drug Targets, 2016, 17(1), 2.
[http://dx.doi.org/10.2174/138945011701151217100907] [PMID: 26687602]
[60]
Canduri, F.; Silva, R.G.; dos Santos, D.M.; Palma, M.S.; Basso, L.A.; Santos, D.S.; de Azevedo, W.F. Jr. Structure of human PNP complexed with ligands. Acta Crystallogr. D Biol. Crystallogr., 2005, 61(Pt 7), 856-862.
[http://dx.doi.org/10.1107/S0907444905005421] [PMID: 15983407]
[61]
Canduri, F.; Fadel, V.; Basso, L.A.; Palma, M.S.; Santos, D.S.; de Azevedo, W.F. Jr. New catalytic mechanism for human purine nucleoside phosphorylase. Biochem. Biophys. Res. Commun., 2005, 327(3), 646-649.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.052] [PMID: 15649395]
[62]
Filgueira de Azevedo, W., Jr; Canduri, F.; Simões de Oliveira, J.; Basso, L.A.; Palma, M.S.; Pereira, J.H.; Santos, D.S. Molecular model of shikimate kinase from Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun., 2002, 295(1), 142-148.
[http://dx.doi.org/10.1016/S0006-291X(02)00632-0] [PMID: 12083781]
[63]
Petri, M.; Wallace, D.J.; Spindler, A.; Chindalore, V.; Kalunian, K.; Mysler, E.; Neuwelt, C.M.; Robbie, G.; White, W.I.; Higgs, B.W.; Yao, Y.; Wang, L.; Ethgen, D.; Greth, W. Sifalimumab, a human anti-interferon-α monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum., 2013, 65(4), 1011-1021.
[http://dx.doi.org/10.1002/art.37824] [PMID: 23400715]
[64]
Takeuchi, T.; Tanaka, Y.; Matsumura, R.; Saito, K.; Yoshimura, M.; Amano, K.; Atsumi, T.; Suematsu, E.; Hayashi, N.; Wang, L.; Tummala, R. Safety and tolerability of sifalimumab, an anti-interferon-α monoclonal antibody, in Japanese patients with systemic lupus erythematosus: a multicentre, phase 2, open-label study. Mod. Rheumatol., 2020, 30(1), 93-100.
[http://dx.doi.org/10.1080/14397595.2019.1583832]] [PMID: 30791804]
[65]
Khamashta, M.; Merrill, J.T.; Werth, V.P.; Furie, R.; Kalunian, K.; Illei, G.G.; Drappa, J.; Wang, L.; Greth, W. CD1067 study investigators. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis., 2016, 75(11), 1909-1916.
[http://dx.doi.org/10.1136/annrheumdis-2015-208562] [PMID: 27009916]
[66]
Fautrel, B.; Kirkham, B.; Pope, J.E.; Takeuchi, T.; Gaich, C.; Quebe, A.; Zhu, B.; de la Torre, I.; De Leonardis, F.; Taylor, P.C. Effect of baricitinib and adalimumab in reducing pain and improving function in patients with rheumatoid arthritis in low disease activity: exploratory analyses from RA-BEAM. J. Clin. Med., 2019, 8(9)E1394
[http://dx.doi.org/10.3390/jcm8091394] [PMID: 31492040]
[67]
Wallace, D.J.; Furie, R.A.; Tanaka, Y.; Kalunian, K.C.; Mosca, M.; Petri, M.A.; Dörner, T.; Cardiel, M.H.; Bruce, I.N.; Gomez, E.; Carmack, T.; DeLozier, A.M.; Janes, J.M.; Linnik, M.D.; de Bono, S.; Silk, M.E.; Hoffman, R.W. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet, 2018, 392(10143), 222-231.
[http://dx.doi.org/10.1016/S0140-6736(18)31363-1] [PMID: 30043749]
[68]
Riggs, J.M.; Hanna, R.N.; Rajan, B.; Zerrouki, K.; Karnell, J.L.; Sagar, D.; Vainshtein, I.; Farmer, E.; Rosenthal, K.; Morehouse, C.; de Los Reyes, M.; Schifferli, K.; Liang, M.; Sanjuan, M.A.; Sims, G.P.; Kolbeck, R. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci. Med., 2018, 5(1)e000261
[http://dx.doi.org/10.1136/lupus-2018-000261] [PMID: 29644082]
[69]
Felten, R.; Scher, F.; Sagez, F.; Chasset, F.; Arnaud, L. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date. Drug Des. Devel. Ther., 2019, 13, 1535-1543.
[http://dx.doi.org/10.2147/DDDT.S170969] [PMID: 31190735]
[70]
Furie, R.; Khamashta, M.; Merrill, J.T.; Werth, V.P.; Kalunian, K.; Brohawn, P.; Illei, G.G.; Drappa, J.; Wang, L.; Yoo, S. CD1013 study investigators. anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol., 2017, 69(2), 376-386.
[http://dx.doi.org/10.1002/art.39962] [PMID: 28130918]
[71]
Lovero, R.; Losurdo, G.; Mastromauro, M.; Castellaneta, N.M.; Mongelli, A.; Gentile, A.; Di Leo, A.; Principi, M. A case of severe transaminase elevation following a single ustekinumab dose with remission after drug withdrawal. Curr. Drug Saf., 2018, 13(3), 221-223.
[http://dx.doi.org/10.2174/1574886313666180719165212] [PMID: 30027852]
[72]
van Vollenhoven, R.F.; Hahn, B.H.; Tsokos, G.C.; Wagner, C.L.; Lipsky, P.; Touma, Z.; Werth, V.P.; Gordon, R.M.; Zhou, B.; Hsu, B.; Chevrier, M.; Triebel, M.; Jordan, J.L.; Rose, S. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet, 2018, 392(10155), 1330-1339.
[http://dx.doi.org/10.1016/S0140-6736(18)32167-6] [PMID: 30249507]
[73]
Costedoat-Chalumeau, N.; Houssiau, F.A. Ustekinumab: a promising new drug for SLE? Lancet, 2018, 392(10155), 1284-1286.
[http://dx.doi.org/10.1016/S0140-6736(18)32330-4] [PMID: 30249508]
[74]
Ma, H.; Liu, C.; Shi, B.; Zhang, Z.; Feng, R.; Guo, M.; Lu, L.; Shi, S.; Gao, X.; Chen, W.; Sun, L. Mesenchymal stem cells control complement C5 activation by factor H in lupus nephritis. EBioMedicine, 2018, 32, 21-30.
[http://dx.doi.org/10.1016/j.ebiom.2018.05.034] [PMID: 29885865]
[75]
Wozniacka, A.; Lesiak, A.; Boncela, J.; Smolarczyk, K.; McCauliffe, D.P.; Sysa-Jedrzejowska, A. The influence of antimalarial treatment on IL-1beta, IL-6 and TNF-alpha mRNA expression on UVB-irradiated skin in systemic lupus erythematosus. Br. J. Dermatol., 2008, 159(5), 1124-1130.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08804.x] [PMID: 18764842]
[76]
Li, Y.; Zuo, J.; Yang, Z.; Zhou, W.; Sui, Y.; Wang, J.; Zhang, Y.; Zhou, Y.; Wu, J. Artemisinin (qinghaosu) derivatives, their preparation methods and their use, and pharmaceutical compositions containing the same. US Patent US7910750B2, January 27 2006

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy