Mini-Review Article

靶向放射性标记的肽的胆囊收缩素2受体:现状和未来方向。

卷 27, 期 41, 2020

页: [7112 - 7132] 页: 21

弟呕挨: 10.2174/0929867327666200625143035

价格: $65

Open Access Journals Promotions 2
摘要

在过去的几十年中,已经开发出多种针对胆囊收缩素-2受体(CCK2R)的特异性靶向的放射性标记的肽类似物。基于天然配体Minigastrin(MG)和Cholecystokinin(CCK)的肽探针具有很高的潜力,可用于不同人类肿瘤的分子成像和靶向放射治疗,例如髓样甲状腺癌(MTC)和小细胞肺癌(SCLC)。在表达CCK2R的肿瘤中具有高持续摄取的MG类似物已优选用于开发放射性标记的肽类似物。由于开发的不同放射性肽的高肾脏摄取或低代谢稳定性,已阻止了CCK2R靶向的临床转化。为了克服这些局限性,已经在放射性药物开发中付出了巨大的努力。已经引入了MG的线性肽序列的各种修饰,主要目的是减少肾脏的滞留。此外,通过共注射肽酶抑制剂使放射肽原位稳定以抵抗酶促降解,可以获得更好的肿瘤吸收。致力于稳定C端受体结合序列(Trp-Met-Asp-Phe-NH2)的最新进展导致了新的放射性标记的MG类似物,其肿瘤摄取和肿瘤肾比大大提高。在这篇综述中,涵盖了CCK2R靶向肽探针在放射性药物开发中的所有不同方面,还概述了迄今为止进行的临床研究。放射性标记的MG类似物的最新发展对体内酶降解具有高度的稳定性,有望在不久的将来对CCC2R表达肿瘤患者的临床治疗产生重大影响。

关键词: 胆囊收缩素2受体,分子成像,靶向放射治疗,胃泌素,胆囊收缩素,放射性金属。

« Previous
[1]
van der Meel, R.; Gallagher, W.M.; Oliveira, S.; O’Connor, A.E.; Schiffelers, R.M.; Byrne, A.T. Recent advances in molecular imaging biomarkers in cancer: application of bench to bedside technologies. Drug Discov. Today, 2010, 15(3-4), 102-114.
[http://dx.doi.org/10.1016/j.drudis.2009.12.003] [PMID: 20035896]
[2]
Moody, T.W.; Ramos-Alvarez, I.; Jensen, R.T. Neuropeptide G protein-coupled receptors as oncotargets. Front. Endocrinol. (Lausanne), 2018, 9, 345.
[http://dx.doi.org/10.3389/fendo.2018.00345] [PMID: 30008698]
[3]
Karpuz, M.; Silindir-Gunay, M.; Ozer, A.Y. Current and future approaches for effective cancer imaging and treatment. Cancer Biother. Radiopharm., 2018, 33(2), 39-51.
[http://dx.doi.org/10.1089/cbr.2017.2378] [PMID: 29634415]
[4]
Reubi, J.C.; Waser, B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(5), 781-793.
[http://dx.doi.org/10.1007/s00259-003-1184-3] [PMID: 12707737]
[5]
Fani, M.; Peitl, P.K.; Velikyan, I. Current status of radiopharmaceuticals for the theranostics of neuroendocrine neoplasms. Pharmaceuticals (Basel), 2017, 10(1), 1-22.
[http://dx.doi.org/10.3390/ph10010030] [PMID: 28295000]
[6]
Fani, M.; Braun, F.; Waser, B.; Beetschen, K.; Cescato, R.; Erchegyi, J.; Rivier, J.E.; Weber, W.A.; Maecke, H.R.; Reubi, J.C. Unex-pected sensitivity of sst2 antagonists to N-terminal radiometal modifications. J. Nucl. Med., 2012, 53(9), 1481-1489.
[http://dx.doi.org/10.2967/jnumed.112.102764] [PMID: 22851637]
[7]
Dash, A.; Chakraborty, S.; Pillai, M.R.A.; Knapp, F.F. Jr. Peptide receptor radionuclide therapy: an overview. Cancer Biother. Radiopharm., 2015, 30(2), 47-71.
[http://dx.doi.org/10.1089/cbr.2014.1741] [PMID: 25710506]
[8]
Nicolas, G.P.; Morgenstern, A.; Schottelius, M.; Fani, M. New developments in peptide receptor radionuclide therapy. J. Nucl. Med., 2018, 60(2), 167-171.
[http://dx.doi.org/10.2967/jnumed.118.213496] [PMID: 30573642]
[9]
Krenning, E.P.; Bakker, W.H.; Breeman, W.A.; Koper, J.W.; Kooij, P.P.; Ausema, L.; Lameris, J.S.; Reubi, J.C.; Lamberts, S.W. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet, 1989, 1(8632), 242-244.
[http://dx.doi.org/10.1016/S0140-6736(89)91258-0] [PMID: 2563413]
[10]
Lamberts, S.W.J.; Reubi, J.C.; Krenning, E.P. Validation of somatostatin receptor scintigraphy in the localization of neuroendocrine tumors. Acta Oncol., 1993, 32(2), 167-170.
[http://dx.doi.org/10.3109/02841869309083907] [PMID: 8391830]
[11]
Fani, M.; Maecke, H.R. Radiopharmaceutical development of radiolabelled peptides. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(Suppl. 1), S11-S30.
[http://dx.doi.org/10.1007/s00259-011-2001-z] [PMID: 22388624]
[12]
Turner, J.H. An introduction to the clinical practice of theranostics in oncology. Br. J. Radiol., 2018, 91(1091)20180440
[http://dx.doi.org/10.1259/bjr.20180440] [PMID: 30179054]
[13]
Kjaer, A.; Knigge, U. Use of radioactive substances in diagnosis and treatment of neuroendocrine tumors. Scand. J. Gastroenterol., 2015, 50(6), 740-747.
[http://dx.doi.org/10.3109/00365521.2015.1033454] [PMID: 25959100]
[14]
Gabriel, M.; Decristoforo, C.; Kendler, D.; Dobrozemsky, G.; Heute, D.; Uprimny, C.; Kovacs, P.; Von Guggenberg, E.; Bale, R.; Virgolini, I.J. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med., 2007, 48(4), 508-518.
[http://dx.doi.org/10.2967/jnumed.106.035667] [PMID: 17401086]
[15]
Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; Bushnell, D.; O’Dorisio, T.M.; Baum, R.P.; Kulkarni, H.R.; Caplin, M.; Lebtahi, R.; Hobday, T.; Delpassand, E.; Van Cutsem, E.; Benson, A.; Srirajaskanthan, R.; Pavel, M.; Mora, J.; Berlin, J.; Grande, E.; Reed, N.; Seregni, E.; Öberg, K.; Lopera Sierra, M.; Santoro, P.; Thevenet, T.; Erion, J.L.; Ruszniewski, P.; Kwekkeboom, D.; Krenning, E. NETTER-1 trial investigators. Phase 3 trial of 177Lu-DOTAPPtate for midgut neuroendocrine tumors. N. Engl. J. Med., 2017, 376(2), 125-135.
[http://dx.doi.org/10.1056/NEJMoa1607427] [PMID: 28076709]
[16]
Reubi, J.C. Targeting CCK receptors in human cancers. Curr. Top. Med. Chem., 2007, 7(12), 1239-1242.
[http://dx.doi.org/10.2174/156802607780960546] [PMID: 17584145]
[17]
Sanchez, C.; Escrieut, C.; Clerc, P.; Gigoux, V.; Waser, B.; Reubi, J.C.; Fourmy, D. Characterization of a novel five-transmembrane domain cholecystokinin-2 receptor splice variant identified in human tumors. Mol. Cell. Endocrinol., 2012, 349(2), 170-179.
[http://dx.doi.org/10.1016/j.mce.2011.10.010] [PMID: 22040601]
[18]
Reubi, J.C.; Schaer, J.C.; Waser, B. Cholecystokinin (CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res., 1997, 57(7), 1377-1386.
[PMID: 9102227]
[19]
Liu, H.; Wang, X.; Yang, R.; Zeng, W.; Peng, D.; Li, J.; Wang, H. Recent development of nuclear molecular imaging in thyroid cancer. BioMed Res. Int., 2018, 20182149532
[http://dx.doi.org/10.1155/2018/2149532] [PMID: 29951528]
[20]
Ganeshan, D.; Paulson, E.; Duran, C.; Cabanillas, M.E.; Busaidy, N.L.; Charnsangavej, C. Current update on medullary thyroid carci-noma. AJR Am. J. Roentgenol., 2013, 201(6), W867-W876.
[http://dx.doi.org/10.2214/AJR.12.10370] [PMID: 24261394]
[21]
Viola, D.; Elisei, R. Management of medullary thyroid cancer. Endocrinol. Metab. Clin. North Am., 2019, 48(1), 285-301.
[http://dx.doi.org/10.1016/j.ecl.2018.11.006] [PMID: 30717909]
[22]
Machens, A.; Dralle, H. Biomarker-based risk stratification for previously untreated medullary thyroid cancer. J. Clin. Endocrinol. Metab., 2010, 95(6), 2655-2663.
[http://dx.doi.org/10.1210/jc.2009-2368] [PMID: 20339026]
[23]
Maia, A.L.; Wajner, S.M.; Vargas, C.V. Advances and controversies in the management of medullary thyroid carcinoma. Curr. Opin. Oncol., 2017, 29(1), 25-32.
[http://dx.doi.org/10.1097/CCO.0000000000000340] [PMID: 27792051]
[24]
Treglia, G.; Castaldi, P.; Villani, M.F.; Perotti, G.; de Waure, C.; Filice, A.; Ambrosini, V.; Cremonini, N.; Santimaria, M.; Versari, A.; Fanti, S.; Giordano, A.; Rufini, V. Comparison of 18F-DOPA, 18F-FDG and 68Ga-somatostatin analogue PET/CT in patients with recurrent medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(4), 569-580.
[http://dx.doi.org/10.1007/s00259-011-2031-6] [PMID: 22223169]
[25]
Magnan, R.; Masri, B.; Escrieut, C.; Foucaud, M.; Cordelier, P.; Fourmy, D. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists. J. Biol. Chem., 2011, 286(8), 6707-6719.
[http://dx.doi.org/10.1074/jbc.M110.196048] [PMID: 21156802]
[26]
Rehfeld, J.F.; Friis-Hansen, L.; Goetze, J.P.; Hansen, T.V.O. The biology of cholecystokinin and gastrin peptides. Curr. Top. Med. Chem., 2007, 7(12), 1154-1165.
[http://dx.doi.org/10.2174/156802607780960483] [PMID: 17584137]
[27]
Smeets, R.L.; Fouraux, M.A.; van Emst-de Vries, S.E.; De Pont, J.J.; Willems, P.H. Protein kinase C-mediated inhibition of trans-membrane signalling through CCK(A) and CCK(B) receptors. Br. J. Pharmacol., 1998, 123(6), 1189-1197.
[http://dx.doi.org/10.1038/sj.bjp.0701713] [PMID: 9559904]
[28]
Dufresne, M.; Seva, C.; Fourmy, D. Cholecystokinin and gastrin receptors. Physiol. Rev., 2006, 86(3), 805-847.
[http://dx.doi.org/10.1152/physrev.00014.2005] [PMID: 16816139]
[29]
Noble, F.; Wank, S.A.; Crawley, J.N.; Bradwejn, J.; Seroogy, K.B.; Hamon, M.; Roques, B.P. International Union of Pharmacology. XXI. Structure, distribution and functions of cholecystokinin receptors. Pharmacol. Rev., 1999, 51(4), 745-781.
[PMID: 10581329]
[30]
Fani, M.; Maecke, H.R.; Okarvi, S.M. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics, 2012, 2(5), 481-501.
[http://dx.doi.org/10.7150/thno.4024] [PMID: 22737187]
[31]
Roosenburg, S.; Laverman, P.; van Delft, F.L.; Boerman, O.C. Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors. Amino Acids, 2011, 41(5), 1049-1058.
[http://dx.doi.org/10.1007/s00726-010-0501-y] [PMID: 20198494]
[32]
Kaloudi, A.; Nock, B.A.; Krenning, E.P.; Maina, T.; De Jong, M. Radiolabeled gastrin/CCK analogs in tumor diagnosis: towards higher stability and improved tumor targeting. Q. J. Nucl. Med. Mol. Imaging, 2015, 59(3), 287-302.
[PMID: 26158215]
[33]
Aloj, L.; Panico, M.R.; Caracó, C.; Zannetti, A.; Del Vecchio, S.; Di Nuzzo, C.; Arra, C.; Morelli, G.; Tesauro, D.; De Luca, S.; Pedone, C.; Salvatore, M. Radiolabeling approaches for cholecystokinin B receptor imaging. Biopolymers, 2002, 66(6), 370-380.
[http://dx.doi.org/10.1002/bip.10347] [PMID: 12658724]
[34]
Behr, T.M.; Jenner, N.; Radetzky, S.; Béhe, M.; Gratz, S.; Yücekent, S.; Raue, F.; Becker, W. Targeting of cholecystokinin-B/gastrin receptors in vivo: preclinical and initial clinical evaluation of the diagnostic and therapeutic potential of radiolabelled gastrin. Eur. J. Nucl. Med., 1998, 25(4), 424-430.
[http://dx.doi.org/10.1007/s002590050241] [PMID: 9553173]
[35]
Behr, T.M.; Béhé, M.; Angerstein, C.; Gratz, S.; Mach, R.; Hagemann, L.; Jenner, N.; Stiehler, M.; Frank-Raue, K.; Raue, F.; Becker, W. Cholecystokinin-B/gastrin receptor binding peptides: preclinical development and evaluation of their diagnostic and therapeutic potential. Clin. Cancer Res., 1999, 5(Suppl. 10), 3124s-3138s.
[PMID: 10541353]
[36]
von Guggenberg, E.; Behe, M.; Behr, T.M.; Saurer, M.; Seppi, T.; Decristoforo, C. 99mTc-labeling and in vitro and in vivo evaluation of HYNIC- and (Nalpha-His)acetic acid-modified [D-Glu1]-minigastrin. Bioconjug. Chem., 2004, 15(4), 864-871.
[http://dx.doi.org/10.1021/bc0300807] [PMID: 15264875]
[37]
de Jong, M.; Bakker, W.H.; Bernard, B.F.; Valkema, R.; Kwekkeboom, D.J.; Reubi, J.C.; Srinivasan, A.; Schmidt, M.; Krenning, E.P. Preclinical and initial clinical evaluation of 111In-labeled nonsulfated CCK8 analog: a peptide for CCK-B receptor-targeted scintigraphy and radionuclide therapy. J. Nucl. Med., 1999, 40(12), 2081-2087.
[PMID: 10616889]
[38]
Laverman, P.; Roosenburg, S.; Gotthardt, M.; Park, J.; Oyen, W.J.G.; de Jong, M.; Hellmich, M.R.; Rutjes, F.P.J.T.; van Delft, F.L.; Boerman, O.C. Targeting of a CCK(2) receptor splice variant with (111)In-labelled cholecystokinin-8 (CCK8) and (111)In-labelled minigastrin. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(2), 386-392.
[http://dx.doi.org/10.1007/s00259-007-0604-1] [PMID: 17934729]
[39]
Laverman, P.; Béhé, M.; Oyen, W.J.G.; Willems, P.H.G.M.; Corstens, F.H.M.; Behr, T.M.; Boerman, O.C. Two technetium-99m-labeled cholecystokinin-8 (CCK8) peptides for scintigraphic imaging of CCK receptors. Bioconjug. Chem., 2004, 15(3), 561-568.
[http://dx.doi.org/10.1021/bc034208w] [PMID: 15149184]
[40]
Aloj, L.; Caracò, C.; Panico, M.; Zannetti, A.; Del Vecchio, S.; Tesauro, D.; De Luca, S.; Arra, C.; Pedone, C.; Morelli, G.; Salvatore, M. In vitro and in vivo evaluation of 111In-DTPAGlu-G-CCK8 for cholecystokinin-B receptor imaging. J. Nucl. Med., 2004, 45(3), 485-494.
[PMID: 15001692]
[41]
Aloj, L.; Aurilio, M.; Rinaldi, V.; D’ambrosio, L.; Tesauro, D.; Peitl, P.K.; Maina, T.; Mansi, R.; von Guggenberg, E.; Joosten, L.; Sosabowski, J.K.; Breeman, W.A.P.; De Blois, E.; Koelewijn, S.; Melis, M.; Waser, B.; Beetschen, K.; Reubi, J.C.; de Jong, M. Comparison of the binding and internalization properties of 12 DOTA-coupled and 111In-labelled CCK2/gastrin receptor binding pep-tides: a collaborative project under COST Action BM0607. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(8), 1417-1425.
[http://dx.doi.org/10.1007/s00259-011-1816-y] [PMID: 21523391]
[42]
Sauter, A.W.; Mansi, R.; Hassiepen, U.; Muller, L.; Panigada, T.; Wiehr, S.; Wild, A-M.; Geistlich, S.; Béhé, M.; Rottenburger, C.; Wild, D.; Fani, M. Targeting of the cholecystokinin-2 receptor with the minigastrin analog 177Lu-DOTAPP-PP-F11N: does the use of protease inhibitors further improve in vivo distribution? J. Nucl. Med., 2019, 60(3), 393-399.
[http://dx.doi.org/10.2967/jnumed.118.207845] [PMID: 30002107]
[43]
Behr, T.M.; Jenner, N.; Béhé, M.; Angerstein, C.; Gratz, S.; Raue, F.; Becker, W. Radiolabeled peptides for targeting cholecystokinin-B/gastrin receptor-expressing tumors. J. Nucl. Med., 1999, 40(6), 1029-1044.
[PMID: 10452322]
[44]
Béhé, M.; Becker, W.; Gotthardt, M.; Angerstein, C.; Behr, T.M. Improved kinetic stability of DTPA- dGlu as compared with con-ventional monofunctional DTPA in chelating indium and yttrium: preclinical and initial clinical evaluation of radiometal labelled minigastrin derivatives. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(8), 1140-1146.
[http://dx.doi.org/10.1007/s00259-003-1178-1] [PMID: 12768330]
[45]
Béhé, M.; Kluge, G.; Becker, W.; Gotthardt, M.; Behr, T.M. Use of polyglutamic acids to reduce uptake of radiometal-labeled minigastrin in the kidneys. J. Nucl. Med., 2005, 46(6), 1012-1015.
[PMID: 15937313]
[46]
Gotthardt, M.; van Eerd-Vismale, J.; Oyen, W.J.; de Jong, M.; Zhang, H.; Rolleman, E.; Maecke, H.R.; Béhé, M.; Boerman, O. Indi-cation for different mechanisms of kidney uptake of radiolabeled peptides. J. Nucl. Med., 2007, 48(4), 596-601.
[http://dx.doi.org/10.2967/jnumed.106.036020] [PMID: 17401097]
[47]
Good, S.; Walter, M.A.; Waser, B.; Wang, X.; Müller-Brand, J.; Béhé, M.P.; Reubi, J.C.; Maecke, H.R. Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(10), 1868-1877.
[http://dx.doi.org/10.1007/s00259-008-0803-4] [PMID: 18509636]
[48]
Aloj, L.; Panico, M.; Caraco, C.; Del Vecchio, S.; Arra, C.; Affuso, A.; Accardo, A.; Mansi, R.; Tesauro, D.; De Luca, S.; Pedone, C.; Visentin, R.; Mazzi, U.; Morelli, G.; Salvatore, M. In vitro and in vivo characterization of Indium-111 and Technetium-99m labeled CCK-8 derivatives for CCK-B receptor imaging. Cancer Biother. Radiopharm., 2004, 19(1), 93-98.
[http://dx.doi.org/10.1089/108497804773391739] [PMID: 15068617]
[49]
von Guggenberg, E.; Dietrich, H.; Skvortsova, I.; Gabriel, M.; Virgolini, I.J.; Decristoforo, C. 99mTc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(8), 1209-1218.
[http://dx.doi.org/10.1007/s00259-006-0348-3] [PMID: 17308920]
[50]
D’Andrea, L.D.; Testa, I.; Panico, M.; Di Stasi, R.; Caracò, C.; Tarallo, L.; Arra, C.; Barbieri, A.; Romanelli, A.; Aloj, L. In vivo and in vitro characterization of CCK8 bearing a histidine-based chelator labeled with 99mTc-tricarbonyl. Biopolymers, 2008, 90(5), 707-712.
[http://dx.doi.org/10.1002/bip.21041] [PMID: 18615495]
[51]
Kaloudi, A.; Nock, B.A.; Lymperis, E.; Krenning, E.P.; de Jong, M.; Maina, T. (99m)Tc-labeled gastrins of varying peptide chain length: Distinct impact of NEP/ACE-inhibition on stability and tumor uptake in mice. Nucl. Med. Biol., 2016, 43(6), 347-354.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.03.003] [PMID: 27260775]
[52]
Nock, B.A.; Maina, T.; Béhé, M.; Nikolopoulou, A.; Gotthardt, M.; Schmitt, J.S.; Behr, T.M.; Mäcke, H.R. CCK-2/gastrin receptor-targeted tumor imaging with (99m)Tc-labeled minigastrin analogs. J. Nucl. Med., 2005, 46(10), 1727-1736.
[PMID: 16204724]
[53]
Sosabowski, J.K.; Matzow, T.; Foster, J.M.; Finucane, C.; Ellison, D.; Watson, S.A.; Mather, S.J. Targeting of CCK-2 receptor-expressing tumors using a radiolabeled divalent gastrin peptide. J. Nucl. Med., 2009, 50(12), 2082-2089.
[http://dx.doi.org/10.2967/jnumed.109.064808] [PMID: 19910426]
[54]
Summer, D.; Kroess, A.; Woerndle, R.; Rangger, C.; Klingler, M.; Haas, H.; Kremser, L.; Lindner, H.H.; von Guggenberg, E.; De-cristoforo, C. Multimerization results in formation of re-bindable metabolites: a proof of concept study with FSC-based minigastrin imaging probes targeting CCK2R expression. PLoS One, 2018, 13(7)e0201224
[http://dx.doi.org/10.1371/journal.pone.0201224] [PMID: 30059514]
[55]
Summer, D.; Rangger, C.; Klingler, M.; Laverman, P.; Franssen, G.M.; Lechner, B.E.; Orasch, T.; Haas, H.; von Guggenberg, E.; Decristoforo, C. Exploiting the concept of multivalency with 68Ga- and 89Zr-labelled fusarinine C-minigastrin bioconjugates for targeting CCK2R expression. Contrast Media Mol. Imaging, 2018, 20183171794
[http://dx.doi.org/10.1155/2018/3171794] [PMID: 29849512]
[56]
von Guggenberg, E.; Sallegger, W.; Helbok, A.; Ocak, M.; King, R.; Mather, S.J.; Decristoforo, C. Cyclic minigastrin analogues for gastrin receptor scintigraphy with technetium-99m: preclinical evaluation. J. Med. Chem., 2009, 52(15), 4786-4793.
[http://dx.doi.org/10.1021/jm900400w] [PMID: 19591486]
[57]
von Guggenberg, E.; Rangger, C.; Sosabowski, J.; Laverman, P.; Reubi, J.C.; Virgolini, I.J.; Decristoforo, C. Preclinical evaluation of radiolabeled DOTA-derivatized cyclic minigastrin analogs for targeting cholecystokinin receptor expressing malignancies. Mol. Imaging Biol., 2012, 14(3), 366-375.
[http://dx.doi.org/10.1007/s11307-011-0506-2] [PMID: 21732165]
[58]
Kolenc-Peitl, P.; Mansi, R.; Tamma, M.; Gmeiner-Stopar, T.; Sollner-Dolenc, M.; Waser, B.; Baum, R.P.; Reubi, J.C.; Maecke, H.R. Highly improved metabolic stability and pharmacokinetics of indium-111-DOTA-gastrin conjugates for targeting of the gastrin receptor. J. Med. Chem., 2011, 54(8), 2602-2609.
[http://dx.doi.org/10.1021/jm101279a] [PMID: 21456601]
[59]
Ocak, M.; Helbok, A.; Rangger, C.; Peitl, P.K.; Nock, B.A.; Morelli, G.; Eek, A.; Sosabowski, J.K.; Breeman, W.A.P.; Reubi, J.C.; Decristoforo, C. Comparison of biological stability and metabolism of CCK2 receptor targeting peptides, a collaborative project under COST BM0607. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(8), 1426-1435.
[http://dx.doi.org/10.1007/s00259-011-1818-9] [PMID: 21528387]
[60]
Laverman, P.; Joosten, L.; Eek, A.; Roosenburg, S.; Peitl, P.K.; Maina, T.; Mäcke, H.; Aloj, L.; von Guggenberg, E.; Sosabowski, J.K.; de Jong, M.; Reubi, J.C.; Oyen, W.J.G.; Boerman, O.C. Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(8), 1410-1416.
[http://dx.doi.org/10.1007/s00259-011-1806-0] [PMID: 21461732]
[61]
Mather, S.J.; McKenzie, A.J.; Sosabowski, J.K.; Morris, T.M.; Ellison, D.; Watson, S.A. Selection of radiolabeled gastrin analogs for peptide receptor-targeted radionuclide therapy. J. Nucl. Med., 2007, 48(4), 615-622.
[http://dx.doi.org/10.2967/jnumed.106.037085] [PMID: 17401100]
[62]
Roosenburg, S.; Laverman, P.; Joosten, L.; Eek, A.; Oyen, W.J.G.; de Jong, M.; Rutjes, F.P.J.T.; van Delft, F.L.; Boerman, O.C. Sta-bilized (111)in-labeled sCCK8 analogues for targeting CCK2-receptor positive tumors: synthesis and evaluation. Bioconjug. Chem., 2010, 21(4), 663-670.
[http://dx.doi.org/10.1021/bc900465y] [PMID: 20302291]
[63]
Roosenburg, S.; Laverman, P.; Joosten, L.; Eek, A.; Rutjes, F.P.J.T.; van Delft, F.L.; Boerman, O.C. In vitro and in vivo characterization of three 68Ga- and 111In-labeled peptides for cholecystokinin receptor imaging. Mol. Imaging, 2012, 11(5), 401-407.
[http://dx.doi.org/10.2310/7290.2012.00001] [PMID: 22954184]
[64]
Grob, N.M.; Behe, M.; von Guggenberg, E.; Schibli, R.; Mindt, T.L. Methoxinine - an alternative stable amino acid substitute for oxidation-sensitive methionine in radiolabelled peptide conjugates. J. Pept. Sci., 2017, 23(1), 38-44.
[http://dx.doi.org/10.1002/psc.2948] [PMID: 28054429]
[65]
Helbok, A.; Decristoforo, C.; Behe, M.; Rangger, C.; Guggenberg, E. Preclinical evaluation of In-111 and Ga-68 labelled minigastrin analogues for CCK-2 receptor imaging. Curr. Radiopharm., 2009, 2(4), 304-310.
[http://dx.doi.org/10.2174/1874471010902040304]
[66]
Pawlak, D.; Rangger, C.; Kolenc Peitl, P.; Garnuszek, P.; Maurin, M.; Ihli, L.; Kroselj, M.; Maina, T.; Maecke, H.; Erba, P.; Kremser, L.; Hubalewska-Dydejczyk, A.; Mikołajczak, R.; Decristoforo, C. From preclinical development to clinical application: kit formulation for radiolabelling the minigastrin analogue CP04 with In-111 for a first-in-human clinical trial. Eur. J. Pharm. Sci., 2016, 85, 1-9.
[http://dx.doi.org/10.1016/j.ejps.2016.01.023] [PMID: 26826279]
[67]
Maina, T.; Konijnenberg, M.W. KolencPeitl, P.; Garnuszek, P.; Nock, B.A.; Kaloudi, A.; Kroselj, M.; Zaletel, K.; Maecke, H.; Mansi, R.; Erba, P.; von Guggenberg, E.; Hubalewska-Dydejczyk, A.; Mikolajczak, R.; Decristoforo, C. Preclinical pharmacokinetics, bi-odistribution, radiation dosimetry and toxicity studies required for regulatory approval of a phase I clinical trial with (111)In-CP04 in medullary thyroid carcinoma patients. Eur. J. Pharm. Sci., 2016, 91, 236-242.
[http://dx.doi.org/10.1016/j.ejps.2016.05.011] [PMID: 27185299]
[68]
Kolenc Peitl, P.; Tamma, M.; Kroselj, M.; Braun, F.; Waser, B.; Reubi, J.C.; Sollner Dolenc, M.; Maecke, H.R.; Mansi, R. Stereo-chemistry of amino acid spacers determines the pharmacokinetics of (111)In-DOTA-minigastrin analogues for targeting the CCK2/gastrin receptor. Bioconjug. Chem., 2015, 26(6), 1113-1119.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00187] [PMID: 25971921]
[69]
Konijnenberg, M.W.; Breeman, W.A.P.; de Blois, E.; Chan, H.S.; Boerman, O.C.; Laverman, P.; Kolenc-Peitl, P.; Melis, M.; de Jong, M. Therapeutic application of CCK2R-targeting PP-F11: influence of particle range, activity and peptide amount. EJNMMI Res., 2014, 4(1), 47.
[http://dx.doi.org/10.1186/s13550-014-0047-1] [PMID: 26116111]
[70]
Rangger, C.; Klingler, M.; Balogh, L.; Pöstényi, Z.; Polyak, A.; Pawlak, D.; Mikołajczak, R.; von Guggenberg, E. 177Lu labeled cyclic minigastrin analogues with therapeutic activity in CCK2R expressing tumors: preclinical evaluation of a kit formulation. Mol. Pharm., 2017, 14(9), 3045-3058.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00241] [PMID: 28728415]
[71]
Melis, M.; Vegt, E.; Konijnenberg, M.W.; de Visser, M.; Bijster, M.; Vermeij, M.; Krenning, E.P.; Boerman, O.C.; de Jong, M. Ne-phrotoxicity in mice after repeated imaging using 111In-labeled peptides. J. Nucl. Med., 2010, 51(6), 973-977.
[http://dx.doi.org/10.2967/jnumed.109.074310] [PMID: 20484435]
[72]
Roosenburg, S.; Laverman, P.; Joosten, L.; Cooper, M.S.; Kolenc-Peitl, P.K.; Foster, J.M.; Hudson, C.; Leyton, J.; Burnet, J.; Oyen, W.J.G.; Blower, P.J.; Mather, S.J.; Boerman, O.C.; Sosabowski, J.K. PET and SPECT imaging of a radiolabeled minigastrin analogue conjugated with DOTA, NOTA, and NODAGA and labeled with (64)Cu, (68)Ga, and (111). Mol. Pharm., 2014, 11(11), 3930-3937.
[http://dx.doi.org/10.1021/mp500283k] [PMID: 24992368]
[73]
Maurin, M.; Garnuszek, P.; Baran, P.; Pawlak, D.; Mikołajczak, R. The radiometal makes a difference. Synthesis and preliminary characterisation of DOTA-minigastrin analogue complexes with Ga, Lu and Y. Nucl. Med. Rev. Cent. East. Eur., 2015, 18(2), 51-55.
[http://dx.doi.org/10.5603/NMR.2015.0014] [PMID: 26315862]
[74]
Breeman, W.A.P.; Fröberg, A.C.; de Blois, E.; van Gameren, A.; Melis, M.; de Jong, M.; Maina, T.; Nock, B.A.; Erion, J.L.; Mäcke, H.R.; Krenning, E.P. Optimised labeling, preclinical and initial clinical aspects of CCK-2 receptor-targeting with 3 radiolabeled peptides. Nucl. Med. Biol., 2008, 35(8), 839-849.
[http://dx.doi.org/10.1016/j.nucmedbio.2008.09.006] [PMID: 19026945]
[75]
Behr, T.M.; Béhé, M.; Becker, W. Diagnostic applications of radiolabeled peptides in nuclear endocrinology. Q. J. Nucl. Med., 1999, 43(3), 268-280.
[PMID: 10568142]
[76]
Kwekkeboom, D.J.; Bakker, W.H.; Kooij, P.P.M.; Erion, J.; Srinivasan, A.; de Jong, M.; Reubi, J.C.; Krenning, E.P. Cholecystokinin receptor imaging using an octapeptide DTPA-CCK analogue in patients with medullary thyroid carcinoma. Eur. J. Nucl. Med., 2000, 27(9), 1312-1317.
[http://dx.doi.org/10.1007/s002590000296] [PMID: 11007512]
[77]
Béhé, M.; Behr, T.M. Cholecystokinin-B (CCK-B)/gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing malignancies. Biopolymers, 2002, 66(6), 399-418.
[http://dx.doi.org/10.1002/bip.10356] [PMID: 12658727]
[78]
Behr, T.M.; Béhé, M.P. Cholecystokinin-B/Gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin. Nucl. Med., 2002, 32(2), 97-109.
[http://dx.doi.org/10.1053/snuc.2002.31028] [PMID: 11965605]
[79]
Gotthardt, M.; Béhé, M.P.; Beuter, D.; Battmann, A.; Bauhofer, A.; Schurrat, T.; Schipper, M.; Pollum, H.; Oyen, W.J.G.; Behr, T.M. Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(11), 1273-1279.
[http://dx.doi.org/10.1007/s00259-006-0157-8] [PMID: 16832634]
[80]
Gotthardt, M.; Béhé, M.P.; Grass, J.; Bauhofer, A.; Rinke, A.; Schipper, M.L.; Kalinowski, M.; Arnold, R.; Oyen, W.J.G.; Behr, T.M. Added value of gastrin receptor scintigraphy in comparison to somatostatin receptor scintigraphy in patients with carcinoids and other neuroendocrine tumours. Endocr. Relat. Cancer, 2006, 13(4), 1203-1211.
[http://dx.doi.org/10.1677/erc.1.01245] [PMID: 17158765]
[81]
Behr, T.; Behe, M.; Gotthardt, M.; Angerstein, C.; Heufelder, C.; Becker, W. Cholecystokinin(CCK(-B)/Gastrin-Receptor bining peptides for diagnosis and therapy of metastatic medullary thyroid cancer. Eur. J. Nucl. Med., 2001, 28(8), 1023.
[82]
Fröberg, A.C.; de Jong, M.; Nock, B.A.; Breeman, W.A.P.; Erion, J.L.; Maina, T.; Verdijsseldonck, M.; de Herder, W.W.; van der Lugt, A.; Kooij, P.P.M.; Krenning, E.P. Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in me-dullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(8), 1265-1272.
[http://dx.doi.org/10.1007/s00259-009-1098-9] [PMID: 19266197]
[83]
Kosowicz, J.; Czepczyński, R.; Ziemnicka, K.; Gryczyńska, M.; Sowiński, J. The use of a new analogue DGlu-Octagastrin in scintig-raphy of medullary thyroid carcinoma Endokrynol. Pol., 2006, 57(4), 427-430.
[PMID: 17006848]
[84]
Kosowicz, J.; Mikołajczak, R.; Czepczyński, R.; Ziemnicka, K.; Gryczyńska, M.; Sowiński, J. Two peptide receptor ligands (99m)Tc-EDDA/HYNIC-Tyr(3)-octreotide and (99m)Tc-EDDA/HYNIC-(D)Glu-octagastrin for scintigraphy of medullary thyroid carcinoma. Cancer Biother. Radiopharm., 2007, 22(5), 613-628.
[http://dx.doi.org/10.1089/cbr.2006.368] [PMID: 17979564]
[85]
Kunikowska, J.; Ziemnicka, K.; Pawlak, D.; Ruchała, M.; Kolasa, A.; Janicka-Jedyńska, M.; Woźniak, A.; Mikołajczak, R.; Królicki, L. Medullary thyroid carcinoma - PET/CT imaging with 68Ga-labelled gastrin and somatostatin analogues. Endokrynol. Pol., 2016, 67(1), 68-71.
[http://dx.doi.org/10.5603/EP.2016.0010] [PMID: 26884118]
[86]
Hubalewska-Dydejczyk, A.; Mikolajczak, R.; Decristoforo, C.; Kolenc-Peitl, P.; Erba, P.A.; Zaletel, K.; Maecke, H.; Maina, T.; Konijnenberg, M.; Garnuszek, P.; Trofimiuk-Müldner, M.; Przybylik-Mazurek, E.; Virgolini, I.; de Jong, M.; Froberg, A.C.; Rangger, C.; Goebel, G.; Scarpa, L.; Glowa, B.; Skórkiewicz, K.; Lezaic, L.; Solnica, B.; Fedak, D.; Gawęda, P.; Sowa-Staszczak, A.; Nock, B.A.; Bergant, D.; Rep, S.; Lenda-Tracz, V.; Phase, I. Clinical trial using a novel CCK2 receptor-localizing radiolabelled peptide probe for personalized diagnosis and therapy of patients with progressive or metastatic medullary thyroid carcinoma - final results. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(Suppl. 1), S339.
[87]
Rottenburger, C.; Nicolas, G.P.; McDougall, L.; Kaul, F.; Cachovan, M.; Vija, A.H.; Schibli, R.; Geistlich, S.; Schumann, A.; Rau, T.; Glatz, K.; Behe, M.; Christ, E.R.; Wild, D. Cholecystokinin-2 receptor agonist 177Lu-PP-F11N for radionuclide therapy of medullary thyroid carcinoma - results of the lumed phase 0a study. J. Nucl. Med., 2019.
[http://dx.doi.org/10.2967/jnumed.119.233031 ] [PMID: 31519804]
[88]
Erba, P.A.; Maecke, H.; Mikolajczak, R.; Decristoforo, C.; Zaletel, K.; Maina-Nock, T.; Peitl, P.K.; Garnuszek, P.; Froberg, A.; Goebel, G.; de Jong, M.; Jabrocka-Hybel, A.; Konijnenberg, M.; Virgolini, I.; Nock, B.; Lenda-Tracz, W.; Pawlak, D.; Rangger, C.; Trofimiuk-Müldner, M.; Sowa-Staszczak, A.; Tomaszuk, M.; von Guggenberg, E.; Scarpa, L.; Hubalewska-Dydejczyk, A. A novel CCK2/gastrin receptor-localizing radiolabeled peptide probe for personalized diagnosis and therapy of patients with progressive or metastatic medullary thyroid carcinoma: a multicenter phase I GRAN-T-MTC study. Polish Arch. Intern. Med., 2018, 128(12), 791-795.
[http://dx.doi.org/10.20452/pamw.4387] [PMID: 30516761]
[89]
Bozkurt, M.F.; Virgolini, I.; Balogova, S.; Beheshti, M.; Rubello, D.; Decristoforo, C.; Ambrosini, V.; Kjaer, A.; Delgado-Bolton, R.; Kunikowska, J.; Oyen, W.J.G.; Chiti, A.; Giammarile, F.; Sundin, A.; Fanti, S. Guideline for PET/CT imaging of neuroendocrine ne-oplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(9), 1588-1601.
[http://dx.doi.org/10.1007/s00259-017-3728-y] [PMID: 28547177]
[90]
Wild, D.; Fani, M.; Fischer, R.; Del Pozzo, L.; Kaul, F.; Krebs, S.; Fischer, R.; Rivier, J.E.F.; Reubi, J.C.; Maecke, H.R.; Weber, W.A. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J. Nucl. Med., 2014, 55(8), 1248-1252.
[http://dx.doi.org/10.2967/jnumed.114.138834] [PMID: 24963127]
[91]
Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev., 2003, 24(4), 389-427.
[http://dx.doi.org/10.1210/er.2002-0007] [PMID: 12920149]
[92]
Pauwels, E.; Cleeren, F.; Bormans, G.; Deroose, C.M. Somatostatin receptor PET ligands - the next generation for clinical practice. Am. J. Nucl. Med. Mol. Imaging, 2018, 8(5), 311-331.
[PMID: 30510849]
[93]
Bison, S.M.; Konijnenberg, M.W.; Melis, M.; Pool, S.E.; Bernsen, M.R.; Teunissen, J.J.M.; Kwekkeboom, D.J.; de Jong, M. Peptide receptor radionuclide therapy using radiolabeled somatostatin analogs: focus on future developments. Clin. Transl. Imaging, 2014, 2(1), 55-66.
[http://dx.doi.org/10.1007/s40336-014-0054-2] [PMID: 24765618]
[94]
Fani, M.; Nicolas, G.P.; Wild, D. Somatostatin receptor antagonists for imaging and therapy. J. Nucl. Med., 2017, 58(Suppl. 2), 61S-66S.
[http://dx.doi.org/10.2967/jnumed.116.186783] [PMID: 28864614]
[95]
Akgün, E.; Körner, M.; Gao, F.; Harikumar, K.G.; Waser, B.; Reubi, J.C.; Portoghese, P.S.; Miller, L.J. Synthesis and in vitro charac-terization of radioiodinatable benzodiazepines selective for type 1 and type 2 cholecystokinin receptors. J. Med. Chem., 2009, 52(7), 2138-2147.
[http://dx.doi.org/10.1021/jm801439x] [PMID: 19271701]
[96]
Wayua, C.; Low, P.S. Evaluation of a nonpeptidic ligand for imaging of cholecystokinin 2 receptor-expressing cancers. J. Nucl. Med., 2015, 56(1), 113-119.
[http://dx.doi.org/10.2967/jnumed.114.144998] [PMID: 25500824]
[97]
Nock, B.A.; Maina, T.; Krenning, E.P.; de Jong, M. “To serve and protect”: enzyme inhibitors as radiopeptide escorts promote tumor targeting. J. Nucl. Med., 2014, 55(1), 121-127.
[http://dx.doi.org/10.2967/jnumed.113.129411] [PMID: 24287321]
[98]
Dubreuil, P.; Fulcrand, P.; Rodriguez, M.; Fulcrand, H.; Laur, J.; Martinez, J. Novel activity of angiotensin-converting enzyme. Hy-drolysis of cholecystokinin and gastrin analogues with release of the amidated C-terminal dipeptide. Biochem. J., 1989, 262(1), 125-130.
[http://dx.doi.org/10.1042/bj2620125] [PMID: 2554881]
[99]
Migaud, M.; Durieux, C.; Viereck, J.; Soroca-Lucas, E.; Fournié-Zaluski, M.C.; Roques, B.P. The in vivo metabolism of cholecysto-kinin (CCK-8) is essentially ensured by aminopeptidase A. Peptides, 1996, 17(4), 601-607.
[http://dx.doi.org/10.1016/0196-9781(96)00036-8] [PMID: 8804068]
[100]
Kaloudi, A.; Nock, B.A.; Lymperis, E.; Krenning, E.P.; de Jong, M.; Maina, T. Improving the in vivo profile of minigastrin radiotracers: a comparative study involving the neutral endopeptidase inhibitor phosphoramidon. Cancer Biother. Radiopharm., 2016, 31(1), 20-28.
[http://dx.doi.org/10.1089/cbr.2015.1935] [PMID: 26844849]
[101]
Kaloudi, A.; Nock, B.A.; Lymperis, E.; Valkema, R.; Krenning, E.P.; de Jong, M.; Maina, T. Impact of clinically tested NEP/ACE inhibitors on tumor uptake of [111In-DOTA]MG11-first estimates for clinical translation. EJNMMI Res., 2016, 6(1), 15.
[http://dx.doi.org/10.1186/s13550-015-0158-3] [PMID: 26882895]
[102]
Valverde, I.E.; Bauman, A.; Kluba, C.A.; Vomstein, S.; Walter, M.A.; Mindt, T.L. 1,2,3-Triazoles as amide bond mimics: triazole scan yields protease-resistant peptidomimetics for tumor targeting. Angew. Chem. Int. Ed. Engl., 2013, 52(34), 8957-8960.
[http://dx.doi.org/10.1002/anie.201303108] [PMID: 23832715]
[103]
Maina, T.; Kaloudi, A.; Valverde, I.E.; Mindt, T.L.; Nock, B.A. Amide-to-triazole switch vs. in vivo NEP-inhibition approaches to promote radiopeptide targeting of GRPR-positive tumors. Nucl. Med. Biol., 2017, 52, 57-62.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.06.001] [PMID: 28636973]
[104]
Grob, N.; Béhé, M.; Schibli, R.; Mindt, T.P.C. #50 -177Lu-labelled peptidomimetics: novel minigastrin analogues for improved tumour targeting. Nucl. Med. Biol., 2019, 72-73, S20.
[http://dx.doi.org/10.1016/S0969-8051(19)30243-4]
[105]
Corringer, P.J.; Weng, J.H.; Ducos, B.; Durieux, C.; Boudeau, P.; Bohme, A.; Roques, B.P. CCK-B agonist or antagonist activities of structurally hindered and peptidase-resistant Boc-CCK4 derivatives. J. Med. Chem., 1993, 36(1), 166-172.
[http://dx.doi.org/10.1021/jm00053a022] [PMID: 8421283]
[106]
Klingler, M.; Decristoforo, C.; Rangger, C.; Summer, D.; Foster, J.; Sosabowski, J.K.; von Guggenberg, E. Site-specific stabilization of minigastrin analogs against enzymatic degradation for enhanced cholecystokinin-2 receptor targeting. Theranostics, 2018, 8(11), 2896-2908.
[http://dx.doi.org/10.7150/thno.24378] [PMID: 29896292]
[107]
Klingler, M.; Summer, D.; Rangger, C.; Haubner, R.; Foster, J.; Sosabowski, J.; Decristoforo, C.; Virgolini, I.; von Guggenberg, E. DOTA-MGS5, a new cholecystokinin-2 receptor-targeting peptide analog with an optimized targeting profile for theranostic use. J. Nucl. Med., 2019, 60(7), 1010-1016.
[http://dx.doi.org/10.2967/jnumed.118.221283] [PMID: 30530828]
[108]
Klingler, M.; Rangger, C.; Summer, D.; Kaeopookum, P.; Decristoforo, C.; von Guggenberg, E. Cholecystokinin-2 receptor targeting with novel C-terminally stabilized HYNIC-minigastrin analogs radiolabeled with technetium-99m. Pharmaceuticals (Basel), 2019, 12(1)E13
[http://dx.doi.org/10.3390/ph12010013] [PMID: 30650563]
[109]
von Guggenberg, E.; Klingler, M.; Garnuszek, P.; Mikolajczak, R.; Janota, B.; Hubalewska-Dydejczyk, A.; Kiec-Klimczak, M.; Przybylik-Mazurek, E.; Virgolini, I. Gallium-68 labelled minigastrin analogue for high sensitivity PET imaging of cholecystokinin-2 receptor expressing tumours, Proceedings of annual congress of the European Association of Nuclear MedicineOctober 12-16Barcelona, Spain 2019, S268

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy