Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Clinical Values of Nitric Oxide Parameters from the Respiratory System

Author(s): Lauri Lehtimäki, Tuomas Karvonen and Marieann Högman*

Volume 27, Issue 42, 2020

Page: [7189 - 7199] Pages: 11

DOI: 10.2174/0929867327666200603141847

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Fractional exhaled nitric oxide (FENO) concentration reliably reflects central airway inflammation, but it is not sensitive to changes in the NO dynamics in the lung periphery. By measuring FENO at several different flow rates one can estimate alveolar NO concentration (CANO), bronchial NO flux (JawNO), bronchial wall NO concentration (CawNO) and the bronchial diffusivity of NO (DawNO).

Objective: We aimed to describe the current knowledge and clinical relevance of NO parameters in different pulmonary diseases.

Methods: We conducted a systematic literature search to identify publications reporting NO parameters in subjects with pulmonary or systemic diseases affecting the respiratory tract. A narrative review was created for those with clinical relevance.

Results: Estimation of pulmonary NO parameters allows for differentiation between central and peripheral inflammation and a more precise analysis of central airway NO output. CANO seems to be a promising marker of parenchymal inflammation in interstitial lung diseases and also a marker of tissue damage and altered gas diffusion in chronic obstructive pulmonary disease and systemic diseases affecting the lung. In asthma, CANO can detect small airway involvement left undetected by ordinary FENO measurement. Additionally, CawNO and DawNO can be used in asthma to assess if FENO is increased due to enhanced inflammatory activity (increased CawNO) or tissue changes related to bronchial remodelling (altered DawNO).

Conclusion: NO parameters may be useful for diagnosis, prediction of disease progression and prediction of treatment responses in different parenchymal lung and airway diseases. Formal trials to test the added clinical value of NO parameters are needed.

Keywords: Breath test, nitric oxide, mathematical model, pulmonary gas exchange, respiratory system, NO.

[1]
Olivieri, M.; Talamini, G.; Corradi, M.; Perbellini, L.; Mutti, A.; Tantucci, C.; Malerba, M. Reference values for exhaled nitric oxide (reveno) study. Respir. Res., 2006, 7, 94.
[http://dx.doi.org/10.1186/1465-9921-7-94] [PMID: 16813647]
[2]
Olin, A.C.; Bake, B.; Torén, K. Fraction of exhaled nitric oxide at 50 mL/s: reference values for adult lifelong never-smokers. Chest, 2007, 131(6), 1852-1856.
[http://dx.doi.org/10.1378/chest.06-2928] [PMID: 17565022]
[3]
Jacinto, T.; Malinovschi, A.; Janson, C.; Fonseca, J.; Alving, K. Evolution of exhaled nitric oxide levels throughout development and aging of healthy humans. J. Breath Res., 2015, 9(3)036005
[http://dx.doi.org/10.1088/1752-7155/9/3/036005] [PMID: 25993061]
[4]
Högman, M.; Thornadtsson, A.; Liv, P.; Hua-Huy, T.; Dinh-Xuan, A.T.; Tufvesson, E.; Dressel, H.; Janson, C.; Koskela, K.; Oksa, P.; Sauni, R.; Uitti, J.; Moilanen, E.; Lehtimäki, L. Effects of growth and aging on the reference values of pulmonary nitric oxide dynamics in healthy subjects. J. Breath Res., 2017, 11(4)047103
[http://dx.doi.org/10.1088/1752-7163/aa7957] [PMID: 28612760]
[5]
Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; Boots, A.W.; Bos, L.D.; Brinkman, P.; Bucca, C.; Carpagnano, G.E.; Corradi, M.; Cristescu, S.; de Jongste, J.C.; Dinh-Xuan, A.T.; Dompeling, E.; Fens, N.; Fowler, S.; Hohlfeld, J.M.; Holz, O.; Jöbsis, Q.; Van De Kant, K.; Knobel, H.H.; Kostikas, K.; Lehtimäki, L.; Lundberg, J.; Montuschi, P.; Van Muylem, A.; Pennazza, G.; Reinhold, P.; Ricciardolo, F.L.M.; Rosias, P.; Santonico, M.; van der Schee, M.P.; van Schooten, F.J.; Spanevello, A.; Tonia, T.; Vink, T.J. A European respiratory society technical standard: exhaled biomarkers in lung disease. Eur. Respir. J., 2017, 49(4)1600965
[http://dx.doi.org/10.1183/13993003.00965-2016] [PMID: 28446552]
[6]
Tsoukias, N.M.; George, S.C. A two-compartment model of pulmonary nitric oxide exchange dynamics. J. Appl. Physiol., 1998, 85(2), 653-666.
[http://dx.doi.org/10.1152/jappl.1998.85.2.653] [PMID: 9688744]
[7]
Högman, M.; Holmkvist, T.; Wegener, T.; Emtner, M.; Andersson, M.; Hedenström, H.; Meriläinen, P. Extended NO analysis applied to patients with COPD, allergic asthma and allergic rhinitis. Respir. Med., 2002, 96(1), 24-30.
[http://dx.doi.org/10.1053/rmed.2001.1204] [PMID: 11863206]
[8]
Karvonen, T.; Lehtimäki, L. Flow-independent nitric oxide parameters in asthma: a systematic review and meta-analysis. J. Breath Res., 2019, 13(4)044001
[http://dx.doi.org/10.1088/1752-7163/ab2c99] [PMID: 31239409]
[9]
Wenzel, S.E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med., 2012, 18(5), 716-725.
[http://dx.doi.org/10.1038/nm.2678] [PMID: 22561835]
[10]
Chibana, K.; Trudeau, J.B.; Mustovich, A.T.; Hu, H.; Zhao, J.; Balzar, S.; Chu, H.W.; Wenzel, S.E. IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clin. Exp. Allergy, 2008, 38(6), 936-946.
[http://dx.doi.org/10.1111/j.1365-2222.2008.02969.x] [PMID: 18384429]
[11]
Kuo, C.R.; Spears, M.; Haughney, J.; Smith, A.; Miller, J.; Bradshaw, T.; Murray, L.; Williamson, P.; Lipworth, B. Scottish consensus statement on the role of FeNO in adult asthma. Respir. Med., 2019, 155, 54-57.
[http://dx.doi.org/10.1016/j.rmed.2019.07.010] [PMID: 31299469]
[12]
Petsky, H.L.; Kew, K.M.; Chang, A.B. Exhaled nitric oxide levels to guide treatment for children with asthma. Cochrane Database Syst. Rev., 2016, 11(11)CD011439
[http://dx.doi.org/10.1002/14651858.CD011439.pub2] [PMID: 27825189]
[13]
Petsky, H.L.; Kew, K.M.; Turner, C.; Chang, A.B. Exhaled nitric oxide levels to guide treatment for adults with asthma. Cochrane Database Syst. Rev., 2016, 9(9)CD011440
[http://dx.doi.org/10.1002/14651858.CD011440.pub2] [PMID: 27580628]
[14]
Lehtimäki, L.; Turjanmaa, V.; Kankaanranta, H.; Saarelainen, S.; Hahtola, P.; Moilanen, E. Increased bronchial nitric oxide production in patients with asthma measured with a novel method of different exhalation flow rates. Ann. Med., 2000, 32(6), 417-423.
[http://dx.doi.org/10.3109/07853890008995949] [PMID: 11028690]
[15]
Kanazawa, H.; Kyoh, S.; Asai, K.; Hirata, K. Validity of measurement of two specific biomarkers for the assessment of small airways inflammation in asthma. J. Asthma, 2010, 47(4), 400-406.
[http://dx.doi.org/10.3109/02770901003759394] [PMID: 20528593]
[16]
Keen, C.; Olin, A.C.; Wennergren, G.; Gustafsson, P. Small airway function, exhaled NO and airway hyper-responsiveness in paediatric asthma. Respir. Med., 2011, 105(10), 1476-1484.
[http://dx.doi.org/10.1016/j.rmed.2011.04.004] [PMID: 21570274]
[17]
Shimoda, T.; Obase, Y.; Nagasaka, Y.; Nakano, H.; Kishikawa, R.; Iwanaga, T. Lung sound analysis and airway inflammation in bronchial asthma. J. Allergy Clin. Immunol. Pract., 2016, 4(3), 505-511.
[http://dx.doi.org/10.1016/j.jaip.2016.02.001] [PMID: 27021633]
[18]
Kim, Y.H.; Sol, I.S.; Yoon, S.H.; Kim, M.J.; Kim, K.W.; Sohn, M.H.; Kim, K.E. Association of extended nitric oxide parameters with bronchial hyperresponsiveness and bronchodilator response in children with asthma. J. Breath Res., 2017, 11(4)046003
[http://dx.doi.org/10.1088/1752-7163/aa7c1f] [PMID: 28656903]
[19]
Lehtimäki, L.; Csonka, P.; Mäkinen, E.; Isojärvi, J.; Hovi, S.L.; Ahovuo-Saloranta, A. Predictive value of exhaled nitric oxide in the management of asthma: a systematic review. Eur. Respir. J., 2016, 48(3), 706-714.
[http://dx.doi.org/10.1183/13993003.00699-2016] [PMID: 27492830]
[20]
Ahovuo-Saloranta, A.; Csonka, P.; Lehtimäki, L. Basic characteristics and clinical value of FeNO in smoking asthmatics - a systematic review. J. Breath Res., 2019, 13(3)034003
[http://dx.doi.org/10.1088/1752-7163/ab0ece] [PMID: 30861509]
[21]
Silkoff, P.E.; Sylvester, J.T.; Zamel, N.; Permutt, S. Airway nitric oxide diffusion in asthma: Role in pulmonary function and bronchial responsiveness. Am. J. Respir. Crit. Care Med., 2000, 161(4 Pt 1), 1218-1228.
[http://dx.doi.org/10.1164/ajrccm.161.4.9903111] [PMID: 10764315]
[22]
Högman, M.; Meriläinen, P. Guidance for a personal target value of FeNO in allergic asthma: case report and theoretical example. Ups. J. Med. Sci., 2013, 118(1), 59-61.
[http://dx.doi.org/10.3109/03009734.2012.704433] [PMID: 22793785]
[23]
Matsumoto, H.; Niimi, A.; Jinnai, M.; Nakaji, H.; Takeda, T.; Oguma, T.; Otsuka, K.; Inoue, H.; Yamaguchi, M.; Matsuoka, H.; Ito, I.; Hirai, T.; Chin, K.; Mishima, M. Association of alveolar nitric oxide levels with pulmonary function and its reversibility in stable asthma. Respiration, 2011, 81(4), 311-317.
[http://dx.doi.org/10.1159/000319566] [PMID: 20938160]
[24]
van Veen, I.H.; Sterk, P.J.; Schot, R.; Gauw, S.A.; Rabe, K.F.; Bel, E.H. Alveolar nitric oxide versus measures of peripheral airway dysfunction in severe asthma. Eur. Respir. J., 2006, 27(5), 951-956.
[http://dx.doi.org/10.1183/09031936.06.00087905] [PMID: 16446314]
[25]
Nicolini, G.; Chetta, A.; Simonazzi, A.; Tzani, P.; Aiello, M.; Olivieri, D. Both bronchial and alveolar exhaled nitric oxide are reduced with extrafine beclomethasone dipropionate in asthma. Allergy Asthma Proc., 2010, 31(5), 85-90.
[http://dx.doi.org/10.2500/aap.2010.31.3367] [PMID: 20929599]
[26]
Berry, M.; Hargadon, B.; Morgan, A.; Shelley, M.; Richter, J.; Shaw, D.; Green, R.H.; Brightling, C.; Wardlaw, A.J.; Pavord, I.D. Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma. Eur. Respir. J., 2005, 25(6), 986-991.
[http://dx.doi.org/10.1183/09031936.05.00132404] [PMID: 15929952]
[27]
Santus, P.; Radovanovic, D.; Mascetti, S.; Pauletti, A.; Valenti, V.; Mantero, M.; Papi, A.; Contoli, M. Effects of bronchodilation on biomarkers of peripheral airway inflammation in COPD. Pharmacol. Res., 2018, 133, 160-169.
[http://dx.doi.org/10.1016/j.phrs.2018.05.010] [PMID: 29775687]
[28]
Hirano, T.; Matsunaga, K.; Sugiura, H.; Minakata, Y.; Koarai, A.; Akamatsu, K.; Ichikawa, T.; Furukawa, K.; Ichinose, M. Relationship between alveolar nitric oxide concentration in exhaled air and small airway function in COPD. J. Breath Res., 2013, 7(4)046002
[http://dx.doi.org/10.1088/1752-7155/7/4/046002] [PMID: 24091810]
[29]
McCurdy, M.R.; Sharafkhaneh, A.; Abdel-Monem, H.; Rojo, J.; Tittel, F.K. Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease. J. Breath Res., 2011, 5(1)016003
[http://dx.doi.org/10.1088/1752-7155/5/1/016003] [PMID: 21378438]
[30]
Högman, M.; Thornadtsson, A.; Bröms, K.; Janson, C.; Lisspers, K.; Ställberg, B.; Hedenström, H.; Malinovschi, A. Higher alveolar nitric oxide in COPD is related to poorer physical capacity and lower oxygen saturation after physical testing. Eur. Respir. J., 2019, 54(2)1900263
[http://dx.doi.org/10.1183/13993003.00263-2019] [PMID: 31073082]
[31]
Alcázar-Navarrete, B.; Castellano Miñán, F.; Santiago Díaz, P.; Ruiz Rodríguez, O.; Romero Palacios, P.J. Alveolar and bronchial nitric oxide in chronic obstructive pulmonary disease and asthma-COPD overlap. Arch. Bronconeumol., 2018, 54(8), 414-419.
[http://dx.doi.org/10.1016/j.arbr.2018.06.007] [PMID: 29627118]
[32]
Lázár, Z.; Kelemen, Á.; Gálffy, G.; Losonczy, G.; Horváth, I.; Bikov, A. Central and peripheral airway nitric oxide in patients with stable and exacerbated chronic obstructive pulmonary disease. J. Breath Res., 2018, 12(3)036017
[http://dx.doi.org/10.1088/1752-7163/aac10a] [PMID: 29813036]
[33]
Moeller, A.; Horak, F., Jr; Lane, C.; Knight, D.; Kicic, A.; Brennan, S.; Franklin, P.; Terpolilli, J.; Wildhaber, J.H.; Stick, S.M. Inducible NO synthase expression is low in airway epithelium from young children with cystic fibrosis. Thorax, 2006, 61(6), 514-520.
[http://dx.doi.org/10.1136/thx.2005.054643] [PMID: 16517573]
[34]
Keen, C.; Gustafsson, P.; Lindblad, A.; Wennergren, G.; Olin, A.C. Low levels of exhaled nitric oxide are associated with impaired lung function in cystic fibrosis. Pediatr. Pulmonol., 2010, 45(3), 241-248.
[http://dx.doi.org/10.1002/ppul.21137] [PMID: 20146368]
[35]
Krantz, C.; Janson, C.; Hollsing, A.; Alving, K.; Malinovschi, A. Exhaled and nasal nitric oxide in relation to lung function, blood cell counts and disease characteristics in cystic fibrosis. J. Breath Res., 2017, 11(2)026001
[http://dx.doi.org/10.1088/1752-7163/aa61aa] [PMID: 28220034]
[36]
Salerno, F.G.; Carpagnano, E.; Guido, P.; Bonsignore, M.R.; Roberti, A.; Aliani, M.; Vignola, A.M.; Spanevello, A. Airway inflam-mation in patients affected by obstructive sleep apnea syndrome. Respir. Med., 2004, 98(1), 25-28.
[http://dx.doi.org/10.1016/j.rmed.2003.08.003] [PMID: 14959810]
[37]
Zhang, D.; Luo, J.; Qiao, Y.; Xiao, Y.; Huang, R.; Zhong, X. Measurement of exhaled nitric oxide concentration in patients with ob-structive sleep apnea: a meta-analysis. Medicine (Baltimore), 2017, 96(12)e6429
[http://dx.doi.org/10.1097/MD.0000000000006429] [PMID: 28328850]
[38]
Foresi, A.; Leone, C.; Olivieri, D.; Cremona, G. Alveolar-derived exhaled nitric oxide is reduced in obstructive sleep apnea syndrome. Chest, 2007, 132(3), 860-867.
[http://dx.doi.org/10.1378/chest.06-3124] [PMID: 17646233]
[39]
Fortuna, A.M.; Miralda, R.; Calaf, N.; González, M.; Casan, P.; Mayos, M. Airway and alveolar nitric oxide measurements in obstruc-tive sleep apnea syndrome. Respir. Med., 2011, 105(4), 630-636.
[http://dx.doi.org/10.1016/j.rmed.2010.12.004] [PMID: 21232930]
[40]
Liu, J.; Li, Z.; Liu, Z.; Zhu, F.; Li, W.; Jiang, H.; Wu, X.; Song, Y.; Li, S.; Bai, C. Exhaled nitric oxide from the central airway and alveoli in OSAHS patients: the potential correlations and clinical implications. Sleep Breath., 2016, 20(1), 145-154.
[http://dx.doi.org/10.1007/s11325-015-1198-7] [PMID: 26084410]
[41]
Foley, S.C.; Hopkins, N.O.; Fitzgerald, M.X.; Donnelly, S.C.; McLoughlin, P. Airway nitric oxide output is reduced in bronchiectasis. Respir. Med., 2007, 101(7), 1549-1555.
[http://dx.doi.org/10.1016/j.rmed.2006.12.005] [PMID: 17234397]
[42]
Shoemark, A.; Wilson, R. Bronchial and peripheral airway nitric oxide in primary ciliary dyskinesia and bronchiectasis. Respir. Med., 2009, 103(5), 700-706.
[http://dx.doi.org/10.1016/j.rmed.2008.12.004] [PMID: 19117740]
[43]
Shoemark, A.; Devaraj, A.; Meister, M.; Ozerovitch, L.; Hansell, D.M.; Wilson, R. Elevated peripheral airway nitric oxide in bronchi-ectasis reflects disease severity. Respir. Med., 2011, 105(6), 885-891.
[http://dx.doi.org/10.1016/j.rmed.2011.01.015] [PMID: 21398103]
[44]
Tiev, K.P.; Cabane, J.; Aubourg, F.; Kettaneh, A.; Ziani, M.; Mouthon, L.; Duong-Quy, S.; Fajac, I.; Guillevin, L.; Dinh-Xuan, A.T. Severity of scleroderma lung disease is related to alveolar concentration of nitric oxide. Eur. Respir. J., 2007, 30(1), 26-30.
[http://dx.doi.org/10.1183/09031936.00129806] [PMID: 17428812]
[45]
Tiev, K.P.; Coste, J.; Ziani, M.; Aubourg, F.; Cabane, J.; Dinh-Xuan, A.T. Diagnostic value of exhaled nitric oxide to detect interstitial lung disease in systemic sclerosis. Sarcoidosis Vasc. Diffuse Lung Dis., 2009, 26(1), 32-38.
[PMID: 19960786]
[46]
Tiev, K.P.; Hua-Huy, T.; Rivière, S.; Le-Dong, N.N.; Febvre, M.; Cabane, J.; Dinh-Xuan, A.T. High alveolar concentration of nitric oxide is associated with alveolitis in scleroderma. Nitric Oxide, 2013, 28, 65-70.
[http://dx.doi.org/10.1016/j.niox.2012.10.005] [PMID: 23099297]
[47]
Tiev, K.P.; Rivière, S.; Hua-Huy, T.; Cabane, J.; Dinh-Xuan, A.T. Exhaled NO predicts cyclophosphamide response in scleroderma-related lung disease. Nitric Oxide, 2014, 40, 17-21.
[http://dx.doi.org/10.1016/j.niox.2014.04.011] [PMID: 24831352]
[48]
Cameli, P.; Bargagli, E.; Refini, R.M.; Pieroni, M.G.; Bennett, D.; Rottoli, P. Exhaled nitric oxide in interstitial lung diseases. Respir. Physiol. Neurobiol., 2014, 197, 46-52.
[http://dx.doi.org/10.1016/j.resp.2014.03.011] [PMID: 24703971]
[49]
Kotecha, J.; Shulgina, L.; Sexton, D.W.; Atkins, C.P.; Wilson, A.M. Plasma vascular endothelial growth factor concentration and al-veolar nitric oxide as potential predictors of disease progression and mortality in idiopathic pulmonary fibrosis. J. Clin. Med., 2016, 5(9)E80
[http://dx.doi.org/10.3390/jcm5090080] [PMID: 27618114]
[50]
Cameli, P.; Bergantini, L.; Salvini, M.; Refini, R.M.; Pieroni, M.; Bargagli, E.; Sestini, P. Alveolar concentration of nitric oxide as a prognostic biomarker in idiopathic pulmonary fibrosis. Nitric Oxide, 2019, 89, 41-45.
[http://dx.doi.org/10.1016/j.niox.2019.05.001] [PMID: 31054949]
[51]
Furukawa, K.; Sugiura, H.; Matsunaga, K.; Ichikawa, T.; Koarai, A.; Hirano, T.; Yanagisawa, S.; Minakata, Y.; Akamatsu, K.; Kanda, M.; Nishigai, M.; Ichinose, M. Increase of nitrosative stress in patients with eosinophilic pneumonia. Respir. Res., 2011, 12, 81.
[http://dx.doi.org/10.1186/1465-9921-12-81] [PMID: 21679473]
[52]
Oishi, K.; Hirano, T.; Suetake, R.; Ohata, S.; Yamaji, Y.; Ito, K.; Edakuni, N.; Matsunaga, K. Exhaled nitric oxide measurements in patients with acute-onset interstitial lung disease. J. Breath Res., 2017, 11(3)036001
[http://dx.doi.org/10.1088/1752-7163/aa6c4b] [PMID: 28660859]
[53]
Cameli, P.; Bargagli, E.; Fossi, A.; Bennett, D.; Voltolini, L.; Refini, R.M.; Gotti, G.; Rottoli, P. Exhaled nitric oxide and carbon mon-oxide in lung transplanted patients. Respir. Med., 2015, 109(9), 1224-1229.
[http://dx.doi.org/10.1016/j.rmed.2015.07.005] [PMID: 26224473]
[54]
Lehtonen, H.; Oksa, P.; Lehtimäki, L.; Sepponen, A.; Nieminen, R.; Kankaanranta, H.; Saarelainen, S.; Järvenpää, R.; Uitti, J.; Moilanen, E. Increased alveolar nitric oxide concentration and high levels of leukotriene B(4) and 8-isoprostane in exhaled breath condensate in patients with asbestosis. Thorax, 2007, 62(7), 602-607.
[http://dx.doi.org/10.1136/thx.2006.067868] [PMID: 17251310]
[55]
Lehtimäki, L.; Oksa, P.; Järvenpää, R.; Vierikko, T.; Nieminen, R.; Kankaanranta, H.; Uitti, J.; Moilanen, E. Pulmonary inflammation in asbestos-exposed subjects with borderline parenchymal changes on HRCT. Respir. Med., 2010, 104(7), 1042-1049.
[http://dx.doi.org/10.1016/j.rmed.2010.01.019] [PMID: 20163943]
[56]
Sauni, R.; Oksa, P.; Lehtimäki, L.; Toivio, P.; Palmroos, P.; Nieminen, R.; Moilanen, E.; Uitti, J. Increased alveolar nitric oxide and systemic inflammation markers in silica-exposed workers. Occup. Environ. Med., 2012, 69(4), 256-260.
[http://dx.doi.org/10.1136/oemed-2011-100347] [PMID: 22068172]
[57]
Barregard, L.; Sällsten, G.; Andersson, L.; Almstrand, A.C.; Gustafson, P.; Andersson, M.; Olin, A.C. Experimental exposure to wood smoke: effects on airway inflammation and oxidative stress. Occup. Environ. Med., 2008, 65(5), 319-324.
[http://dx.doi.org/10.1136/oem.2006.032458] [PMID: 17704195]
[58]
Malerba, M.; Ragnoli, B.; Buffoli, L.; Radaeli, A.; Ricci, C.; Lanzarotto, F.; Lanzini, A. Exhaled nitric oxide as a marker of lung in-volvement in Crohn’s disease. Int. J. Immunopathol. Pharmacol., 2011, 24(4), 1119-1124.
[http://dx.doi.org/10.1177/039463201102400434] [PMID: 22230422]
[59]
Degano, B.; Mittaine, M.; Hervé, P.; Rami, J.; Kamar, N.; Suc, B.; Rivière, D.; Rostaing, L. Nitric oxide production by the alveolar compartment of the lungs in cirrhotic patients. Eur. Respir. J., 2009, 34(1), 138-144.
[http://dx.doi.org/10.1183/09031936.00148008] [PMID: 19129270]
[60]
Delclaux, C.; Mahut, B.; Zerah-Lancner, F.; Delacourt, C.; Laoud, S.; Cherqui, D.; Duvoux, C.; Mallat, A.; Harf, A. Increased nitric oxide output from alveolar origin during liver cirrhosis versus bronchial source during asthma. Am. J. Respir. Crit. Care Med., 2002, 165(3), 332-337.
[http://dx.doi.org/10.1164/ajrccm.165.3.2107017] [PMID: 11818316]
[61]
Thornadtsson, A.; Lind, A.; Weitoft, T.; Högman, M. Altered levels of exhaled nitric oxide in rheumatoid arthritis. Nitric Oxide, 2018, 76, 1-5.
[http://dx.doi.org/10.1016/j.niox.2018.02.008] [PMID: 29486306]
[62]
Flaherty, K.R.; Wells, A.U.; Cottin, V.; Devaraj, A.; Walsh, S.L.F.; Inoue, Y.; Richeldi, L.; Kolb, M.; Tetzlaff, K.; Stowasser, S.; Coeck, C.; Clerisme-Beaty, E.; Rosenstock, B.; Quaresma, M.; Haeufel, T.; Goeldner, R.G.; Schlenker-Herceg, R.; Brown, K.K. INBUILD trial investigators. Nintedanib in progressive fibrosing interstitial lung diseases. N. Engl. J. Med., 2019, 381(18), 1718-1727.
[http://dx.doi.org/10.1056/NEJMoa1908681] [PMID: 31566307]
[63]
Brindicci, C.; Ito, K.; Resta, O.; Pride, N.B.; Barnes, P.J.; Kharitonov, S.A. Exhaled nitric oxide from lung periphery is increased in COPD. Eur. Respir. J., 2005, 26(1), 52-59.
[http://dx.doi.org/10.1183/09031936.04.00125304] [PMID: 15994389]
[64]
Brindicci, C.; Ito, K.; Torre, O.; Barnes, P.J.; Kharitonov, S.A. Effects of aminoguanidine, an inhibitor of inducible nitric oxide synthase, on nitric oxide production and its metabolites in healthy control subjects, healthy smokers, and COPD patients. Chest, 2009, 135(2), 353-367.
[http://dx.doi.org/10.1378/chest.08-0964] [PMID: 18719059]
[65]
Lehouck, A.; Carremans, C.; De Bent, K.; Decramer, M.; Janssens, W. Alveolar and bronchial exhaled nitric oxide in chronic obstructive pulmonary disease. Respir. Med., 2010, 104(7), 1020-1026.
[http://dx.doi.org/10.1016/j.rmed.2010.01.001] [PMID: 20097553]
[66]
Williamson, P.A.; Clearie, K.; Menzies, D.; Vaidyanathan, S.; Lipworth, B.J. Assessment of small-airways disease using alveolar nitric oxide and impulse oscillometry in asthma and COPD. Lung, 2011, 189(2), 121-129.
[http://dx.doi.org/10.1007/s00408-010-9275-y] [PMID: 21174112]
[67]
Paredi, P.; Kharitonov, S.A.; Meah, S.; Barnes, P.J.; Usmani, O.S. A novel approach to partition central and peripheral airway nitric oxide. Chest, 2014, 145(1), 113-119.
[http://dx.doi.org/10.1378/chest.13-0843] [PMID: 23989961]
[68]
Shin, H.W.; Rose-Gottron, C.M.; Sufi, R.S.; Perez, F.; Cooper, D.M.; Wilson, A.F.; George, S.C. Flow-independent nitric oxide ex-change parameters in cystic fibrosis. Am. J. Respir. Crit. Care Med., 2002, 165(3), 349-357.
[http://dx.doi.org/10.1164/ajrccm.165.3.2105098] [PMID: 11818320]
[69]
Walker, W.T.; Liew, A.; Harris, A.; Cole, J.; Lucas, J.S. Upper and lower airway nitric oxide levels in primary ciliary dyskinesia, cystic fibrosis and asthma. Respir. Med., 2013, 107(3), 380-386.
[http://dx.doi.org/10.1016/j.rmed.2012.11.021] [PMID: 23290188]
[70]
Suri, R.; Paraskakis, E.; Bush, A. Alveolar, but not bronchial nitric oxide production is elevated in cystic fibrosis. Pediatr. Pulmonol., 2007, 42(12), 1215-1221.
[http://dx.doi.org/10.1002/ppul.20730] [PMID: 17969001]
[71]
Hofer, M.; Mueller, L.; Rechsteiner, T.; Benden, C.; Boehler, A. Extended nitric oxide measurements in exhaled air of cystic fibrosis and healthy adults. Lung, 2009, 187(5), 307-313.
[http://dx.doi.org/10.1007/s00408-009-9160-8] [PMID: 19669109]
[72]
Duong-Quy, S.; Hua-Huy, T.; Tran-Mai-Thi, H.T.; Le-Dong, N.N.; Craig, T.J.; Dinh-Xuan, A.T. Study of exhaled nitric oxide in sub-jects with suspected obstructive sleep apnea: a pilot study in Vietnam. Pulm. Med., 2016, 20163050918
[http://dx.doi.org/10.1155/2016/3050918] [PMID: 26881073]
[73]
Hua-Huy, T.; Le-Dong, N.N.; Duong-Quy, S.; Luchon, L.; Rouhani, S.; Dinh-Xuan, A.T. Increased alveolar nitric oxide concentration is related to nocturnal oxygen desaturation in obstructive sleep apnoea. Nitric Oxide, 2015, 45, 27-34.
[http://dx.doi.org/10.1016/j.niox.2015.01.008] [PMID: 25645200]
[74]
Lehtimäki, L.; Kankaanranta, H.; Saarelainen, S.; Hahtola, P.; Järvenpää, R.; Koivula, T.; Turjanmaa, V.; Moilanen, E. Extended exhaled NO measurement differentiates between alveolar and bronchial inflammation. Am. J. Respir. Crit. Care Med., 2001, 163(7), 1557-1561.
[http://dx.doi.org/10.1164/ajrccm.163.7.2010171] [PMID: 11401873]
[75]
Cameli, P.; Barbagli, E.; Rottoli, P. Exhaled nitric oxide is not increased in pulmonary sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis., 2016, 33(1), 39-40.
[PMID: 27055834]
[76]
Girgis, R.E.; Gugnani, M.K.; Abrams, J.; Mayes, M.D. Partitioning of alveolar and conducting airway nitric oxide in scleroderma lung disease. Am. J. Respir. Crit. Care Med., 2002, 165(12), 1587-1591.
[http://dx.doi.org/10.1164/rccm.2104003] [PMID: 12070057]
[77]
Kozij, N.K.; Granton, J.T.; Silkoff, P.E.; Thenganatt, J.; Chakravorty, S.; Johnson, S.R. Exhaled nitric oxide in systemic sclerosis lung disease. Can. Respir. J., 2017, 20176736239
[http://dx.doi.org/10.1155/2017/6736239] [PMID: 28293128]
[78]
Schildge, J. [Nitric oxide in exhaled breath of patients with interstitial lung diseases] Pneumologie, 2011, 65(3), 143-148.
[http://dx.doi.org/10.1055/s-0030-1255958] [PMID: 21117021]
[79]
Protopapas, A.A.; Vradelis, S.; Karampitsakos, T.; Steiropoulos, P.; Chatzimichael, A.; Paraskakis, E. Elevated levels of alveolar nitric oxide may indicate presence of small airway inflammation in patients with inflammatory bowel disease. Lung, 2019, 197(5), 663-670.
[http://dx.doi.org/10.1007/s00408-019-00253-0] [PMID: 31317255]
[80]
Malinovschi, A.; Henrohn, D.; Eriksson, A.; Lundberg, J.O.; Alving, K.; Wikström, G. Increased plasma and salivary nitrite and de-creased bronchial contribution to exhaled NO in pulmonary arterial hypertension. Eur. J. Clin. Invest., 2011, 41(8), 889-897.
[http://dx.doi.org/10.1111/j.1365-2362.2011.02488.x] [PMID: 21554268]
[81]
Rolla, G.; Brussino, L.; Scappaticci, E.; Morello, M.; Innarella, R.; Rosina, F.; Bucca, C. Source of exhaled nitric oxide in primary biliary cirrhosis. Chest, 2004, 126(5), 1546-1551.
[http://dx.doi.org/10.1378/chest.126.5.1546] [PMID: 15539725]
[82]
Choi, J.; Hoffman, L.A.; Sethi, J.M.; Zullo, T.G.; Gibson, K.F. Multiple flow rates measurement of exhaled nitric oxide in patients with sarcoidosis: a pilot feasibility study. Sarcoidosis Vasc. Diffuse Lung Dis., 2009, 26(2), 98-109.
[PMID: 20560290]
[83]
Cao, Z.; Mathai, S.C.; Hummers, L.K.; Shah, A.A.; Wigley, F.M.; Lechtzin, N.; Hassoun, P.M.; Girgis, R.E. Exhaled nitric oxide in pulmonary arterial hypertension associated with systemic sclerosis. Pulm. Circ., 2016, 6(4), 545-550.
[http://dx.doi.org/10.1086/688768] [PMID: 28090297]
[84]
Hua-Huy, T.; Tiev, K.P.; Chéreau, C.; Duong-Quy, S.; Cabane, J.; Dinh-Xuan, A.T. Increased alveolar concentration of nitric oxide is related to serum-induced lung fibroblast proliferation in patients with systemic sclerosis. J. Rheumatol., 2010, 37(8), 1680-1687.
[http://dx.doi.org/10.3899/jrheum.090915] [PMID: 20595271]
[85]
Wuttge, D.M.; Bozovic, G.; Hesselstrand, R.; Aronsson, D.; Bjermer, L.; Scheja, A.; Tufvesson, E. Increased alveolar nitric oxide in early systemic sclerosis. Clin. Exp. Rheumatol., 2010, 28(5)(Suppl. 62), S5-S9.
[PMID: 21050538]
[86]
Tiev, K.P.; Le-Dong, N.N.; Duong-Quy, S.; Hua-Huy, T.; Cabane, J.; Dinh-Xuan, A.T. Exhaled nitric oxide, but not serum nitrite and nitrate, is a marker of interstitial lung disease in systemic sclerosis. Nitric Oxide, 2009, 20(3), 200-206.
[http://dx.doi.org/10.1016/j.niox.2008.11.004] [PMID: 19100854]
[87]
Benfante, A.; Messina, R.; Paternò, A.; Scichilone, N. Serum surfactant protein D and exhaled nitric oxide as biomarkers of early lung damage in systemic sclerosis. Minerva Med., 2018, 109(2), 71-78.
[http://dx.doi.org/10.23736/S0026-4806.17.05285-5 ] [PMID: 29164837]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy