Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Progress in the Development of Quinoline Derivatives for the Exploitation of Anti-Cancer Agents

Author(s): Ruo-Jun Man, Nasreen Jeelani, Chongchen Zhou* and Yu-Shun Yang*

Volume 21, Issue 7, 2021

Published on: 16 May, 2020

Page: [825 - 838] Pages: 14

DOI: 10.2174/1871520620666200516150345

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Along with the progress in medicine and therapies, the exploitation of anti-cancer agents focused more on the vital signaling pathways and key biological macromolecules. With rational design and advanced synthesis, quinoline derivatives have been utilized frequently in medicinal chemistry, especially in developing anti-cancer drugs or candidates.

Methods: Using DOI searching, articles published before 2020 all over the world have been reviewed as comprehensively as possible.

Results: In this review, we selected the representative quinoline derivate drugs in market or clinical trials, classified them into five major categories with detailed targets according to their main mechanisms, discussed the relationship within the same mechanism, and generated a summative discussion with prospective expectations. For each mechanism, the introduction of the target was presented, with the typical examples of quinoline derivate drugs.

Conclusion: This review has highlighted the quinoline drugs or candidates, suited them into corresponding targets in their pathways, summarized and discussed. We hope that this review may help the researchers who are interested in discovering quinoline derivate anti-cancer agents obtain considerable understanding of this specific topic. Through the flourishing period and the vigorous strategies in clinical trials, quinoline drugs would be potential but facing new challenges in the future.

Keywords: Anti-cancer agents, quinoline derivatives, marketed drugs, clinical trials, molecular targets, major mechanisms.

Graphical Abstract
[1]
Smith, R.A.; Manassaram-Baptiste, D.; Brooks, D.; Doroshenk, M.; Fedewa, S.; Saslow, D.; Brawley, O.W.; Wender, R. Cancer screening in the United States, 2015: A review of current American cancer society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2015, 65(1), 30-54.
[http://dx.doi.org/10.3322/caac.21261] [PMID: 25581023]
[2]
Marmot, M.G.; Altman, D.G.; Cameron, D.A.; Dewar, J.A.; Thompson, S.G.; Wilcox, M. Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an independent review. Lancet, 2012, 380(9855), 1778-1786.
[http://dx.doi.org/10.1016/S0140-6736(12)61611-0] [PMID: 23117178]
[3]
Chu, K.F.; Dupuy, D.E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer, 2014, 14(3), 199-208.
[http://dx.doi.org/10.1038/nrc3672] [PMID: 24561446]
[4]
Duan, Y.; Liu, W.; Tian, L.; Mao, Y.; Song, C. Targeting tubulin-colchicine site for cancer therapy: Inhibitors, antibody-drug conjugates and degradation agents. Curr. Top. Med. Chem., 2019, 19(15), 1289-1304.
[http://dx.doi.org/10.2174/1568026619666190618130008] [PMID: 31210108]
[5]
Satarug, S. Long-term exposure to cadmium in food and cigarette smoke, liver effects and hepatocellular carcinoma. Curr. Drug Metab., 2012, 13(3), 257-271.
[http://dx.doi.org/10.2174/138920012799320446] [PMID: 22455552]
[6]
van den Dungen, M.W.; Rijk, J.C.W.; Kampman, E.; Steegenga, W.T.; Murk, A.J. Steroid hormone related effects of marine persistent organic pollutants in human H295R adrenocortical carcinoma cells. Toxicol. In Vitro, 2015, 29(4), 769-778.
[http://dx.doi.org/10.1016/j.tiv.2015.03.002] [PMID: 25765474]
[7]
Roberts, L.R.; Gores, G.J. Hepatocellular carcinoma: Molecular pathways and new therapeutic targets. Semin. Liver Dis., 2005, 25(2), 212-225.
[http://dx.doi.org/10.1055/s-2005-871200] [PMID: 15918149]
[8]
Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res., 2006, 66(24), 11851-11858.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1377] [PMID: 17178882]
[9]
Duan, Y.T.; Sangani, C.B.; Liu, W.; Soni, K.V.; Yao, Y. New promises to cure cancer and other genetic diseases/disorders: Epi-drugs through epigenetics. Curr. Top. Med. Chem., 2019, 19(12), 972-994.
[http://dx.doi.org/10.2174/1568026619666190603094439] [PMID: 31161992]
[10]
Han, H.; Hurley, L.H. G-quadruplex DNA: A potential target for anti-cancer drug design. Trends Pharmacol. Sci., 2000, 21(4), 136-142.
[http://dx.doi.org/10.1016/S0165-6147(00)01457-7] [PMID: 10740289]
[11]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[12]
Chinthala, Y.; Thakur, S.; Tirunagari, S.; Chinde, S.; Domatti, A.K.; Arigari, N.K.; Srinivas, K.V.N.S.; Alam, S.; Jonnala, K.K.; Khan, F.; Tiwari, A.; Grover, P. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. Eur. J. Med. Chem., 2015, 93, 564-573.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.027] [PMID: 25743216]
[13]
Roy, K.K.; Singh, S.; Saxena, A.K. Integration-mediated prediction enrichment of quantitative model for Hsp90 inhibitors as anti-cancer agents: 3D-QSAR study. Mol. Divers., 2011, 15(2), 477-489.
[http://dx.doi.org/10.1007/s11030-010-9269-y] [PMID: 20740314]
[14]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043.
[http://dx.doi.org/10.1021/cr900019j] [PMID: 19422222]
[15]
Liu, W.; Wang, X.; Zhu, H.; Duan, Y. Precision tumor medicine and drug targets. Curr. Top. Med. Chem., 2019, 19(17), 1488-1489.
[http://dx.doi.org/10.2174/156802661917190828111130] [PMID: 31592750]
[16]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[17]
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem., 2010, 45(8), 3245-3264.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.011] [PMID: 20466465]
[18]
Gupta, V.K.; Mittal, A.; Gajbe, V. Adsorption and desorption studies of a water soluble dye, Quinoline Yellow, using waste materials. J. Colloid Interface Sci., 2005, 284(1), 89-98.
[http://dx.doi.org/10.1016/j.jcis.2004.09.055] [PMID: 15752789]
[19]
Zaoui, F.; Didi, M.A.; Villemin, D. Investigation of 7-((dioctylamino)methyl)quinoline-8-ol for uptake and removal of uranyl ions. J. Radioanal. Nucl. Chem., 2013, 295(1), 419-424.
[http://dx.doi.org/10.1007/s10967-012-1789-8]
[20]
Dinç Zor, Ş.; Aşçı, B.; Aksu Dönmez, Ö.; Yıldırım Küçükkaraca, D. Simultaneous determination of potassium sorbate, sodium benzoate, quinoline yellow and sunset yellow in lemonades and lemon sauces by HPLC using experimental design. J. Chromatogr. Sci., 2016, 54(6), 952-957.
[http://dx.doi.org/10.1093/chromsci/bmw027] [PMID: 26951541]
[21]
Sributr, A.; Yamsaengsung, W.; Wimolmala, E.; Kositchaiyong, A.; Isarangkura, K.; Sombatsompop, N. Effects of solution and solid forms of 2-hydroxypropyl-3-piperazinyl-quinoline carboxylic acid methacrylate on antibacterial, physical and mechanical properties of polypropylene sheeting. J. Plast. Film Sheeting, 2015, 31(3), 248-268.
[http://dx.doi.org/10.1177/8756087914561137]
[22]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[23]
Woodward, C.F.; Badgett, C.O.; Kaufman, J.G. Chemical-catalytic liquid-phase oxidation of nicotine, beta-picoline, and quinoline to nicotinic acid. Ind. Eng. Chem., 1944, 36, 544-546.
[http://dx.doi.org/10.1021/ie50414a012]
[24]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur. J. Med. Chem., 2009, 44(11), 4637-4647.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.031] [PMID: 19647905]
[25]
Baba, A.; Kawamura, N.; Makino, H.; Ohta, Y.; Taketomi, S.; Sohda, T. Studies on disease-modifying antirheumatic drugs: Synthesis of novel quinoline and quinazoline derivatives and their anti-inflammatory effect. J. Med. Chem., 1996, 39(26), 5176-5182.
[http://dx.doi.org/10.1021/jm9509408] [PMID: 8978845]
[26]
Hu, Y.Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[27]
Wang, H.; Fang, G.Q.; Wang, K.; Wu, Z.Y.; Yao, Q.Q. Determination of dopamine using 2-(4-boronophenyl)quinoline-4-carboxylic acids as fluorescent probes. Anal. Lett., 2019, 52(4), 713-727.
[http://dx.doi.org/10.1080/00032719.2018.1488258]
[28]
Martirosyan, A.R.; Rahim-Bata, R.; Freeman, A.B.; Clarke, C.D.; Howard, R.L.; Strobl, J.S. Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer cell model. Biochem. Pharmacol., 2004, 68(9), 1729-1738.
[http://dx.doi.org/10.1016/j.bcp.2004.05.003] [PMID: 15450938]
[29]
Yang, Y.; Shi, L.; Zhou, Y.; Li, H.Q.; Zhu, Z.W.; Zhu, H.L. Design, synthesis and biological evaluation of quinoline amide derivatives as novel VEGFR-2 inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(22), 6653-6656.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.014] [PMID: 20943391]
[30]
Tsai, C.C.; Liu, H.F.; Hsu, K.C.; Yang, J.M.; Chen, C.; Liu, K.K.; Hsu, T.S.; Chao, J.I. 7-Chloro-6-piperidin-1-yl-quinoline-5,8-dione (PT-262), a novel ROCK inhibitor blocks cytoskeleton function and cell migration. Biochem. Pharmacol., 2011, 81(7), 856-865.
[http://dx.doi.org/10.1016/j.bcp.2011.01.009] [PMID: 21276421]
[31]
El-Sonbati, A.Z.; Diab, M.A.; Mohamed, G.G.; Saad, M.A.; Morgan, S.M.; El-Sawy, S.E.A. Polymer complexes. LXXVII. Synthesis, characterization, spectroscopic studies and immune response in cattle of quinoline polymer complexes. Appl. Organomet. Chem., 2019, 33(8), e4973.
[http://dx.doi.org/10.1002/aoc.4973]
[32]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[33]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal Growth Factor Receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[34]
Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev., 2008, 22(10), 1276-1312.
[http://dx.doi.org/10.1101/gad.1653708] [PMID: 18483217]
[35]
Ferrara, N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev., 2004, 25(4), 581-611.
[http://dx.doi.org/10.1210/er.2003-0027] [PMID: 15294883]
[36]
Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129.
[http://dx.doi.org/10.1038/nrc2780] [PMID: 20094046]
[37]
Carter, B.D.; Kaltschmidt, C.; Kaltschmidt, B.; Offenhäuser, N.; Böhm-Matthaei, R.; Baeuerle, P.A.; Barde, Y.A. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75. Science, 1996, 272(5261), 542-545.
[http://dx.doi.org/10.1126/science.272.5261.542] [PMID: 8614802]
[38]
Pollak, M. The insulin and insulin-like growth factor receptor family in neoplasia: An update. Nat. Rev. Cancer, 2012, 12(3), 159-169.
[http://dx.doi.org/10.1038/nrc3215] [PMID: 22337149]
[39]
Pasquale, E.B. Eph receptors and ephrins in cancer: Bidirectional signalling and beyond. Nat. Rev. Cancer, 2010, 10(3), 165-180.
[http://dx.doi.org/10.1038/nrc2806] [PMID: 20179713]
[40]
Fagiani, E.; Christofori, G. Angiopoietins in angiogenesis. Cancer Lett., 2013, 328(1), 18-26.
[http://dx.doi.org/10.1016/j.canlet.2012.08.018] [PMID: 22922303]
[41]
Li, E.; Hristova, K. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry, 2006, 45(20), 6241-6251.
[http://dx.doi.org/10.1021/bi060609y] [PMID: 16700535]
[42]
Gschwind, A.; Fischer, O.M.; Ullrich, A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat. Rev. Cancer, 2004, 4(5), 361-370.
[http://dx.doi.org/10.1038/nrc1360] [PMID: 15122207]
[43]
Ostman, A.; Böhmer, F.D. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol., 2001, 11(6), 258-266.
[http://dx.doi.org/10.1016/S0962-8924(01)01990-0] [PMID: 11356362]
[44]
Hubbard, S.R.; Miller, W.T. Receptor tyrosine kinases: Mechanisms of activation and signaling. Curr. Opin. Cell Biol., 2007, 19(2), 117-123.
[http://dx.doi.org/10.1016/j.ceb.2007.02.010] [PMID: 17306972]
[45]
Reid, A.; Vidal, L.; Shaw, H.; de Bono, J. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur. J. Cancer, 2007, 43(3), 481-489.
[http://dx.doi.org/10.1016/j.ejca.2006.11.007] [PMID: 17208435]
[46]
Wang, S.E.; Narasanna, A.; Perez-Torres, M.; Xiang, B.; Wu, F.Y.; Yang, S.; Carpenter, G.; Gazdar, A.F.; Muthuswamy, S.K.; Arteaga, C.L. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell, 2006, 10(1), 25-38.
[http://dx.doi.org/10.1016/j.ccr.2006.05.023] [PMID: 16843263]
[47]
Johnson, G.L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002, 298(5600), 1911-1912.
[http://dx.doi.org/10.1126/science.1072682] [PMID: 12471242]
[48]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[49]
Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res., 2015, 35(6), 600-604.
[http://dx.doi.org/10.3109/10799893.2015.1030412] [PMID: 26096166]
[50]
English, J.M.; Cobb, M.H. Pharmacological inhibitors of MAPK pathways. Trends Pharmacol. Sci., 2002, 23(1), 40-45.
[http://dx.doi.org/10.1016/S0165-6147(00)01865-4] [PMID: 11804650]
[51]
Vanhaesebroeck, B.; Leevers, S.J.; Panayotou, G.; Waterfield, M.D. Phosphoinositide 3-kinases: A conserved family of signal transducers. Trends Biochem. Sci., 1997, 22(7), 267-272.
[http://dx.doi.org/10.1016/S0968-0004(97)01061-X] [PMID: 9255069]
[52]
Lacouture, M.E. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat. Rev. Cancer, 2006, 6(10), 803-812.
[http://dx.doi.org/10.1038/nrc1970] [PMID: 16990857]
[53]
Chong, C.R.; Jänne, P.A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med., 2013, 19(11), 1389-1400.
[http://dx.doi.org/10.1038/nm.3388] [PMID: 24202392]
[54]
Jänne, P.A.; Yang, J.C.H.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; Haggstrom, D.; Felip, E.; Kim, J.H.; Frewer, P.; Cantarini, M.; Brown, K.H.; Dickinson, P.A.; Ghiorghiu, S.; Ranson, M. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(18), 1689-1699.
[http://dx.doi.org/10.1056/NEJMoa1411817] [PMID: 25923549]
[55]
Hovinga, K.E.; McCrea, H.J.; Brennan, C.; Huse, J.; Zheng, J.; Esquenazi, Y.; Panageas, K.S.; Tabar, V. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. J. Neurooncol., 2019, 142(2), 337-345.
[http://dx.doi.org/10.1007/s11060-019-03102-5] [PMID: 30680510]
[56]
Cho, H.S.; Mason, K.; Ramyar, K.X.; Stanley, A.M.; Gabelli, S.B.; Denney, D.W., Jr; Leahy, D.J. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature, 2003, 421(6924), 756-760.
[http://dx.doi.org/10.1038/nature01392] [PMID: 12610629]
[57]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
[58]
Arteaga, C.L.; Sliwkowski, M.X.; Osborne, C.K.; Perez, E.A.; Puglisi, F.; Gianni, L. Treatment of HER2-positive breast cancer: Current status and future perspectives. Nat. Rev. Clin. Oncol., 2011, 9(1), 16-32.
[http://dx.doi.org/10.1038/nrclinonc.2011.177] [PMID: 22124364]
[59]
Bublil, E.M.; Pines, G.; Patel, G.; Fruhwirth, G.; Ng, T.; Yarden, Y. Kinase-mediated quasi-dimers of EGFR. FASEB J., 2010, 24(12), 4744-4755.
[PMID: 20682838]
[60]
Arkhipov, A.; Shan, Y.; Kim, E.T.; Dror, R.O.; Shaw, D.E. Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family. eLife, 2013, 2, e00708.
[http://dx.doi.org/10.7554/eLife.00708] [PMID: 23878723]
[61]
Xu, J.; Du, Y.; Liu, X.J.; Zhu, B.Y.; Zhang, S.H.; Li, L.; Li, Y.; Wang, X.F.; Shan, C.K.; Wang, R.Q.; Zhen, Y.S. Recombinant EGFR/MMP-2 bi-targeted fusion protein markedly binding to non-small-cell lung carcinoma and exerting potent therapeutic efficacy. Pharmacol. Res., 2017, 126, 66-76.
[http://dx.doi.org/10.1016/j.phrs.2017.04.001] [PMID: 28392461]
[62]
Izumi, Y.; Xu, L.; di Tomaso, E.; Fukumura, D.; Jain, R.K. Tumour biology: Herceptin acts as an anti-angiogenic cocktail. Nature, 2002, 416(6878), 279-280.
[http://dx.doi.org/10.1038/416279b] [PMID: 11907566]
[63]
Tsao, M.S.; Sakurada, A.; Cutz, J.C.; Zhu, C.Q.; Kamel-Reid, S.; Squire, J.; Lorimer, I.; Zhang, T.; Liu, N.; Daneshmand, M.; Marrano, P.; da Cunha Santos, G.; Lagarde, A.; Richardson, F.; Seymour, L.; Whitehead, M.; Ding, K.; Pater, J.; Shepherd, F.A. Erlotinib in lung cancer - molecular and clinical predictors of outcome. N. Engl. J. Med., 2005, 353(2), 133-144.
[http://dx.doi.org/10.1056/NEJMoa050736] [PMID: 16014883]
[64]
Pao, W.; Miller, V.A.; Politi, K.A.; Riely, G.J.; Somwar, R.; Zakowski, M.F.; Kris, M.G.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med., 2005, 2(3), e73.
[http://dx.doi.org/10.1371/journal.pmed.0020073] [PMID: 15737014]
[65]
Kotecki, N.; Gombos, A.; Awada, A. Adjuvant therapeutic approaches of HER2-positive breast cancer with a focus on neratinib maleate. Expert Rev. Anticancer Ther., 2019, 19(6), 447-454.
[http://dx.doi.org/10.1080/14737140.2019.1613892] [PMID: 31082272]
[66]
Burstein, H.J.; Sun, Y.; Dirix, L.Y.; Jiang, Z.; Paridaens, R.; Tan, A.R.; Awada, A.; Ranade, A.; Jiao, S.; Schwartz, G.; Abbas, R.; Powell, C.; Turnbull, K.; Vermette, J.; Zacharchuk, C.; Badwe, R. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J. Clin. Oncol., 2010, 28(8), 1301-1307.
[http://dx.doi.org/10.1200/JCO.2009.25.8707] [PMID: 20142587]
[67]
Blair, H.A. Pyrotinib: First global approval. Drugs, 2018, 78(16), 1751-1755.
[http://dx.doi.org/10.1007/s40265-018-0997-0] [PMID: 30341682]
[68]
Bryce, A.H.; Rao, R.; Sarkaria, J.; Reid, J.M.; Qi, Y.; Qin, R.; James, C.D.; Jenkins, R.B.; Boni, J.; Erlichman, C.; Haluska, P. Phase I study of temsirolimus in combination with EKB-569 in patients with advanced solid tumors. Invest. New Drugs, 2012, 30(5), 1934-1941.
[http://dx.doi.org/10.1007/s10637-011-9742-1] [PMID: 21881915]
[69]
Tammela, T.; Zarkada, G.; Wallgard, E.; Murtomäki, A.; Suchting, S.; Wirzenius, M.; Waltari, M.; Hellström, M.; Schomber, T.; Peltonen, R.; Freitas, C.; Duarte, A.; Isoniemi, H.; Laakkonen, P.; Christofori, G.; Ylä-Herttuala, S.; Shibuya, M.; Pytowski, B.; Eichmann, A.; Betsholtz, C.; Alitalo, K. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature, 2008, 454(7204), 656-660.
[http://dx.doi.org/10.1038/nature07083] [PMID: 18594512]
[70]
Kiselyov, A.; Balakin, K.V.; Tkachenko, S.E. VEGF/VEGFR signalling as a target for inhibiting angiogenesis. Expert Opin. Investig. Drugs, 2007, 16(1), 83-107.
[http://dx.doi.org/10.1517/13543784.16.1.83] [PMID: 17155856]
[71]
Sitohy, B.; Nagy, J.A.; Dvorak, H.F. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target. Cancer Res., 2012, 72(8), 1909-1914.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3406] [PMID: 22508695]
[72]
Bhargava, P.; Robinson, M.O. Development of second-generation VEGFR tyrosine kinase inhibitors: Current status. Curr. Oncol. Rep., 2011, 13(2), 103-111.
[http://dx.doi.org/10.1007/s11912-011-0154-3] [PMID: 21318618]
[73]
Dibb, N.J.; Dilworth, S.M.; Mol, C.D. Switching on kinases: Oncogenic activation of BRAF and the PDGFR family. Nat. Rev. Cancer, 2004, 4(9), 718-727.
[http://dx.doi.org/10.1038/nrc1434] [PMID: 15343278]
[74]
Board, R.; Jayson, G.C. Platelet-Derived Growth Factor Receptor (PDGFR): A target for anticancer therapeutics. Drug Resist. Updat., 2005, 8(1-2), 75-83.
[http://dx.doi.org/10.1016/j.drup.2005.03.004] [PMID: 15939344]
[75]
Jechlinger, M.; Sommer, A.; Moriggl, R.; Seither, P.; Kraut, N.; Capodiecci, P.; Donovan, M.; Cordon-Cardo, C.; Beug, H.; Grünert, S. Autocrine PDGFR signaling promotes mammary cancer metastasis. J. Clin. Invest., 2006, 116(6), 1561-1570.
[http://dx.doi.org/10.1172/JCI24652] [PMID: 16741576]
[76]
Worby, C.A.; Vega, Q.C.; Zhao, Y.; Chao, H.H.J.; Seasholtz, A.F.; Dixon, J.E. Glial cell line-derived neurotrophic factor signals through the RET receptor and activates mitogen-activated protein kinase. J. Biol. Chem., 1996, 271(39), 23619-23622.
[http://dx.doi.org/10.1074/jbc.271.39.23619] [PMID: 8798576]
[77]
Webb, D.J.; Donais, K.; Whitmore, L.A.; Thomas, S.M.; Turner, C.E.; Parsons, J.T.; Horwitz, A.F. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol., 2004, 6(2), 154-161.
[http://dx.doi.org/10.1038/ncb1094] [PMID: 14743221]
[78]
Syed, Y.Y. Anlotinib: First global approval. Drugs, 2018, 78(10), 1057-1062.
[http://dx.doi.org/10.1007/s40265-018-0939-x] [PMID: 29943374]
[79]
Shen, G.; Zheng, F.; Ren, D.; Du, F.; Dong, Q.; Wang, Z.; Zhao, F.; Ahmad, R.; Zhao, J. Anlotinib: A novel multi-targeting tyrosine kinase inhibitor in clinical development. J. Hematol. Oncol., 2018, 11(1), 120.
[http://dx.doi.org/10.1186/s13045-018-0664-7] [PMID: 30231931]
[80]
Tahara, M.; Kiyota, N.; Yamazaki, T.; Chayahara, N.; Nakano, K.; Inagaki, L.; Toda, K.; Enokida, T.; Minami, H.; Imamura, Y.; Sasaki, T.; Suzuki, T.; Fujino, K.; Dutcus, C.E.; Takahashi, S. Lenvatinib for anaplastic thyroid cancer. Front. Oncol., 2017, 7, 25.
[http://dx.doi.org/10.3389/fonc.2017.00025] [PMID: 28299283]
[81]
Elisei, R.; Schlumberger, M.J.; Müller, S.P.; Schöffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarzab, B.; Medvedev, V.; Kreissl, M.C.; Niederle, B.; Cohen, E.E.W.; Wirth, L.J.; Ali, H.; Hessel, C.; Yaron, Y.; Ball, D.; Nelkin, B.; Sherman, S.I. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol., 2013, 31(29), 3639-3646.
[http://dx.doi.org/10.1200/JCO.2012.48.4659] [PMID: 24002501]
[82]
Cabanillas, M.E.; Habra, M.A. Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treat. Rev., 2016, 42, 47-55.
[http://dx.doi.org/10.1016/j.ctrv.2015.11.003] [PMID: 26678514]
[83]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[84]
Simiczyjew, A.; Dratkiewicz, E.; Van Troys, M.; Ampe, C.; Styczeń, I.; Nowak, D. Combination of EGFR inhibitor Lapatinib and MET inhibitor Foretinib inhibits migration of triple negative breast cancer cell lines. Cancers (Basel), 2018, 10(9), 335.
[http://dx.doi.org/10.3390/cancers10090335] [PMID: 30227653]
[85]
Gras, J. Lucitanib hydrochloride dual FGFR/VEGFR inhibitor treatment of NSCLC and breast cancer. Drugs Future, 2015, 40(8), 509-521.
[86]
Tomillero, A.; Moral, M.A. Gateways to clinical trials. Method Find. Exp. Clin., 2010, 32(7), 518-548.
[http://dx.doi.org/10.1358/mf.2010.32.7.1549223]
[87]
Xi, N.; Zhang, Y.J.; Wang, Z.H.; Wu, Y.J.; Wang, T.J. CT053PTSA, a novel c-MET and VEGFR2 inhibitor, potently suppresses angiogenesis and tumor growth. Cancer Res., 2014, 74(19) Meeting Abstract 1755
[88]
Doi, T.; Matsubara, N.; Kawai, A.; Naka, N.; Takahashi, S.; Uemura, H.; Yamamoto, N. Phase I study of TAS-115, a novel oral multi-kinase inhibitor, in patients with advanced solid tumors. Invest. New Drug, 2020, 38(4), 1175-1185.
[89]
Macpherson, I.R.; Poondru, S.; Simon, G.R.; Gedrich, R.; Brock, K.; Hopkins, C.A.; Stewart, K.; Stephens, A.; Evans, T.R.J. A phase 1 study of OSI-930 in combination with erlotinib in patients with advanced solid tumours. Eur. J. Cancer, 2013, 49(4), 782-789.
[http://dx.doi.org/10.1016/j.ejca.2012.09.036] [PMID: 23099006]
[90]
Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Vande Woude, G. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103.
[http://dx.doi.org/10.1038/nrc3205] [PMID: 22270953]
[91]
Cui, J.J.; Tran-Dubé, M.; Shen, H.; Nambu, M.; Kung, P.P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R.S.; Edwards, M.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of Mesenchymal-Epithelial Transition factor (c-MET) kinase and Anaplastic Lymphoma Kinase (ALK). J. Med. Chem., 2011, 54(18), 6342-6363.
[http://dx.doi.org/10.1021/jm2007613] [PMID: 21812414]
[92]
Baltschukat, S.; Engstler, B.S.; Huang, A.; Hao, H.X.; Tam, A.; Wang, H.Q.; Liang, J.; DiMare, M.T.; Bhang, H.C.; Wang, Y.; Furet, P.; Sellers, W.R.; Hofmann, F.; Schoepfer, J.; Tiedt, R. Capmatinib (INC280) is active against models of non-small cell lung cancer and other cancer types with defined mechanisms of MET activation. Clin. Cancer Res., 2019, 25(10), 3164-3175.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2814] [PMID: 30674502]
[93]
Lolkema, M.P.; Bohets, H.H.; Arkenau, H.T.; Lampo, A.; Barale, E.; de Jonge, M.J.A.; van Doorn, L.; Hellemans, P.; de Bono, J.S.; Eskens, F.A.L.M. The c-Met tyrosine kinase inhibitor JNJ-38877605 causes renal toxicity through species-specific insoluble metabolite formation. Clin. Cancer Res., 2015, 21(10), 2297-2304.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3258] [PMID: 25745036]
[94]
Pennacchietti, S.; Cazzanti, M.; Bertotti, A.; Rideout, W.M., III; Han, M.; Gyuris, J.; Perera, T.; Comoglio, P.M.; Trusolino, L.; Michieli, P. Microenvironment-derived HGF overcomes genetically determined sensitivity to anti-MET drugs. Cancer Res., 2014, 74(22), 6598-6609.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0761] [PMID: 25217525]
[95]
Cui, J.J.; McTigue, M.; Nambu, M.; Tran-Dubé, M.; Pairish, M.; Shen, H.; Jia, L.; Cheng, H.; Hoffman, J.; Le, P.; Jalaie, M.; Goetz, G.H.; Ryan, K.; Grodsky, N.; Deng, Y.L.; Parker, M.; Timofeevski, S.; Murray, B.W.; Yamazaki, S.; Aguirre, S.; Li, Q.; Zou, H.; Christensen, J. Discovery of a novel class of exquisitely selective Mesenchymal-Epithelial Transition factor (c-MET) protein kinase inhibitors and identification of the clinical candidate 2-(4-(1-(quinolin-6-ylmethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl)ethanol (PF-04217903) for the treatment of cancer. J. Med. Chem., 2012, 55(18), 8091-8109.
[http://dx.doi.org/10.1021/jm300967g] [PMID: 22924734]
[96]
Chessari, G.; Woodhead, A.J. From fragment to clinical candidate--a historical perspective. Drug Discov. Today, 2009, 14(13-14), 668-675.
[http://dx.doi.org/10.1016/j.drudis.2009.04.007] [PMID: 19427404]
[97]
Hong, D.S.; Rosen, P.; Lockhart, A.C.; Fu, S.; Janku, F.; Kurzrock, R.; Khan, R.; Amore, B.; Caudillo, I.; Deng, H.; Hwang, Y.C.; Loberg, R.; Ngarmchamnanrith, G.; Beaupre, D.M.; Lee, P. A first-in-human study of AMG 208, an oral MET inhibitor, in adult patients with advanced solid tumors. Oncotarget, 2015, 6(21), 18693-18706.
[http://dx.doi.org/10.18632/oncotarget.4472] [PMID: 26155941]
[98]
Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov., 2005, 4(12), 988-1004.
[http://dx.doi.org/10.1038/nrd1902] [PMID: 16341064]
[99]
DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab., 2008, 7(1), 11-20.
[http://dx.doi.org/10.1016/j.cmet.2007.10.002] [PMID: 18177721]
[100]
Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol., 2010, 11(5), 329-341.
[http://dx.doi.org/10.1038/nrm2882] [PMID: 20379207]
[101]
Serra, V.; Markman, B.; Scaltriti, M.; Eichhorn, P.J.; Valero, V.; Guzman, M.; Botero, M.L.; Llonch, E.; Atzori, F.; Di Cosimo, S.; Maira, M.; Garcia-Echeverria, C.; Parra, J.L.; Arribas, J.; Baselga, J. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res., 2008, 68(19), 8022-8030.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1385] [PMID: 18829560]
[102]
Maira, S.M.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell, C.; Fritsch, C.; Brachmann, S.; Chène, P.; De Pover, A.; Schoemaker, K.; Fabbro, D.; Gabriel, D.; Simonen, M.; Murphy, L.; Finan, P.; Sellers, W.; García-Echeverría, C. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther., 2008, 7(7), 1851-1863.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0017] [PMID: 18606717]
[103]
Williams, R. Discontinued drugs in 2012: Oncology drugs. Expert Opin. Investig. Drugs, 2013, 22(12), 1627-1644.
[http://dx.doi.org/10.1517/13543784.2013.847088] [PMID: 24102323]
[104]
Ding, Y.; Liu, J.G.; Calley, J.N.; Qian, H.R.; Iversen, P.W.; Ebert, P.J.; Beckmann, R.P.; Donoho, G.P.; Martinez, R.; Wu, W.J.; Lin, A.B.; Bowden, E.; Aggarwal, A. PI3K/AKT signaling pathway is transcriptionally elevated in prexasertib-resistant TNBC PDX models. Cancer Res., 2018, 78(13) Meeting Abstract 2586
[105]
Jalota-Badhwar, A.; Bhatia, D.R.; Boreddy, S.; Joshi, A.; Venkatraman, M.; Desai, N.; Chaudhari, S.; Bose, J.; Kolla, L.S.; Deore, V.; Yewalkar, N.; Kumar, S.; Sharma, R.; Damre, A.; More, A.; Sharma, S.; Agarwal, V.R. P7170: A novel molecule with unique profile of mTORC1/C2 and activin receptor-like kinase 1 inhibition leading to antitumor and antiangiogenic activity. Mol. Cancer Ther., 2015, 14(5), 1095-1106.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0486] [PMID: 25700704]
[106]
Basu, D.; Salgado, C.M.; Bauer, B.; Khakoo, Y.; Patel, J.R.; Hoehl, R.M.; Bertolini, D.M.; Zabec, J.; Brzozowski, M.R.; Reyes-Múgica, M. The dual PI3K/mToR inhibitor Omipalisib/GSK2126458 inhibits clonogenic growth in oncogenically-transformed cells from neurocutaneous melanocytosis. Cancer Genom. Proteom., 2018, 15(4), 239-248.
[http://dx.doi.org/10.21873/cgp.20082] [PMID: 29976629]
[107]
Braz, J.C.; Gill, R.M.; Corbly, A.K.; Jones, B.D.; Jin, N.; Vlahos, C.J.; Wu, Q.; Shen, W. Selective activation of PI3Kalpha/Akt/GSK-3β signalling and cardiac compensatory hypertrophy during recovery from heart failure. Eur. J. Heart Fail., 2009, 11(8), 739-748.
[http://dx.doi.org/10.1093/eurjhf/hfp094] [PMID: 19633101]
[108]
Thomas, S.M.; Brugge, J.S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol., 1997, 13, 513-609.
[http://dx.doi.org/10.1146/annurev.cellbio.13.1.513] [PMID: 9442882]
[109]
Fabian, M.A.; Biggs, W.H., III; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; Benedetti, M.G.; Carter, T.A.; Ciceri, P.; Edeen, P.T.; Floyd, M.; Ford, J.M.; Galvin, M.; Gerlach, J.L.; Grotzfeld, R.M.; Herrgard, S.; Insko, D.E.; Insko, M.A.; Lai, A.G.; Lélias, J.M.; Mehta, S.A.; Milanov, Z.V.; Velasco, A.M.; Wodicka, L.M.; Patel, H.K.; Zarrinkar, P.P.; Lockhart, D.J. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol., 2005, 23(3), 329-336.
[http://dx.doi.org/10.1038/nbt1068] [PMID: 15711537]
[110]
Demetri, G.D.; von Mehren, M.; Blanke, C.D.; Van den Abbeele, A.D.; Eisenberg, B.; Roberts, P.J.; Heinrich, M.C.; Tuveson, D.A.; Singer, S.; Janicek, M.; Fletcher, J.A.; Silverman, S.G.; Silberman, S.L.; Capdeville, R.; Kiese, B.; Peng, B.; Dimitrijevic, S.; Druker, B.J.; Corless, C.; Fletcher, C.D.M.; Joensuu, H. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med., 2002, 347(7), 472-480.
[http://dx.doi.org/10.1056/NEJMoa020461] [PMID: 12181401]
[111]
Kantarjian, H.; Giles, F.; Wunderle, L.; Bhalla, K.; O’Brien, S.; Wassmann, B.; Tanaka, C.; Manley, P.; Rae, P.; Mietlowski, W.; Bochinski, K.; Hochhaus, A.; Griffin, J.D.; Hoelzer, D.; Albitar, M.; Dugan, M.; Cortes, J.; Alland, L.; Ottmann, O.G. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N. Engl. J. Med., 2006, 354(24), 2542-2551.
[http://dx.doi.org/10.1056/NEJMoa055104] [PMID: 16775235]
[112]
Talpaz, M.; Shah, N.P.; Kantarjian, H.; Donato, N.; Nicoll, J.; Paquette, R.; Cortes, J.; O’Brien, S.; Nicaise, C.; Bleickardt, E.; Blackwood-Chirchir, M.A.; Iyer, V.; Chen, T.T.; Huang, F.; Decillis, A.P.; Sawyers, C.L. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2006, 354(24), 2531-2541.
[http://dx.doi.org/10.1056/NEJMoa055229] [PMID: 16775234]
[113]
Khoury, H.J.; Cortes, J.E.; Kantarjian, H.M.; Gambacorti-Passerini, C.; Baccarani, M.; Kim, D.W.; Zaritskey, A.; Countouriotis, A.; Besson, N.; Leip, E.; Kelly, V.; Brümmendorf, T.H. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood, 2012, 119(15), 3403-3412.
[http://dx.doi.org/10.1182/blood-2011-11-390120] [PMID: 22371878]
[114]
Abad, E.; Graifer, D.; Lyakhovich, A. DNA damage response and resistance of cancer stem cells. Cancer Lett., 2020, 474, 106-117.
[http://dx.doi.org/10.1016/j.canlet.2020.01.008] [PMID: 31968219]
[115]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[116]
Rabik, C.A.; Dolan, M.E. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev., 2007, 33(1), 9-23.
[http://dx.doi.org/10.1016/j.ctrv.2006.09.006] [PMID: 17084534]
[117]
Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70, 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[118]
Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440.
[http://dx.doi.org/10.1038/nrm831] [PMID: 12042765]
[119]
Banerjee, S.; Veale, E.B.; Phelan, C.M.; Murphy, S.A.; Tocci, G.M.; Gillespie, L.J.; Frimannsson, D.O.; Kelly, J.M.; Gunnlaugsson, T. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem. Soc. Rev., 2013, 42(4), 1601-1618.
[http://dx.doi.org/10.1039/c2cs35467e] [PMID: 23325367]
[120]
Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[121]
Lee, D.H.; Kim, S.W.; Suh, C.; Lee, J.S.; Lee, J.H.; Lee, S.J.; Ryoo, B.Y.; Park, K.; Kim, J.S.; Heo, D.S.; Kim, N.K. Belotecan, new camptothecin analogue, is active in patients with small-cell lung cancer: results of a multicenter early phase II study. Ann. Oncol., 2008, 19(1), 123-127.
[http://dx.doi.org/10.1093/annonc/mdm437] [PMID: 17823384]
[122]
Vredenburgh, J.J.; Desjardins, A.; Herndon, J.E., II; Dowell, J.M.; Reardon, D.A.; Quinn, J.A.; Rich, J.N.; Sathornsumetee, S.; Gururangan, S.; Wagner, M.; Bigner, D.D.; Friedman, A.H.; Friedman, H.S. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res., 2007, 13(4), 1253-1259.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2309] [PMID: 17317837]
[123]
Ketron, A.C.; Denny, W.A.; Graves, D.E.; Osheroff, N. Amsacrine as a topoisomerase II poison: Importance of drug-DNA interactions. Biochemistry, 2012, 51(8), 1730-1739.
[http://dx.doi.org/10.1021/bi201159b] [PMID: 22304499]
[124]
Clark, J.W. Rubitecan. Expert Opin. Investig. Drugs, 2006, 15(1), 71-79.
[http://dx.doi.org/10.1517/13543784.15.1.71] [PMID: 16370935]
[125]
Pond, C.D.; Marshall, K.M.; Barrows, L.R. Identification of a small topoisomerase I-binding peptide that has synergistic antitumor activity with 9-aminocamptothecin. Mol. Cancer Ther., 2006, 5(3), 739-745.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0377] [PMID: 16546989]
[126]
Munster, P.N.; Daud, A.I. Preclinical and clinical activity of the topoisomerase I inhibitor, karenitecin, in melanoma. Expert Opin. Investig. Drugs, 2011, 20(11), 1565-1574.
[http://dx.doi.org/10.1517/13543784.2011.617740] [PMID: 21985236]
[127]
Tsakalozou, E.; Howard, D.; Leggas, M. In vitro and ex vivo antileukemia activity of AR-67, a novel lipophilic camptothecin. Cancer Res., 2011, 71(8) Meeting Abstract 3547
[http://dx.doi.org/10.1158/1538-7445.AM2011-3547]
[128]
Chatterjee, A.; Digumarti, R.; Katneni, K.; Upreti, V.V.; Mamidi, R.N.; Mullangi, R.; Surath, A.; Srinivas, M.L.; Uppalapati, S.; Jiwatani, S.; Srinivas, N.R. Safety, tolerability, and pharmacokinetics of a capsule formulation of DRF-1042, a novel camptothecin analog, in refractory cancer patients in a bridging phase I study. J. Clin. Pharmacol., 2005, 45(4), 453-460.
[http://dx.doi.org/10.1177/0091270004270225] [PMID: 15778426]
[129]
Giles, F.J.; Tallman, M.S.; Garcia-Manero, G.; Cortes, J.E.; Thomas, D.A.; Wierda, W.G.; Verstovsek, S.; Hamilton, M.; Barrett, E.; Albitar, M.; Kantarjian, H.M. Phase I and pharmacokinetic study of a low-clearance, unilamellar liposomal formulation of lurtotecan, a topoisomerase 1 inhibitor, in patients with advanced leukemia. Cancer, 2004, 100(7), 1449-1458.
[http://dx.doi.org/10.1002/cncr.20132] [PMID: 15042679]
[130]
Zou, J.; Li, S.; Chen, Z.; Lu, Z.; Gao, J.; Zou, J.; Lin, X.; Li, Y.; Zhang, C.; Shen, L. A novel oral camptothecin analog, gimatecan, exhibits superior antitumor efficacy than irinotecan toward esophageal squamous cell carcinoma in vitro and in vivo. Cell Death Dis., 2018, 9(6), 661.
[http://dx.doi.org/10.1038/s41419-018-0700-0] [PMID: 29855512]
[131]
Propper, D.; Jones, K.; Anthoney, D.A.; Mansoor, W.; Ford, D.; Eatock, M.; Agarwal, R.; Inatani, M.; Saito, T.; Abe, M.; Evans, T.R.J. Phase II study of TP300 in patients with advanced gastric or gastro-oesophageal junction adenocarcinoma. BMC Cancer, 2016, 16(1), 779.
[http://dx.doi.org/10.1186/s12885-016-2828-6] [PMID: 27724887]
[132]
Joerger, M.; Hess, D.; Delmonte, A.; Gallerani, E.; Fasolo, A.; Gianni, L.; Cresta, S.; Barbieri, P.; Pace, S.; Sessa, C. Integrative population pharmacokinetic and pharmacodynamic dose finding approach of the new camptothecin compound namitecan (ST1968). Br. J. Clin. Pharmacol., 2015, 80(1), 128-138.
[http://dx.doi.org/10.1111/bcp.12583] [PMID: 25580946]
[133]
Hu, Z.; Sun, Y.; Du, F.; Niu, W.; Xu, F.; Huang, Y.; Li, C. Accurate determination of the anticancer prodrug simmitecan and its active metabolite chimmitecan in various plasma samples based on immediate deactivation of blood carboxylesterases. J. Chromatogr. A, 2011, 1218(38), 6646-6653.
[http://dx.doi.org/10.1016/j.chroma.2011.07.042] [PMID: 21839460]
[134]
Zhao, Z.Y.; Xie, X.J.; Li, W.H.; Liu, J.; Chen, Z.; Zhang, B.; Li, T.; Li, S.L.; Lu, J.G.; Zhang, L.R.; Zhang, L.H.; Xu, Z.S.; Lee, H.C.; Zhao, Y.J. A cell-permeant mimetic of NMN activates SARM1 to produce cyclic ADP-Ribose and induce non-apoptotic cell death. Science, 2019, 15, 452-466.
[http://dx.doi.org/10.1016/j.isci.2019.05.001]
[135]
Liehr, J.G.; Harris, N.J.; Mendoza, J.; Ahmed, A.E.; Giovanella, B.C. Pharmacology of camptothecin esters. Ann. N. Y. Acad. Sci., 2000, 922, 216-223.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb07040.x] [PMID: 11193897]
[136]
Kurtzberg, L.S.; Roth, S.; Krumbholz, R.; Crawford, J.; Bormann, C.; Dunham, S.; Yao, M.; Rouleau, C.; Bagley, R.G.; Yu, X.J.; Wang, F.; Schmid, S.M.; Lavoie, E.J.; Teicher, B.A. Genz-644282, a novel non-camptothecin topoisomerase I inhibitor for cancer treatment. Clin. Cancer Res., 2011, 17(9), 2777-2787.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0542] [PMID: 21415217]
[137]
Kroep, J.R.; Gelderblom, H. Diflomotecan, a promising homocamptothecin for cancer therapy. Expert Opin. Investig. Drugs, 2009, 18(1), 69-75.
[http://dx.doi.org/10.1517/13543780802571674] [PMID: 19053883]
[138]
Ghamande, S.; Lin, C.C.; Cho, D.C.; Shapiro, G.I.; Kwak, E.L.; Silverman, M.H.; Tseng, Y.; Kuo, M.W.; Mach, W.B.; Hsu, S.C.; Coleman, T.; Yang, J.C.H.; Cheng, A.L.; Ghalib, M.H.; Chuadhary, I.; Goel, S. A phase 1 open-label, sequential dose-escalation study investigating the safety, tolerability, and pharmacokinetics of intravenous TLC388 administered to patients with advanced solid tumors. Invest. New Drugs, 2014, 32(3), 445-451.
[http://dx.doi.org/10.1007/s10637-013-0044-7] [PMID: 24271274]
[139]
Williams, R. Discontinued drugs in 2011: Oncology drugs. Expert Opin. Investig. Drugs, 2013, 22(1), 9-34.
[http://dx.doi.org/10.1517/13543784.2013.739605] [PMID: 23127145]
[140]
Slingerland, M.; Gelderblom, H. The fate of camptothecin glycoconjugate: report of a clinical hold during a phase II study of BAY 56-3722 (formerly BAY 38-3441), in patients with recurrent or metastatic colorectal cancer resistant/refractory to irinotecan. Invest. New Drugs, 2012, 30(3), 1208-1210.
[http://dx.doi.org/10.1007/s10637-011-9679-4] [PMID: 21547368]
[141]
Trocóniz, I.F.; Cendrós, J.M.; Soto, E.; Pruñonosa, J.; Perez-Mayoral, A.; Peraire, C.; Principe, P.; Delavault, P.; Cvitkovic, F.; Lesimple, T.; Obach, R. Population pharmacokinetic/pharmacodynamic modeling of drug-induced adverse effects of a novel homocamptothecin analog, elomotecan (BN80927), in a Phase I dose finding study in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2012, 70(2), 239-250.
[http://dx.doi.org/10.1007/s00280-012-1906-y] [PMID: 22699813]
[142]
See, E.; Zhang, W.; Liu, J.; Svirskis, D.; Baguley, B.C.; Shaw, J.P.; Wang, G.; Wu, Z. Physicochemical characterization of asulacrine towards the development of an anticancer liposomal formulation via active drug loading: Stability, solubility, lipophilicity and ionization. Int. J. Pharm., 2014, 473(1-2), 528-535.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.033] [PMID: 25079434]
[143]
Korth, C.; May, B.C.H.; Cohen, F.E.; Prusiner, S.B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. USA, 2001, 98(17), 9836-9841.
[http://dx.doi.org/10.1073/pnas.161274798] [PMID: 11504948]
[144]
Adjei, A.A. Current status of pyrazoloacridine as an anticancer agent. Invest. New Drugs, 1999, 17(1), 43-48.
[http://dx.doi.org/10.1023/A:1006242321596] [PMID: 10555121]
[145]
Fortune, J.M.; Velea, L.; Graves, D.E.; Utsugi, T.; Yamada, Y.; Osheroff, N. DNA topoisomerases as targets for the anticancer drug TAS-103: DNA interactions and topoisomerase catalytic inhibition. Biochemistry, 1999, 38(47), 15580-15586.
[http://dx.doi.org/10.1021/bi991792g] [PMID: 10569942]
[146]
Stankovic, T.; Kidd, A.M.J.; Sutcliffe, A.; McGuire, G.M.; Robinson, P.; Weber, P.; Bedenham, T.; Bradwell, A.R.; Easton, D.F.; Lennox, G.G.; Haites, N.; Byrd, P.J.; Taylor, A.M.R. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am. J. Hum. Genet., 1998, 62(2), 334-345.
[http://dx.doi.org/10.1086/301706] [PMID: 9463314]
[147]
Jeggo, P.A.; Carr, A.M.; Lehmann, A.R. Splitting the ATM: Distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet., 1998, 14(8), 312-316.
[http://dx.doi.org/10.1016/S0168-9525(98)01511-X] [PMID: 9724963]
[148]
Hann, M.M.; Alderton, W.; Davenport, R.; Williams, P. Recent disclosures of clinical candidates: Highlights from the Society of Medicines Research Symposium. Drug Future, 2017, 42(2), 125-129.
[http://dx.doi.org/10.1358/dof.2017.042.02.2592800]
[149]
Simoneaux, R.; Font, H. AACR-NCI-EORTC International Conference on molecular targets and cancer therapeutics: Discovery, biology, and clinical applications Drug Future, Philadelphia, Pennsylvania, USA October 27-30 2017.
[150]
Aller, S.G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.P.; Harrell, P.M.; Trinh, Y.T.; Zhang, Q.H.; Urbatsch, I.L.; Chang, G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 2009, 323(5922), 1718-1722.
[http://dx.doi.org/10.1126/science.1168750]
[151]
Dantzig, A.H.; Law, K.L.; Cao, J.; Starling, J.J. Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr. Med. Chem., 2001, 8(1), 39-50.
[http://dx.doi.org/10.2174/0929867013373903] [PMID: 11172691]
[152]
Katayama, R.; Koike, S.; Sato, S.; Sugimoto, Y.; Tsuruo, T.; Fujita, N. Dofequidar fumarate sensitizes cancer stem-like side population cells to chemotherapeutic drugs by inhibiting ABCG2/BCRP-mediated drug export. Cancer Sci., 2009, 100(11), 2060-2068.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01288.x] [PMID: 19673889]
[153]
Luurtsema, G.; Schuit, R.C.; Klok, R.P.; Verbeek, J.; Leysen, J.E.; Lammertsma, A.A.; Windhorst, A.D. Evaluation of [11C]laniquidar as a tracer of P-glycoprotein: Radiosynthesis and biodistribution in rats. Nucl. Med. Biol., 2009, 36(6), 643-649.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.03.004] [PMID: 19647170]
[154]
Yu, Y.; Xin, Y.; Yang, H.F.; Liu, Z.M.; Liu, Y.L.; Shen, G.L.; Yu, R.Q. Electrochemical sensor for cinchonine based on a competitive host-guest complexation. Anal. Chim. Acta, 2005, 528(2), 135-142.
[http://dx.doi.org/10.1016/j.aca.2004.10.041]
[155]
Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol., 2004, 4(7), 499-511.
[http://dx.doi.org/10.1038/nri1391] [PMID: 15229469]
[156]
Grimmig, T.; Matthes, N.; Hoeland, K.; Tripathi, S.; Chandraker, A.; Grimm, M.; Moench, R.; Moll, E.M.; Friess, H.; Tsaur, I.; Blaheta, R.A.; Germer, C.T.; Waaga-Gasser, A.M.; Gasser, M. TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer. Int. J. Oncol., 2015, 47(3), 857-866.
[http://dx.doi.org/10.3892/ijo.2015.3069] [PMID: 26134824]
[157]
Stanley, M.A. Imiquimod and the imidazoquinolones: Mechanism of action and therapeutic potential. Clin. Exp. Dermatol., 2002, 27(7), 571-577.
[http://dx.doi.org/10.1046/j.1365-2230.2002.01151.x] [PMID: 12464152]
[158]
Fidock, M.D.; Souberbielle, B.E.; Laxton, C.; Rawal, J.; Delpuech-Adams, O.; Corey, T.P.; Colman, P.; Kumar, V.; Cheng, J.B.; Wright, K.; Srinivasan, S.; Rana, K.; Craig, C.; Horscroft, N.; Perros, M.; Westby, M.; Webster, R.; van der Ryst, E. The innate immune response, clinical outcomes, and ex vivo HCV antiviral efficacy of a TLR7 agonist (PF-4878691). Clin. Pharmacol. Ther., 2011, 89(6), 821-829.
[http://dx.doi.org/10.1038/clpt.2011.60] [PMID: 21451504]
[159]
Fakhari, A.; Nugent, S.; Elvecrog, J.; Vasilakos, J.; Corcoran, M.; Tilahun, A.; Siebenaler, K.; Sun, J.; Subramony, J.A.; Schwarz, A. Thermosensitive gel-based formulation for intratumoral delivery of Toll-Like Receptor 7/8 dual agonist, MEDI9197. J. Pharm. Sci., 2017, 106(8), 2037-2045.
[http://dx.doi.org/10.1016/j.xphs.2017.04.041] [PMID: 28456734]
[160]
Cheong, J.E.; Ekkati, A.; Sun, L. A patent review of IDO1 inhibitors for cancer. Expert Opin. Ther. Pat., 2018, 28(4), 317-330.
[http://dx.doi.org/10.1080/13543776.2018.1441290] [PMID: 29473428]
[161]
Galanis, A.; Ma, H.; Rajkhowa, T.; Ramachandran, A.; Small, D.; Cortes, J.; Levis, M. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood, 2014, 123(1), 94-100.
[http://dx.doi.org/10.1182/blood-2013-10-529313] [PMID: 24227820]
[162]
Gueorguieva, I.; Tabernero, J.; Melisi, D.; Macarulla, T.; Merz, V.; Waterhouse, T.H.; Miles, C.; Lahn, M.M.; Cleverly, A.; Benhadji, K.A. Population pharmacokinetics and exposure-overall survival analysis of the transforming growth factor-β inhibitor galunisertib in patients with pancreatic cancer. Cancer Chemother. Pharmacol., 2019, 84(5), 1003-1015.
[http://dx.doi.org/10.1007/s00280-019-03931-1] [PMID: 31482224]
[163]
Baxendale, I.R.; Cheung, S.; Kitching, M.O.; Ley, S.V.; Shearman, J.W. The synthesis of neurotensin antagonist SR 48692 for prostate cancer research. Bioorg. Med. Chem., 2013, 21(14), 4378-4387.
[http://dx.doi.org/10.1016/j.bmc.2013.04.075] [PMID: 23721919]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy