Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Melatonin Treatment Combined with TGF-β Silencing Inhibits Epithelial- Mesenchymal Transition in CF41 Canine Mammary Cancer Cell Line

Author(s): Paulo R. Custódio, Jucimara Colombo, Fabrício V. Ventura, Tialfi B. Castro and Debora A.P.C. Zuccari*

Volume 20, Issue 8, 2020

Page: [989 - 997] Pages: 9

DOI: 10.2174/1871520620666200407122635

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Mammary cancer is the most prevalent type of cancer in female dogs. The main cause of mortality is the occurrence of metastasis. The metastatic process is complex and involves the Epithelial- Mesenchymal Transition (EMT), which can be activated by Transforming Growth Factor beta (TGF-β) and involves changes in cellular phenotype, as well as, in the expression of proteins such as E-cadherin, N-cadherin, vimentin and claudin-7. Melatonin is a hormone with oncostatic and anti-metastatic properties and appears to participate in the TGF-β pathway. Thus, the present work aimed to evaluate the expression of EMT markers, E-cadherin, N-cadherin, vimentin and claudin-7, as well as, the cell migration of the canine mammary cancer cell line, CF41, after treatment with melatonin and TGF-β silencing.

Methods: Canine mammary cancer cell line, CF41, was cultured and characterized in relation to markers ER, PR and HER2. Cell line CF41 with reducing expression level of TGF-βwas performed according to Leonel et al. (2017). Expression of the protein E-caderin, N-cadherin, vimentin and claudin-7 was evaluated by immunocytochemistry and quantified by optical densitometry. The analysis of cell migration was performed in transwell chambers with 8μM pore size membrane.

Results: CF41 cells present a triple negative phenotype, which is an aggressive phenotype. Immunocytochemistry staining showed increased expression of E-caderin and claudin-7 (P˂0.05) and decreased expression of N-cadherin and vimentin (P˂0.05) in CF41 cells after treatment with 1mM melatonin and TGF-β silencing. Moreover, treatment with melatonin and TGF-β silencing was able to reduce migration in cell line CF41 (P˂0.05).

Conclusion: Our data suggests that therapies combining TGF- β1 silencing and melatonin may be effective in suppressing the process of EMT, corroborating the hypothesis that melatonin acts on the TGF-β1 pathway and can reduce the metastatic potential of CF41 cells. This is so far the first study that reports melatonin treatment in CF41 cells with TGF-β1 silencing and its effect on EMT. Thus, further studies are needed to confirm this hypothesis.

Keywords: Canine mammary cancer, melatonin, TGF-β, TGF-βsh, Epithelial Mesenchymal Transition (EMT), metastasis.

« Previous
Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Yoshida, K.; Yoshida, S.; Choisunirachon, N.; Saito, T.; Matsumoto, K.; Saeki, K.; Mochizuki, M.; Nishimura, R.; Sasaki, N.; Nakagawa, T. The relationship between clinicopathological features and expression of epithelial and mesenchymal markers in spontaneous canine mammary gland tumors. J. Vet. Med. Sci., 2014, 76(10), 1321-1327.
[http://dx.doi.org/10.1292/jvms.14-0104] [PMID: 24931646]
[3]
Gelaleti, G.B.; Borin, T.F.; Maschio-Signorini, L.B.; Moschetta, M.G.; Hellmén, E.; Viloria-Petit, A.M.; Zuccari, D.A.P.C. Melatonin and IL-25 modulate apoptosis and angiogenesis mediators in metastatic (CF-41) and non-metastatic (CMT-U229) canine mammary tumour cells. Vet. Comp. Oncol., 2017, 15(4), 1572-1584.
[http://dx.doi.org/10.1111/vco.12303] [PMID: 28322030]
[4]
Reiter, R.J.; Rosales-Corral, S.A.; Tan, D.X.; Acuna-Castroviejo, D.; Qin, L.; Yang, S.F.; Xu, K. Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int. J. Mol. Sci., 2017, 18(4)E843
[http://dx.doi.org/10.3390/ijms18040843] [PMID: 28420185]
[5]
Leonel, C.; Borin, T.F.; de Carvalho Ferreira, L.; Moschetta, M.G.; Bajgelman, M.C.; Viloria-Petit, A.M.; de Campos Zuccari, D.A. Inhibition of epitelial-mesenchymal transition and metastasis by combined TGFbeta knockdown and metformin treatment in a canine mammary cancer xenograft model. J. Mammary Gland Biol. Neoplasia, 2017, 22(1), 27-41.
[http://dx.doi.org/10.1007/s10911-016-9370-7] [PMID: 28078601]
[6]
Peart, O. Metastatic breast cancer. Radiol. Technol., 2017, 88(5), 519M-539M.
[PMID: 28500107]
[7]
Kotiyal, S.; Bhattacharya, S. Breast cancer stem cells, EMT and therapeutic targets. Biochem. Biophys. Res. Commun., 2014, 453(1), 112-116.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.069] [PMID: 25261721]
[8]
Pang, M.F.; Georgoudaki, A.M.; Lambut, L.; Johansson, J.; Tabor, V.; Hagikura, K.; Jin, Y.; Jansson, M.; Alexander, J.S.; Nelson, C.M.; Jakobsson, L.; Betsholtz, C.; Sund, M.; Karlsson, M.C.I.; Fuxe, J. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene, 2016, 35(6), 748-760.
[http://dx.doi.org/10.1038/onc.2015.133] [PMID: 25961925]
[9]
Singh, M.; Yelle, N.; Venugopal, C.; Singh, S.K. EMT: Mechanisms and therapeutic implications. Pharmacol. Ther., 2018, 182, 80-94.
[http://dx.doi.org/10.1016/j.pharmthera.2017.08.009] [PMID: 28834698]
[10]
Gonçalves, Ndo.N.; Colombo, J.; Lopes, J.R.; Gelaleti, G.B.; Moschetta, M.G.; Sonehara, N.M.; Hellmén, E.; Zanon, Cde.F.; Oliani, S.M.; Zuccari, D.A.P.C. Effect of melatonin in epithelial mesenchymal transition markers and invasive properties of breast cancer stem cells of canine and human cell lines. PLoS One, 2016, 11(3)e0150407
[http://dx.doi.org/10.1371/journal.pone.0150407] [PMID: 26934679]
[11]
Liao, S.; Yu, C.; Liu, H.; Zhang, C.; Li, Y.; Zhong, X. Long non-coding RNA H19 promotes the proliferation and invasion of lung cancer cells and regulates the expression of E-cadherin, N-cadherin, and vimentin. OncoTargets Ther., 2019, 12, 4099-4107.
[http://dx.doi.org/10.2147/OTT.S185156] [PMID: 31190899]
[12]
Yu, Z.; Sun, M.; Jin, F.; Xiao, Q.; He, M.; Wu, H.; Ren, J.; Zhao, L.; Zhao, H.; Yao, W.; Shan, F.; Cao, Y.; Wei, M. Combined expression of ezrin and E-cadherin is associated with lymph node metastasis and poor prognosis in breast cancer. Oncol. Rep., 2015, 34(1), 165-174.
[http://dx.doi.org/10.3892/or.2015.3967] [PMID: 25955302]
[13]
Bozhkova, D.M.; Poryazova-Markova, E.G. The epitelial-mesenchimal transition, E-cadherin and tumor progression in ovarian serous tumors. Folia Med. (Plovdiv), 2019, 61(2), 296-302.
[http://dx.doi.org/10.2478/folmed-2018-0082] [PMID: 31301662]
[14]
Zhou, C.; Yang, C.; Chong, D. E-cadherin expression is associated with susceptibility and clinicopathological characteristics of thyroid cancer: A PRISMA-compliant meta-analysis. Medicine (Baltimore), 2019, 98(30)e16187
[http://dx.doi.org/10.1097/MD.0000000000016187] [PMID: 31348230]
[15]
Angadi, P.V.; Patil, P.V.; Angadi, V.; Mane, D.; Shekar, S.; Hallikerimath, S.; Kale, A.D.; Kardesai, S.G. Immunoexpression of epithelial mesenchymal transition proteins E-cadherin, b-catenin, and N-cadherin in oral squamous cell carcinoma. Int. J. Surg. Pathol., 2016, 24(8), 696-703.
[http://dx.doi.org/10.1177/1066896916654763] [PMID: 27312520]
[16]
Li, X.; Yang, J.; Wang, X.; Li, X.; Liang, J.; Xing, H. Role of TWIST2, E-cadherin and Vimentin in epithelial ovarian carcinogenesis and prognosis and their interaction in cancer progression. Eur. J. Gynaecol. Oncol., 2016, 37(1), 100-108.
[PMID: 27048119]
[17]
Katayama, A.; Handa, T.; Komatsu, K.; Togo, M.; Horiguchi, J.; Nishiyama, M.; Oyama, T. Expression patterns of claudins in patients with triple-negative breast cancer are associated with nodal metastasis and worse outcome. Pathol. Int., 2017, 67(8), 404-413.
[http://dx.doi.org/10.1111/pin.12560] [PMID: 28699235]
[18]
Wu, M.Y.; Hill, C.S. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev. Cell, 2009, 16(3), 329-343.
[http://dx.doi.org/10.1016/j.devcel.2009.02.012] [PMID: 19289080]
[19]
Burnett, J.P.; Korkaya, H.; Ouzounova, M.D.; Jiang, H.; Conley, S.J.; Newman, B.W.; Sun, L.; Connarn, J.N.; Chen, C.S.; Zhang, N.; Wicha, M.S.; Sun, D. Trastuzumab resistance induces EMT to transform HER2(+) PTEN(-) to a triple negative breast cancer that requires unique treatment options. Sci. Rep., 2015, 5, 15821.
[http://dx.doi.org/10.1038/srep15821] [PMID: 26522776]
[20]
Chen, Y.; Di, C.; Zhang, X.; Wang, J.; Wang, F.; Yan, J.F.; Xu, C.; Zhang, J.; Zhang, Q.; Li, H.; Yang, H.; Zhang, H. Transforming growth factor β signaling pathway: A promising therapeutic target for cancer. J. Cell. Physiol., 2020, 235(3), 1903-1914.
[http://dx.doi.org/10.1002/jcp.29108] [PMID: 31332789]
[21]
Hao, Y.; Baker, D.; Ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11)E2767
[http://dx.doi.org/10.3390/ijms20112767] [PMID: 31195692]
[22]
Di Bella, G.; Mascia, F.; Gualano, L.; Di Bella, L. Melatonin anticancer effects: review. Int. J. Mol. Sci., 2013, 14(2), 2410-2430.
[http://dx.doi.org/10.3390/ijms14022410] [PMID: 23348932]
[23]
Jardim-Perassi, B.V.; Arbab, A.S.; Ferreira, L.C.; Borin, T.F.; Varma, N.R.; Iskander, A.S.; Shankar, A.; Ali, M.M.; de Campos Zuccari, D.A. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One, 2014, 9(1)e85311
[http://dx.doi.org/10.1371/journal.pone.0085311] [PMID: 24416386]
[24]
Borin, T.F.; Arbab, A.S.; Gelaleti, G.B.; Ferreira, L.C.; Moschetta, M.G.; Jardim-Perassi, B.V.; Iskander, A.S.; Varma, N.R.; Shankar, A.; Coimbra, V.B.; Fabri, V.A.; de Oliveira, J.G.; Zuccari, D.A.P.C. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J. Pineal Res., 2016, 60(1), 3-15.
[http://dx.doi.org/10.1111/jpi.12270] [PMID: 26292662]
[25]
Colombo, J.; Jardim-Perassi, B.V.; Ferreira, J.P.S. Braga, C.Z.; Sonehara, N.M.; Paula-Júnior, R.; Moschetta, M.G.; Girol, A.P.; Zuccari, D.A.P.C. Melatonin differentially modulates NF-ҡB expression in breast cancer and liver cancer cells. Anticancer. Agents Med. Chem., 2018, 18, 1688-1694.
[http://dx.doi.org/10.2174/1871520618666180131112304] [PMID: 29384062]
[26]
Yu, N.; Sun, Y.T.; Su, X.M.; He, M.; Dai, B.; Kang, J. Melatonin attenuates TGFβ1-induced epithelial-mesenchymal transition in lung alveolar epithelial cells. Mol. Med. Rep., 2016, 14(6), 5567-5572.
[http://dx.doi.org/10.3892/mmr.2016.5950] [PMID: 27878256]
[27]
Wang, Y.R.; Hong, R.T.; Xie, Y.Y.; Xu, J.M. Melatonin ameliorates liver fibrosis induced by carbon tetrachloride in rats via inhibiting TGF-β1/Smad signaling pathway. Curr Med Sci, 2018, 38(2), 236-244.
[http://dx.doi.org/10.1007/s11596-018-1871-8] [PMID: 30074181]
[28]
Liu, H.; Zhu, Y.; Zhu, H.; Cai, R.; Wang, K.F.; Song, J.; Wang, R.X.; Zhou, R.X. Role of transforming growth factor β1 in the inhibition of gastric cancer cell proliferation by melatonin in vitro and in vivo. Oncol. Rep., 2019, 42(2), 753-762.
[http://dx.doi.org/10.3892/or.2019.7190] [PMID: 31173264]
[29]
Zhang, H.; Pei, S.; Zhou, B.; Wang, H.; Du, H.; Zhang, D.; Lin, D. Establishment and characterization of a new triple-negative canine mammary cancer cell line. Tissue Cell, 2018, 54, 10-19.
[http://dx.doi.org/10.1016/j.tice.2018.07.003] [PMID: 30309498]
[30]
Zuccari, D.A.P.C.; Pavam, M.V.; Terziam, A.C.B.; Pereira, R.S.; Ruiz, C.M.; Andrade, J.C. Immunohoistochemical evaluation of E-cadherin, ki-67 and PCNA in mammary neoplasias: Correlation of prognostic factors and clinical outcome. Pesqui. Vet. Bras., 2008, 28, 207-215.
[http://dx.doi.org/10.1590/S0100-736X2008000400003]
[31]
Varallo, G.R.; Gelaleti, G.B.; Maschio-Signorini, L.B.; Moschetta, M.G.; Lopes, J.R.; Nardi, A.B.; Tinucci-Costa, M.; Malagoli, R.; Zuccari, D.A.P.C Prognostic phenotypic classification for canine mammary tumors. Oncol. Rep., 2019, 18, 6545-6553.
[32]
Tabariès, S.; Siegel, P.M. The role of claudins in cancer metastasis. Oncogene, 2017, 36(9), 1176-1190.
[http://dx.doi.org/10.1038/onc.2016.289] [PMID: 27524421]
[33]
Herschkowitz, J.I.; Simin, K.; Weigman, V.J.; Mikaelian, I.; Usary, J.; Hu, Z.; Rasmussen, K.E.; Jones, L.P.; Assefnia, S.; Chandrasekharan, S.; Backlund, M.G.; Yin, Y.; Khramtsov, A.I.; Bastein, R.; Quackenbush, J.; Glazer, R.I.; Brown, P.H.; Green, J.E.; Kopelovich, L.; Furth, P.A.; Palazzo, J.P.; Olopade, O.I.; Bernard, P.S.; Churchill, G.A.; Van Dyke, T.; Perou, C.M. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol., 2007, 8(5), R76.
[http://dx.doi.org/10.1186/gb-2007-8-5-r76] [PMID: 17493263]
[34]
Sauer, T.; Pedersen, M.K.; Ebeltoft, K.; Naess, O. Reduced expression of Claudin-7 in fine needle aspirates from breast carcinomas correlate with grading and metastatic disease. Cytopathology, 2005, 16(4), 193-198.
[http://dx.doi.org/10.1111/j.1365-2303.2005.00257.x] [PMID: 16048505]
[35]
Zhai, X.; Zhu, H.; Wang, W.; Zhang, S.; Zhang, Y.; Mao, G. Abnormal expression of EMT-related proteins, S100A4, vimentin and E-cadherin, is correlated with clinicopathological features and prognosis in HCC. Med. Oncol., 2014, 31(6), 970.
[http://dx.doi.org/10.1007/s12032-014-0970-z] [PMID: 24781336]
[36]
Li, S.S.; Xu, L.Z.; Zhou, W.; Yao, S.; Wang, C.L.; Xia, J.L.; Wang, H.F.; Kamran, M.; Xue, X.Y.; Dong, L.; Wang, J.; Ding, X.D.; Bella, L.; Bugeon, L.; Xu, J.; Zheng, F.M.; Dallman, M.J.; Lam, E.W.F.; Liu, Q. p62/SQSTM1 interacts with vimentin to enhance breast cancer metastasis. Carcinogenesis, 2017, 38(11), 1092-1103.
[http://dx.doi.org/10.1093/carcin/bgx099] [PMID: 28968743]
[37]
Richardson, A.M.; Havel, L.S.; Koyen, A.E.; Konen, J.M.; Shupe, J.; Wiles, W.G., IV; Martin, W.D.; Grossniklaus, H.E.; Sica, G.; Gilbert-Ross, M.; Marcus, A.I. Vimentin is required for lung adenocarcinoma metastasis via heterotypic tumor cell-cancer-associated fibroblast interactions during collective invasion. Clin. Cancer Res., 2018, 24(2), 420-432.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1776] [PMID: 29208669]
[38]
Gilles, C.; Polette, M.; Mestdagt, M.; Nawrocki-Raby, B.; Ruggeri, P.; Birembaut, P.; Foidart, J.M. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res., 2003, 63(10), 2658-2664.
[PMID: 12750294]
[39]
Mao, L.; Dauchy, R.T.; Blask, D.E.; Slakey, L.M.; Xiang, S.; Yuan, L.; Dauchy, E.M.; Shan, B.; Brainard, G.C.; Hanifin, J.P.; Frasch, T.; Duplessis, T.T.; Hill, S.M. Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3β. Mol. Endocrinol., 2012, 26(11), 1808-1820.
[http://dx.doi.org/10.1210/me.2012-1071] [PMID: 23002080]
[40]
Proietti, S.; Cucina, A.; D’Anselmi, F.; Dinicola, S.; Pasqualato, A.; Lisi, E.; Bizzarri, M. Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells. J. Pineal Res., 2011, 50(2), 150-158.
[PMID: 21091766]
[41]
Ordoñez, R.; Carbajo-Pescador, S.; Prieto-Dominguez, N.; García-Palomo, A.; González-Gallego, J.; Mauriz, J.L. Inhibition of matrix metalloproteinase-9 and nuclear factor kappa B contribute to melatonin prevention of motility and invasiveness in HepG2 liver cancer cells. J. Pineal Res., 2014, 56, 20-30.
[42]
Zhou, Q.; Gui, S.; Zhou, Q.; Wang, Y. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway. PLoS One, 2014, 9(7)e101132
[http://dx.doi.org/10.1371/journal.pone.0101132] [PMID: 24992189]
[43]
Iturriaga, M.P.; Paredes, R.; Arias, J.I.; Torres, C.G. Meloxicam decreases the migration and invasion of CF41.Mg canine mammary carcinoma cells. Oncol. Lett., 2017, 14(2), 2198-2206.
[http://dx.doi.org/10.3892/ol.2017.6400] [PMID: 28781660]
[44]
Moore, L.D.; Isayeva, T.; Siegal, G.P.; Ponnazhagan, S. Silencing of transforming growth factor-β1 in situ by RNA interference for breast cancer: implications for proliferation and migration in vitro and metastasis in vivo. Clin. Cancer Res., 2008, 14(15), 4961-4970.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4604] [PMID: 18676771]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy