Title:Influence of Biocompatible Coating on Titanium Surface Characteristics
Volume: 10
Issue: 1
Author(s): Željka Petrović*, Jozefina Katić, Ankica Šarić, Ines Despotović, Nives Matijaković, Damir Kralj, Mirela Leskovac and Marin Petković
Affiliation:
- Division of Materials Chemistry, Rudjer Boskovic Institute, Bijenicka cesta 54, Zagreb 10002,Croatia
Keywords:
Titanium, vitamin D3, self-assembly, surface coating, calcium phosphates, corrosion properties.
Abstract:
Background: Nowadays investigations in the field of dental implants engineering are focused
on bioactivity and osseointegration properties.
Objective: In this study, the oxide-covered titanium was functionalized by vitamin D3 molecules via a
simple self-assembly method with the aim to design more corrosion-resistant and at the same time
more bioactive surface.
Methods: Surface properties of the D3-coated titanium were examined by scanning electron microscopy,
attenuated total reflectance Fourier transform infrared spectroscopy, and contact angle measurements,
while long-term corrosion stability during immersion in an artificial saliva solution was
investigated in situ by electrochemical impedance spectroscopy.
Results: Results of all techniques confirmed a successful formation of the vitamin D3 layer on the
oxide-covered titanium. Besides very good corrosion resistivity (~5 MΩ cm2), the D3-modified titanium
surface induced spontaneous formation of biocompatible bone-like calcium phosphates (CaP).
Conclusion: Observed in vitro CaP-forming ability as a result of D3-modified titanium/artificial saliva
interactions could serve as a promising predictor of in vivo bioactivity of implant materials.