Title: Conotoxins-New Vistas for Peptide Therapeutics
Volume: 6
Issue: 12
Author(s): Robert M. Jones and Grzegorz Bulaj
Affiliation:
Keywords:
Conotoxins, Peptide Therapeutics, Conantokins, Contulakins, Conodipines, Phospholipid, nAChRs, Phyllomedusa, Agelenopsis aperta, Conus episcopatus, Conus radiatus, Contryphan and Bromocontryphan, Disulfide templates, ICK, Channel recognition motif, Potassium Channel Selective Conotoxins, Nicotinic Acetylcholine Channel (nAChR), Pisciorous Conus, Sodium channel selective conotoxins, Conus purpurascens, Ziconotide (SNX 111), Prostate cancer, Epilepsy, Anticonvulsants
Abstract: There are approximately 500 species of predatory cone snails within the genus Conus. They comprise what is arguably the largest single genus of marine animals alive today. It has been estimated that the venom of each Conus species has between 50 and 200 components. These highly constrained sulfur rich components or conotoxins represent a unique arsenal of neuropharmacologically active peptides that have been evolutionarily tailored to afford unprecedented and exquisite selectivity for a wide variety of ion-channel subtypes. Remarkable divergence occurs when cone snails speciate. Consequently, the complement of venom peptides in any one Conus species is distinct from that of any other species. Hence many thousands of peptides that modulate ion channel function are present within Conus venoms. Evolutionary pressures have afforded a pre-optimized, structurally sophisticated library that has been fine tuned over 50 million years. The statistics associated with sampling such libraries bear testimony to the validity and feasibility of this strategy. Although approximately 100 conotoxin sequences have been published in the scientific literature, representing a mere 0.2 pecent of the estimated library size, this sample has already afforded a peptide of proven clinical utility and several pre-clinical leads for CNS disorders. Conus libraries represent a rich pharmacopoeia and the potential to therapeutically mine such a resource appears limitless. The paucity of synthetic methodologies necessary to achieve the regioisomeric folding patterns present in these native peptides precludes access to synthetic conotoxin libraries, further validating the overall mining strategy. In this article, we will present a pragmatic overview of the molecular diversity as well as the neurobiological mechanisms that define each major class of conotoxin.