Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Dysmetabolic Hyperferritinemia and Dysmetabolic Iron Overload Syndrome (DIOS): Two Related Conditions or Different Entities?

Author(s): Raffaela Rametta, Anna L. Fracanzani, Silvia Fargion* and Paola Dongiovanni

Volume 26, Issue 10, 2020

Page: [1025 - 1035] Pages: 11

DOI: 10.2174/1381612826666200131103018

Price: $65

Open Access Journals Promotions 2
Abstract

Hyperferritinemia is observed in one-third of patients with non-alcoholic fatty liver disease (NAFLD) and Metabolic Syndrome (MetS). The condition characterized by increased body iron stores associated with components of MetS has been defined as Dysmetabolic Iron Overload Syndrome (DIOS). DIOS represents the most frequent iron overload condition, since it is observed in 15% of patients with MetS and in half of those with NAFLD and its clinical presentation overlaps almost completely with that of dysmetabolic hyperferritinemia (DH).

The pathogenetic mechanisms linking insulin resistance (IR), NAFLD and DIOS to iron overload are still debated. Hepcidin seems to play a role in iron accumulation in DIOS and NAFLD patients who show elevated serum hepcidin levels. The iron challenge does not restrain iron absorption despite adequate hepcidin production, suggesting that an impaired hepcidin activity rather than a deficit of hormone production underlies DIOS pathogenesis.

Acquired and genetic factors are recognized to contribute to iron accumulation in NAFLD whereas additional studies are required to clearly demonstrate whether the same or different genetic factors lead to iron overload in DIOS.

Finally, iron depletion by phlebotomy, together with the modification of diet and life-style habits, represents the therapeutic approach to decrease metabolic alterations and liver enzymes in NAFLD and DIOS patients.

In this review, we summarized the current knowledge on the dysregulation of iron homeostasis in NAFLD and DIOS in the attempt to clarify whether they are different or more likely strictly related conditions, sharing the same pathogenic cause i.e. the MetS.

Keywords: Iron overload, DIOS, NAFLD, hepcidin, ferritin, phlebotomy.

[1]
Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell 2004; 117(3): 285-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00343-5] [PMID: 15109490]
[2]
Babitt JL, Lin HY. The molecular pathogenesis of hereditary hemochromatosis. Semin Liver Dis 2011; 31(3): 280-92.
[http://dx.doi.org/10.1055/s-0031-1286059] [PMID: 21901658]
[3]
Anderson GJ, Vulpe CD. Mammalian iron transport. Cell Mol Life Sci 2009; 66(20): 3241-61.
[http://dx.doi.org/10.1007/s00018-009-0051-1] [PMID: 19484405]
[4]
Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306(5704): 2090-3.
[http://dx.doi.org/10.1126/science.1104742] [PMID: 15514116]
[5]
Fleming RE, Ponka P. Iron overload in human disease. N Engl J Med 2012; 366(4): 348-59.
[http://dx.doi.org/10.1056/NEJMra1004967] [PMID: 22276824]
[6]
Goswami T, Andrews NC. Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 2006; 281(39): 28494-8.
[http://dx.doi.org/10.1074/jbc.C600197200] [PMID: 16893896]
[7]
Schmidt PJ, Toran PT, Giannetti AM, Bjorkman PJ, Andrews NC. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab 2008; 7(3): 205-14.
[http://dx.doi.org/10.1016/j.cmet.2007.11.016] [PMID: 18316026]
[8]
Poli M, Luscieti S, Gandini V, et al. Transferrin receptor 2 and HFE regulate furin expression via mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) signaling. Implications for transferrin-dependent hepcidin regulation. Haematologica 2010; 95(11): 1832-40.
[http://dx.doi.org/10.3324/haematol.2010.027003] [PMID: 20634490]
[9]
Kautz L, Meynard D, Monnier A, et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood 2008; 112(4): 1503-9.
[http://dx.doi.org/10.1182/blood-2008-03-143354] [PMID: 18539898]
[10]
Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 2007; 117(7): 1933-9.
[http://dx.doi.org/10.1172/JCI31342] [PMID: 17607365]
[11]
Niederkofler V, Salie R, Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest 2005; 115(8): 2180-6.
[http://dx.doi.org/10.1172/JCI25683] [PMID: 16075058]
[12]
Wang RH, Li C, Xu X, et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab 2005; 2(6): 399-409.
[http://dx.doi.org/10.1016/j.cmet.2005.10.010] [PMID: 16330325]
[13]
Meynard D, Kautz L, Darnaud V, Canonne-Hergaux F, Coppin H, Roth MP. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat Genet 2009; 41(4): 478-81.
[http://dx.doi.org/10.1038/ng.320] [PMID: 19252488]
[14]
Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab 2008; 8(6): 502-11.
[http://dx.doi.org/10.1016/j.cmet.2008.09.012] [PMID: 18976966]
[15]
Camaschella C. Understanding iron homeostasis through genetic analysis of hemochromatosis and related disorders. Blood 2005; 106(12): 3710-7.
[http://dx.doi.org/10.1182/blood-2005-05-1857] [PMID: 16030190]
[16]
Younossi Z, Henry L. Contribution of alcoholic and nonalcoholic fatty liver disease to the burden of liver-related morbidity and mortality. Gastroenterology 2016; 150(8): 1778-85.
[http://dx.doi.org/10.1053/j.gastro.2016.03.005] [PMID: 26980624]
[17]
Marchesini G, Brizi M, Morselli-Labate AM, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999; 107(5): 450-5.
[http://dx.doi.org/10.1016/S0002-9343(99)00271-5] [PMID: 10569299]
[18]
Loomba R, Abraham M, Unalp A, et al. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 2012; 56(3): 943-51.
[http://dx.doi.org/10.1002/hep.25772] [PMID: 22505194]
[19]
Machado M, Marques-Vidal P, Cortez-Pinto H. Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol 2006; 45(4): 600-6.
[http://dx.doi.org/10.1016/j.jhep.2006.06.013] [PMID: 16899321]
[20]
Zelber-Sagi S, Lotan R, Shlomai A, et al. Predictors for incidence and remission of NAFLD in the general population during a seven-year prospective follow-up. J Hepatol 2012; 56(5): 1145-51.
[http://dx.doi.org/10.1016/j.jhep.2011.12.011] [PMID: 22245895]
[21]
Angulo P, Keach JC, Batts KP, Lindor KD. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 1999; 30(6): 1356-62.
[http://dx.doi.org/10.1002/hep.510300604] [PMID: 10573511]
[22]
Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab 2013; 17(3): 329-41.
[http://dx.doi.org/10.1016/j.cmet.2013.02.007] [PMID: 23473030]
[23]
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112(12): 1796-808.
[http://dx.doi.org/10.1172/JCI200319246] [PMID: 14679176]
[24]
Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 2012; 148(5): 852-71.
[http://dx.doi.org/10.1016/j.cell.2012.02.017] [PMID: 22385956]
[25]
Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 2008; 134(2): 424-31.
[http://dx.doi.org/10.1053/j.gastro.2007.11.038] [PMID: 18242210]
[26]
Salonen JT, Tuomainen TP, Nyyssönen K, Lakka HM, Punnonen K. Relation between iron stores and non-insulin dependent diabetes in men: case-control study. BMJ 1998; 317(7160): 727.
[http://dx.doi.org/10.1136/bmj.317.7160.727] [PMID: 9732340]
[27]
Ford ES, Cogswell ME. Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care 1999; 22(12): 1978-83.
[http://dx.doi.org/10.2337/diacare.22.12.1978] [PMID: 10587829]
[28]
Forouhi NG, Harding AH, Allison M, et al. Elevated serum ferritin levels predict new-onset type 2 diabetes: results from the EPIC-Norfolk prospective study. Diabetologia 2007; 50(5): 949-56.
[http://dx.doi.org/10.1007/s00125-007-0604-5] [PMID: 17333112]
[29]
Lee CC, Adler AI, Sandhu MS, et al. Association of C-reactive protein with type 2 diabetes: prospective analysis and meta-analysis. Diabetologia 2009; 52(6): 1040-7.
[http://dx.doi.org/10.1007/s00125-009-1338-3] [PMID: 19326095]
[30]
Dongiovanni P, Valenti L, Ludovica Fracanzani A, Gatti S, Cairo G, Fargion S. Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am J Pathol 2008; 172(3): 738-47.
[http://dx.doi.org/10.2353/ajpath.2008.070097] [PMID: 18245813]
[31]
Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006; 440(7086): 944-8.
[http://dx.doi.org/10.1038/nature04634] [PMID: 16612386]
[32]
Jouihan HA, Cobine PA, Cooksey RC, et al. Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis. Mol Med 2008; 14(3-4): 98-108.
[http://dx.doi.org/10.2119/2007-00114.Jouihan] [PMID: 18317567]
[33]
Azevedo-Martins AK, Lortz S, Lenzen S, Curi R, Eizirik DL, Tiedge M. Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells. Diabetes 2003; 52(1): 93-101.
[http://dx.doi.org/10.2337/diabetes.52.1.93] [PMID: 12502498]
[34]
Montes-Cortes DH, Hicks JJ, Ceballos-Reyes GM, Garcia-Sanchez JR, Medina-Navarro R, Olivares-Corichi IM. Chemical and functional changes of human insulin by in vitro incubation with blood from diabetic patients in oxidative stress. Metabolism 2010; 59(7): 935-42.
[http://dx.doi.org/10.1016/j.metabol.2009.10.013] [PMID: 20022071]
[35]
Ponugoti B, Dong G, Graves DT. Role of forkhead transcription factors in diabetes-induced oxidative stress. Exp Diabetes Res 2012; 2012: 939751
[http://dx.doi.org/10.1155/2012/939751] [PMID: 22454632]
[36]
Valenti L, Fracanzani AL, Dongiovanni P, et al. Tumor necrosis factor alpha promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease. Gastroenterology 2002; 122(2): 274-80.
[http://dx.doi.org/10.1053/gast.2002.31065] [PMID: 11832442]
[37]
Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 2003; 52(7): 1779-85.
[http://dx.doi.org/10.2337/diabetes.52.7.1779] [PMID: 12829646]
[38]
Green A, Basile R, Rumberger JM. Transferrin and iron induce insulin resistance of glucose transport in adipocytes. Metabolism 2006; 55(8): 1042-5.
[http://dx.doi.org/10.1016/j.metabol.2006.03.015] [PMID: 16839839]
[39]
Dongiovanni P, Ruscica M, Rametta R, et al. Dietary iron overload induces visceral adipose tissue insulin resistance. Am J Pathol 2013; 182(6): 2254-63.
[http://dx.doi.org/10.1016/j.ajpath.2013.02.019] [PMID: 23578384]
[40]
Dongiovanni P, Fracanzani AL, Fargion S, Valenti L. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol 2011; 55(4): 920-32.
[http://dx.doi.org/10.1016/j.jhep.2011.05.008] [PMID: 21718726]
[41]
Jehn M, Clark JM, Guallar E. Serum ferritin and risk of the metabolic syndrome in U.S. adults. Diabetes Care 2004; 27(10): 2422-8.
[http://dx.doi.org/10.2337/diacare.27.10.2422] [PMID: 15451911]
[42]
Bozzini C, Girelli D, Olivieri O, et al. Prevalence of body iron excess in the metabolic syndrome. Diabetes Care 2005; 28(8): 2061-3.
[http://dx.doi.org/10.2337/diacare.28.8.2061] [PMID: 16043762]
[43]
Wrede CE, Buettner R, Bollheimer LC, Schölmerich J, Palitzsch KD, Hellerbrand C. Association between serum ferritin and the insulin resistance syndrome in a representative population. Eur J Endocrinol 2006; 154(2): 333-40.
[http://dx.doi.org/10.1530/eje.1.02083] [PMID: 16452549]
[44]
Brudevold R, Hole T, Hammerstrøm J. Hyperferritinemia is associated with insulin resistance and fatty liver in patients without iron overload. PLoS One 2008; 3(10): e3547
[http://dx.doi.org/10.1371/journal.pone.0003547] [PMID: 18958176]
[45]
Bacon BR, Farahvash MJ, Janney CG, Neuschwander-Tetri BA. Nonalcoholic steatohepatitis: an expanded clinical entity. Gastroenterology 1994; 107(4): 1103-9.
[http://dx.doi.org/10.1016/0016-5085(94)90235-6] [PMID: 7523217]
[46]
Fargion S, Mattioli M, Fracanzani AL, et al. Hyperferritinemia, iron overload, and multiple metabolic alterations identify patients at risk for nonalcoholic steatohepatitis. Am J Gastroenterol 2001; 96(8): 2448-55.
[http://dx.doi.org/10.1111/j.1572-0241.2001.04052.x] [PMID: 11513189]
[47]
Mendler MH, Turlin B, Moirand R, et al. Insulin resistance-associated hepatic iron overload. Gastroenterology 1999; 117(5): 1155-63.
[http://dx.doi.org/10.1016/S0016-5085(99)70401-4] [PMID: 10535879]
[48]
Moirand R, Mortaji AM, Loréal O, Paillard F, Brissot P, Deugnier Y. A new syndrome of liver iron overload with normal transferrin saturation. Lancet 1997; 349(9045): 95-7.
[http://dx.doi.org/10.1016/S0140-6736(96)06034-5] [PMID: 8996422]
[49]
Riva A, Trombini P, Mariani R, et al. Revaluation of clinical and histological criteria for diagnosis of dysmetabolic iron overload syndrome. World J Gastroenterol 2008; 14(30): 4745-52.
[http://dx.doi.org/10.3748/wjg.14.4745] [PMID: 18720534]
[50]
Nelson JE, Wilson L, Brunt EM, et al. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology 2011; 53(2): 448-57.
[http://dx.doi.org/10.1002/hep.24038] [PMID: 21274866]
[51]
Valenti L, Fracanzani AL, Bugianesi E, et al. HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 2010; 138(3): 905-12.
[http://dx.doi.org/10.1053/j.gastro.2009.11.013] [PMID: 19931264]
[52]
Turlin B, Mendler MH, Moirand R, Guyader D, Guillygomarc’h A, Deugnier Y. Histologic features of the liver in insulin resistance-associated iron overload. A study of 139 patients. Am J Clin Pathol 2001; 116(2): 263-70.
[http://dx.doi.org/10.1309/WWNE-KW2C-4KTW-PTJ5] [PMID: 11488074]
[53]
Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 2001; 50(8): 1844-50.
[http://dx.doi.org/10.2337/diabetes.50.8.1844] [PMID: 11473047]
[54]
Fernández-Real JM, Ricart-Engel W, Arroyo E, et al. Serum ferritin as a component of the insulin resistance syndrome. Diabetes Care 1998; 21(1): 62-8.
[http://dx.doi.org/10.2337/diacare.21.1.62] [PMID: 9580307]
[55]
Estevez CM, Corya BC. Serial echocardiographic abnormalities in nonbacterial thrombotic endocarditis of the mitral valve. Chest 1976; 69(6): 801-4.
[http://dx.doi.org/10.1378/chest.69.6.801] [PMID: 1277907]
[56]
Adams PC, Reboussin DM, Barton JC, et al. Hemochromatosis and iron-overload screening in a racially diverse population. N Engl J Med 2005; 352(17): 1769-78.
[http://dx.doi.org/10.1056/NEJMoa041534] [PMID: 15858186]
[57]
Moris W, Verhaegh P, Jonkers D, Deursen CV, Koek G. Hyperferritinemia in nonalcoholic fatty liver disease: iron accumulation or inflammation? Semin Liver Dis 2019; 39(4): 476-82.
[http://dx.doi.org/10.1055/s-0039-1693114] [PMID: 31330553]
[58]
Pietrangelo A. Hereditary hemochromatosis--a new look at an old disease. N Engl J Med 2004; 350(23): 2383-97.
[http://dx.doi.org/10.1056/NEJMra031573] [PMID: 15175440]
[59]
Deugnier Y, Bardou-Jacquet É, Lainé F. Dysmetabolic iron overload syndrome (DIOS). Presse Med 2017; 46(12 Pt 2): e306-11.
[http://dx.doi.org/10.1016/j.lpm.2017.05.036] [PMID: 29169710]
[60]
Valenti L, Dongiovanni P, Fracanzani AL, et al. Increased susceptibility to nonalcoholic fatty liver disease in heterozygotes for the mutation responsible for hereditary hemochromatosis. Digestive and liver disease: official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 2003; 35(3): 172-8.
[http://dx.doi.org/10.1016/S1590-8658(03)00025-2]
[61]
Valenti L, Swinkels DW, Burdick L, et al. Serum ferritin levels are associated with vascular damage in patients with nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2011; 21(8): 568-75.
[http://dx.doi.org/10.1016/j.numecd.2010.01.003] [PMID: 20392616]
[62]
Valenti L, Canavesi E, Galmozzi E, et al. Beta-globin mutations are associated with parenchymal siderosis and fibrosis in patients with non-alcoholic fatty liver disease. J Hepatol 2010; 53(5): 927-33.
[http://dx.doi.org/10.1016/j.jhep.2010.05.023] [PMID: 20739079]
[63]
Barisani D, Pelucchi S, Mariani R, et al. Hepcidin and iron-related gene expression in subjects with Dysmetabolic Hepatic Iron Overload. J Hepatol 2008; 49(1): 123-33.
[http://dx.doi.org/10.1016/j.jhep.2008.03.011] [PMID: 18462824]
[64]
Valenti L, Fracanzani AL, Dongiovanni P, et al. Iron depletion by phlebotomy improves insulin resistance in patients with nonalcoholic fatty liver disease and hyperferritinemia: evidence from a case-control study. Am J Gastroenterol 2007; 102(6): 1251-8.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01192.x] [PMID: 17391316]
[65]
Valenti L, Dongiovanni P, Piperno A, et al. Alpha 1-antitrypsin mutations in NAFLD: high prevalence and association with altered iron metabolism but not with liver damage. Hepatology 2006; 44(4): 857-64.
[http://dx.doi.org/10.1002/hep.21329] [PMID: 17006922]
[66]
Haap M, Machann J, von Friedeburg C, et al. Insulin sensitivity and liver fat: role of iron load. J Clin Endocrinol Metab 2011; 96(6): E958-61.
[http://dx.doi.org/10.1210/jc.2010-2682] [PMID: 21430023]
[67]
Zacharski LR, Chow BK, Howes PS, et al. Decreased cancer risk after iron reduction in patients with peripheral arterial disease: results from a randomized trial. J Natl Cancer Inst 2008; 100(14): 996-1002.
[http://dx.doi.org/10.1093/jnci/djn209] [PMID: 18612130]
[68]
Manco M, Alisi A, Real JF, et al. Early interplay of intra-hepatic iron and insulin resistance in children with non-alcoholic fatty liver disease. J Hepatol 2011; 55(3): 647-53.
[http://dx.doi.org/10.1016/j.jhep.2010.12.007] [PMID: 21168460]
[69]
Valenti L, Dongiovanni P, Motta BM, et al. Serum hepcidin and macrophage iron correlate with MCP-1 release and vascular damage in patients with metabolic syndrome alterations. Arterioscler Thromb Vasc Biol 2011; 31(3): 683-90.
[http://dx.doi.org/10.1161/ATVBAHA.110.214858] [PMID: 21183736]
[70]
Facchini FS, Hua NW, Stoohs RA. Effect of iron depletion in carbohydrate-intolerant patients with clinical evidence of nonalcoholic fatty liver disease. Gastroenterology 2002; 122(4): 931-9.
[http://dx.doi.org/10.1053/gast.2002.32403] [PMID: 11910345]
[71]
Valenti L, Moscatiello S, Vanni E, et al. Venesection therapy of insulin resistance-associated hepatic iron overload. Journal of hepatology 2011; 35(3): 344-9.
[72]
Guillygomarc’h A, Mendler MH, Moirand R, et al. Venesection therapy of insulin resistance-associated hepatic iron overload. J Hepatol 2001; 35(3): 344-9.
[http://dx.doi.org/10.1016/S0168-8278(01)00147-7] [PMID: 11592595]
[73]
Piperno A, Vergani A, Salvioni A, et al. Effects of venesections and restricted diet in patients with the insulin-resistance hepatic iron overload syndrome. Liver Int: official journal of the International Association for the Study of the Liver 2004; 24(5): 471-6.
[http://dx.doi.org/10.1111/j.1478-3231.2004.0988.x]
[74]
Chirumbolo S, Rossi AP, Rizzatti V, et al. Iron primes 3T3-L1 adipocytes to a TLR4-mediated inflammatory response. Nutrition 2015; 31(10): 1266-74.
[http://dx.doi.org/10.1016/j.nut.2015.04.007] [PMID: 26206271]
[75]
Gabrielsen JS, Gao Y, Simcox JA, et al. Adipocyte iron regulates adiponectin and insulin sensitivity. J Clin Invest 2012; 122(10): 3529-40.
[http://dx.doi.org/10.1172/JCI44421] [PMID: 22996660]
[76]
Wlazlo N, van Greevenbroek MM, Ferreira I, et al. Iron metabolism is associated with adipocyte insulin resistance and plasma adiponectin: the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study. Diabetes Care 2013; 36(2): 309-15.
[http://dx.doi.org/10.2337/dc12-0505] [PMID: 22961568]
[77]
Gao Y, Li Z, Gabrielsen JS, et al. Adipocyte iron regulates leptin and food intake. J Clin Invest 2015; 125(9): 3681-91.
[http://dx.doi.org/10.1172/JCI81860] [PMID: 26301810]
[78]
Auguet T, Aragonès G, Berlanga A, et al. Hepcidin in morbidly obese women with non-alcoholic fatty liver disease. PLoS One 2017; 12(10): e0187065
[http://dx.doi.org/10.1371/journal.pone.0187065] [PMID: 29065180]
[79]
Marmur J, Beshara S, Eggertsen G, et al. Hepcidin levels correlate to liver iron content, but not steatohepatitis, in non-alcoholic fatty liver disease. BMC Gastroenterol 2018; 18(1): 78.
[http://dx.doi.org/10.1186/s12876-018-0804-0] [PMID: 29871592]
[80]
Bekri S, Gual P, Anty R, et al. Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 2006; 131(3): 788-96.
[http://dx.doi.org/10.1053/j.gastro.2006.07.007] [PMID: 16952548]
[81]
Ruivard M, Lainé F, Ganz T, et al. Iron absorption in dysmetabolic iron overload syndrome is decreased and correlates with increased plasma hepcidin. J Hepatol 2009; 50(6): 1219-25.
[http://dx.doi.org/10.1016/j.jhep.2009.01.029] [PMID: 19398238]
[82]
Rametta R, Dongiovanni P, Pelusi S, et al. Hepcidin resistance in dysmetabolic iron overload. Liver Int: official journal of the International Association for the Study of the Liver 2016; 36(10): 1540-8.
[http://dx.doi.org/10.1111/liv.13124]
[83]
Aigner E, Theurl I, Theurl M, et al. Pathways underlying iron accumulation in human nonalcoholic fatty liver disease. Am J Clin Nutr 2008; 87(5): 1374-83.
[http://dx.doi.org/10.1093/ajcn/87.5.1374] [PMID: 18469261]
[84]
Vecchi C, Montosi G, Garuti C, et al. Gluconeogenic signals regulate iron homeostasis via hepcidin in mice. Gastroenterology 2014; 146(4): 1060-9.
[http://dx.doi.org/10.1053/j.gastro.2013.12.016] [PMID: 24361124]
[85]
Aigner E, Theurl I, Haufe H, et al. Copper availability contributes to iron perturbations in human nonalcoholic fatty liver disease. Gastroenterology 2008; 135(2): 680-8.
[http://dx.doi.org/10.1053/j.gastro.2008.04.007] [PMID: 18505688]
[86]
Zimmermann MB, Zeder C, Muthayya S, et al. Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification. Int J Obes 2008; 32(7): 1098-104.
[http://dx.doi.org/10.1038/ijo.2008.43] [PMID: 18427564]
[87]
Sonnweber T, Ress C, Nairz M, et al. High-fat diet causes iron deficiency via hepcidin-independent reduction of duodenal iron absorption. J Nutr Biochem 2012; 23(12): 1600-8.
[http://dx.doi.org/10.1016/j.jnutbio.2011.10.013] [PMID: 22444869]
[88]
Otogawa K, Kinoshita K, Fujii H, et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: implications for the pathogenesis of human nonalcoholic steatohepatitis. Am J Pathol 2007; 170(3): 967-80.
[http://dx.doi.org/10.2353/ajpath.2007.060441] [PMID: 17322381]
[89]
Dongiovanni P, Lanti C, Gatti S, et al. High fat diet subverts hepatocellular iron uptake determining dysmetabolic iron overload. PLoS One 2015; 10(2): e0116855
[http://dx.doi.org/10.1371/journal.pone.0116855] [PMID: 25647178]
[90]
Vulpe CD, Kuo YM, Murphy TL, et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 1999; 21(2): 195-9.
[http://dx.doi.org/10.1038/5979] [PMID: 9988272]
[91]
Chung J, Haile DJ, Wessling-Resnick M. Copper-induced ferroportin-1 expression in J774 macrophages is associated with increased iron efflux. Proc Natl Acad Sci USA 2004; 101(9): 2700-5.
[http://dx.doi.org/10.1073/pnas.0306622101] [PMID: 14973193]
[92]
De Domenico I, Ward DM, di Patti MC, et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 2007; 26(12): 2823-31.
[http://dx.doi.org/10.1038/sj.emboj.7601735] [PMID: 17541408]
[93]
Deugnier Y, Turlin B. Pathology of hepatic iron overload. Semin Liver Dis 2011; 31(3): 260-71.
[http://dx.doi.org/10.1055/s-0031-1286057] [PMID: 21901656]
[94]
Eigenbrodt ML, McCashland TM, Dy RM, Clark J, Galati J. Heterozygous alpha 1-antitrypsin phenotypes in patients with end stage liver disease. Am J Gastroenterol 1997; 92(4): 602-7.
[PMID: 9128307]
[95]
Vecchi C, Montosi G, Zhang K, et al. ER stress controls iron metabolism through induction of hepcidin. Science 2009; 325(5942): 877-80.
[http://dx.doi.org/10.1126/science.1176639] [PMID: 19679815]
[96]
Ramsay AJ, Hooper JD, Folgueras AR, Velasco G, López-Otín C. Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis. Haematologica 2009; 94(6): 840-9.
[http://dx.doi.org/10.3324/haematol.2008.001867] [PMID: 19377077]
[97]
Valenti L, Rametta R, Dongiovanni P, et al. The A736V TMPRSS6 polymorphism influences hepatic iron overload in nonalcoholic fatty liver disease. PLoS One 2012; 7(11): e48804
[http://dx.doi.org/10.1371/journal.pone.0048804] [PMID: 23144979]
[98]
Hsiao SC, Lee CT, Pei SN. GNPAT variant is associated with iron phenotype in healthy Taiwanese women: A population without the HFE C282Y mutation. Hepatology 2016; 63(6): 2057-8.
[http://dx.doi.org/10.1002/hep.28481] [PMID: 26845415]
[99]
McLaren CE, Emond MJ, Subramaniam VN, et al. Exome sequencing in HFE C282Y homozygous men with extreme phenotypes identifies a GNPAT variant associated with severe iron overload. Hepatology 2015; 62(2): 429-39.
[http://dx.doi.org/10.1002/hep.27711] [PMID: 25605615]
[100]
Rametta R, Dongiovanni P, Fargion S, Valenti L. GNPAT p.D519G variant and iron metabolism during oral iron tolerance test. Hepatology 2017; 65(1): 384-5.
[http://dx.doi.org/10.1002/hep.28745] [PMID: 27481658]
[101]
Oexle K, Ried JS, Hicks AA, et al. Novel association to the proprotein convertase PCSK7 gene locus revealed by analysing soluble transferrin receptor (sTfR) levels. Hum Mol Genet 2011; 20(5): 1042-7.
[http://dx.doi.org/10.1093/hmg/ddq538] [PMID: 21149283]
[102]
Dongiovanni P, Meroni M, Baselli G, et al. PCSK7 gene variation bridges atherogenic dyslipidemia with hepatic inflammation in NAFLD patients. J Lipid Res 2019; 60(6): 1144-53.
[http://dx.doi.org/10.1194/jlr.P090449] [PMID: 30918065]
[103]
Valenti L, Fracanzani AL, Fargion S. Effect of iron depletion in patients with nonalcoholic fatty liver disease without carbohydrate intolerance. Gastroenterology 2003; 124(3): 866.
[http://dx.doi.org/10.1053/gast.2003.50130]
[104]
Fernández-Real JM, Peñarroja G, Castro A, García-Bragado F, Hernández-Aguado I, Ricart W. Blood letting in high-ferritin type 2 diabetes: effects on insulin sensitivity and beta-cell function. Diabetes 2002; 51(4): 1000-4.
[http://dx.doi.org/10.2337/diabetes.51.4.1000] [PMID: 11916918]
[105]
Equitani F, Fernandez-Real JM, Menichella G, et al. Bloodletting ameliorates insulin sensitivity and secretion in parallel to reducing liver iron in carriers of HFE gene mutations. Diabetes Care 2008; 31(1): 3-8.
[http://dx.doi.org/10.2337/dc07-0939] [PMID: 17959863]
[106]
Fernández-Real JM, López-Bermejo A, Ricart W. Iron stores, blood donation, and insulin sensitivity and secretion. Clin Chem 2005; 51(7): 1201-5.
[http://dx.doi.org/10.1373/clinchem.2004.046847] [PMID: 15976100]
[107]
Nitenberg A, Ledoux S, Valensi P, Sachs R, Antony I. Coronary microvascular adaptation to myocardial metabolic demand can be restored by inhibition of iron-catalyzed formation of oxygen free radicals in type 2 diabetic patients. Diabetes 2002; 51(3): 813-8.
[http://dx.doi.org/10.2337/diabetes.51.3.813] [PMID: 11872685]
[108]
Duffy SJ, Biegelsen ES, Holbrook M, et al. Iron chelation improves endothelial function in patients with coronary artery disease. Circulation 2001; 103(23): 2799-804.
[http://dx.doi.org/10.1161/01.CIR.103.23.2799] [PMID: 11401935]
[109]
Beaton MD, Chakrabarti S, Levstik M, Speechley M, Marotta P, Adams P. Phase II clinical trial of phlebotomy for non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2013; 37(7): 720-9.
[http://dx.doi.org/10.1111/apt.12255] [PMID: 23441892]
[110]
Valenti L, Fracanzani AL, Dongiovanni P, et al. A randomized trial of iron depletion in patients with nonalcoholic fatty liver disease and hyperferritinemia. World J Gastroenterol 2014; 20(11): 3002-10.
[http://dx.doi.org/10.3748/wjg.v20.i11.3002] [PMID: 24659891]
[111]
Adams LA, Crawford DH, Stuart K, et al. The impact of phlebotomy in nonalcoholic fatty liver disease: A prospective, randomized, controlled trial. Hepatology 2015; 61(5): 1555-64.
[http://dx.doi.org/10.1002/hep.27662] [PMID: 25524401]
[112]
Murali AR, Gupta A, Brown K. Systematic review and meta-analysis to determine the impact of iron depletion in dysmetabolic iron overload syndrome and non-alcoholic fatty liver disease. Hepatology research : the official journal of the Japan Society of Hepatology 2018; 48(3): E30-41.
[http://dx.doi.org/10.1111/hepr.12921]
[113]
Lainé F, Ruivard M, Loustaud-Ratti V, et al. Metabolic and hepatic effects of bloodletting in dysmetabolic iron overload syndrome: A randomized controlled study in 274 patients. Hepatology 2017; 65(2): 465-74.
[http://dx.doi.org/10.1002/hep.28856] [PMID: 27685251]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy