Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Anthocyanins: Plant Pigments, Food Ingredients or Therapeutic Agents for the CNS? A Mini-Review Focused on Clinical Trials

Author(s): Guillermo Cásedas, Francisco Les and Víctor López*

Volume 26, Issue 16, 2020

Page: [1790 - 1798] Pages: 9

DOI: 10.2174/1381612826666200127093701

Price: $65

Open Access Journals Promotions 2
Abstract

Anthocyanins are plant pigments present in flowers, leaves or fruits with polyphenolic structure belonging to the group of flavonoids. From a nutritional approach, they are the most abundant flavonoids in dietary sources responsible for the antioxidant properties of those foods. In addition, the food and pharma industries have used anthocyanins as food additives or excipients due to its colorant properties. However, beyond its antioxidant effects, anthocyanins may also act as therapeutic agents due to neuroprotective, antidiabetic and cardioprotective properties. There is a growing body of evidence suggesting the role of these compounds in the Central Nervous System (CNS). Previous in vitro and animal studies have suggested neuroprotective benefits, but we here review human interventions made with anthocyanins in relation to cognition, insomnia, anxiety or depression. Due to the link between oxidative stress and neurodegenerative disorders, human studies conducted on healthy volunteers evaluating oxidative stress parameters have also been included. As reviewed here, very few human studies (only ten) have been performed in the area of CNS; however, considering the obtained outcomes in those trials together with human interventions in relation with oxidative stress as well as data showing neuroprotective effects from preclinical experiments, we suggest that anthocyanins may have potential benefits for the CNS.

Keywords: Dietary polyphenols, neuroprotection, clinical trials, antioxidants, anthocyanins, functional foods.

[1]
Wallace TC, Giusti MM. Anthocyanins. Adv Nutr 2015; 6(5): 620-2.
[http://dx.doi.org/10.3945/an.115.009233] [PMID: 26374184]
[2]
Fang J. Bioavailability of anthocyanins. Drug Metab Rev 2014; 46(4): 508-20.Available from: . http://www.tandfonline.com/ doi/full/10.3109/03602532.2014.978080
[http://dx.doi.org/10.3109/03602532.2014.978080]
[3]
Castañeda-Ovando A, Pacheco-Hernández M de L, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: A review. Food Chem 2009; 113(4): 859-71.Available from:.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.001]
[4]
Les F, Prieto JM, Arbonés-Mainar JM, Valero MS, López V. Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities. Food Funct 2015; 6(6): 2049-57.Available from:. http://www.ncbi.nlm.nih.gov/pubmed/26030005
[5]
Stanisavljević N, Samardžić J, Janković T, et al. Antioxidant and antiproliferative activity of chokeberry juice phenolics during in vitro simulated digestion in the presence of food matrix. Food Chem 2015; 175: 516-22.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.009]
[6]
Fang J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 2015; 31(11-12): 1301-6.Available from:.
[http://dx.doi.org/10.1016/j.nut.2015.04.015] [PMID: 26250485]
[7]
Cásedas G, Les F, Gómez-Serranillos MP, Smith C, López V. Anthocyanin profile, antioxidant activity and enzyme inhibiting properties of blueberry and cranberry juices: a comparative study. Food Funct 2017; 8(11): 4187-93.
[http://dx.doi.org/10.1039/C7FO01205E] [PMID: 29038797]
[8]
Petersen K, López V, Cásedas G, Smith C. Grape seed-derived antioxidant beneficially modulates ageing-related cellular inflammatory processes. Planta Med 2016; 81(S 01): S1-381.Available from:. http://www.thieme-connect.de/ DOI/DOI?10.1055/s-0036-1596828
[http://dx.doi.org/10.1055/s-0036-1596828]
[9]
Wang SY, Stretch AW. Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. J Agric Food Chem 2001; 49(2): 969-74.
[http://dx.doi.org/10.1021/jf001206m]] [PMID: 11262058]
[10]
Fortalezas S, Tavares L, Pimpão R, et al. Antioxidant properties and neuroprotective capacity of strawberry tree fruit (Arbutus unedo). Nutrients 2010; 2(2): 214-29.
[http://dx.doi.org/10.3390/nu2020214]] [PMID: 22254017]
[11]
Kent K, Charlton K, Roodenrys S, et al. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur J Nutr 2015; 56(1)
[PMID: 26482148]
[12]
Cásedas G, Les F, Gómez-Serranillos MP, Smith C, López V. Bioactive and functional properties of sour cherry juice (Prunus cerasus). Food Funct 2016; 7(11): 4675-82.
[http://dx.doi.org/10.1039/C6FO01295G] [PMID: 27775125]
[13]
Castro-Acosta ML, Smith L, Miller RJ, McCarthy DI, Farrimond JA, Hall WL. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J Nutr Biochem 2016; 38: 154-61. Available from:.
[http://dx.doi.org/10.1016/j.jnutbio.2016.09.002] [PMID: 27764725]
[14]
Robert P, Fredes C. The encapsulation of anthocyanins from berry-type fruits. Trends in foods. Molecules 2015; 20(4): 5875-88.
[http://dx.doi.org/10.3390/molecules20045875] [PMID: 25854753]
[15]
Mueller D, Jung K, Winter M, et al. Encapsulation of anthocyanins from bilberries - Effects on bioavailability and intestinal accessibility in humans. Food Chem 2018; 248: 217-24. Available from:. http://www.ncbi.nlm.nih.gov/pubmed/29329847
[16]
Sánchez-Marzo N, Lozano-Sánchez J, Cádiz-Gurrea ML, Herranz-López M, Micol V, Segura-Carretero A. Relationships between chemical structure and antioxidant activity of isolated phytocompounds from Lemon Verbena. Antioxidants 2019; 8(8): 324.
[http://dx.doi.org/10.3390/antiox8080324]] [PMID: 31434276]
[17]
Ghosh D, Konishi T. Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 2007; 16(2): 200-8.
[PMID: 17468073]
[18]
Guo H, Ling W. The update of anthocyanins on obesity and type 2 diabetes: experimental evidence and clinical perspectives. Rev Endocr Metab Disord 2015; 16(1): 1-13.
[http://dx.doi.org/10.1007/s11154-014-9302-z] [PMID: 25557610]
[19]
Banihani S, Swedan S, Alguraan Z. Pomegranate and type 2 diabetes. Nutr Res 2013; 33(5): 341-8. Available from:.
[http://dx.doi.org/10.1016/j.nutres.2013.03.003] [PMID: 23684435]
[20]
Liu Y, Li D, Zhang Y, Sun R, Xia M. Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. Am J Physiol Metab 2014; 15; 306(8): E975-88. Available from:. http://www.ncbi.nlm.nih.gov/pubmed/24595303
[http://dx.doi.org/10.1152/ajpendo.00699.2013]
[21]
Novotny JA, Baer DJ, Khoo C, Gebauer SK, Charron CS. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults.1-4. J Nutr 2015; 145: 1185-93.Available from: . https://academic.oup.com/jn/article-abstract/145/6/1185/458579
[22]
Les F, Arbonés-Mainar JM, Valero MS, López V. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J Ethnopharmacol 2018; 220(220): 67-74.Available from: .
[http://dx.doi.org/10.1016/j.jep.2018.03.029] [PMID: 29604377]
[23]
Cásedas G, Les F, González-Burgos E, Gómez-Serranillos MP, Smith C, López V. Cyanidin-3-O-glucoside inhibits different enzymes involved in central nervous system pathologies and type-2 diabetes. S Afr J Bot 2018; 120: 241-6.Available from: .
[http://dx.doi.org/10.1016/j.sajb.2018.07.001]
[24]
Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005; 81(1)(Suppl.): 230S-42.
[http://dx.doi.org/10.1093/ajcn/81.1.230S]] [PMID: 15640486]
[25]
Rashid K, Wachira FN, Nyabuga JN, Wanyonyi B, Murilla G, Isaac AO. Kenyan purple tea anthocyanins ability to cross the blood brain barrier and reinforce brain antioxidant capacity in mice. Nutr Neurosci 2014; 17(4): 178-85.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/23883519
[http://dx.doi.org/10.1179/1476830513Y.0000000081]
[26]
Pogačnik L, Pirc K, Palmela I, et al. Potential for brain accessibility and analysis of stability of selected flavonoids in relation to neuroprotection in vitro. Brain Res 2016; 1651: 17-26.Available from: .
[http://dx.doi.org/10.1016/j.brainres.2016.09.020] [PMID: 27639810]
[27]
Haskell-Ramsay CF, Stuart RC, Okello EJ, Watson AW. Cognitive and mood improvements following acute supplementation with purple grape juice in healthy young adults. Eur J Nutr 2017; 56(8): 2621-31.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/28429081
[28]
Bowtell JL, Aboo-Bakkar Z, Conway ME, Adlam A-LR, Fulford J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab 2017; 42(7): 773-9.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/28249119
[http://dx.doi.org/10.1139/apnm-2016-0550]
[29]
Boespflug EL, Eliassen JC, Dudley JA, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci 2018; 21(4): 297-305.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/28221821
[http://dx.doi.org/10.1080/1028415X.2017.1287833]
[30]
McNamara RK, Kalt W, Shidler MD, et al. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging 2018; 64: 147-56.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.12.003] [PMID: 29458842]
[31]
Krikorian R, Boespflug EL, Fleck DE, et al. Concord grape juice supplementation and neurocognitive function in human aging. J Agric Food Chem 2012; 60(23): 5736-42.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/22468945
[32]
Pigeon WR, Carr M, Gorman C, Perlis ML. Effects of a tart cherry juice beverage on the sleep of older adults with insomnia: a pilot study. J Med Food 2010; 13(3): 579-83.
[http://dx.doi.org/10.1089/jmf.2009.0096] [PMID: 20438325]
[33]
Losso JN, Finley JW, Karki N, et al. Pilot study of the tart cherry juice for the treatment of insomnia and investigation of mechanisms. Am J Ther 2018; 25(2): e194-201.
[http://dx.doi.org/10.1097/MJT.0000000000000584] [PMID: 28901958]
[34]
Garrido M, Espino J, González-Gómez D, et al. The consumption of a Jerte Valley cherry product in humans enhances mood, and increases 5-hydroxyindoleacetic acid but reduces cortisol levels in urine. Exp Gerontol 2012; 47(8): 573-80.
[http://dx.doi.org/10.1016/j.exger.2012.05.003] [PMID: 22583983]
[35]
Fan D, Alamri Y, Liu K, et al. Supplementation of blackcurrant anthocyanins increased cyclic glycine-proline in the cerebrospinal fluid of parkinson patients: potential treatment to improve insulin-like growth factor-1 function. Nutrients 2018; 10(6)Available from: . http://www.ncbi.nlm.nih.gov/pubmed/29865234
[36]
Kumar B, Arora V, Kuhad A, Chopra K. Vaccinium myrtillus ameliorates unpredictable chronic mild stress induced depression: possible involvement of nitric oxide pathway. Phytother Res 2012; 26(4): 488-97.
[http://dx.doi.org/10.1002/ptr.3584] [PMID: 22488796]
[37]
Shewale PB, Patil RA, Hiray YA. Antidepressant-like activity of anthocyanidins from Hibiscus rosa-sinensis flowers in tail suspension test and forced swim test. Indian J Pharmacol 2012; 44(4): 454-7.
[http://dx.doi.org/10.4103/0253-7613.99303] [PMID: 23087504]
[38]
Bialasiewicz P, Prymont-Przyminska A, et al. Sour cherries but not apples added to the regular diet decrease resting and fmlp-stimulated chemiluminescence of fasting whole blood in healthy subjects. J Am Collegue Nutr 2017; 37(1): 24-33.
[39]
Davinelli S, Bertoglio JC, Zarrelli A, Pina R, Scapagnini G. A Randomized clinical trial evaluating the efficacy of an anthocyanin-maqui berry extract (Delphinol®) on oxidative stress biomarkers. J Am Coll Nutr 2015; 34(Suppl. 1): 28-33.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/26400431
[40]
Toaldo IM, Cruz FA, Alves T de L, et al. Bioactive potential of Vitis labrusca L. grape juices from the Southern Region of Brazil: phenolic and elemental composition and effect on lipid peroxidation in healthy subjects. Food Chem 2015; 173: 527-35.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/25466055
[41]
Kardum N, Konić-Ristić A, Savikin K, et al. Effects of polyphenol-rich chokeberry juice on antioxidant/pro-oxidant status in healthy subjects. J Med Food 2014; 17(8): 869-74.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/24650155
[42]
Frank T, Netzel G, Kammerer DR, et al. Consumption of Hibiscus sabdariffa L. aqueous extract and its impact on systemic antioxidant potential in healthy subjects. J Sci Food Agric 2012; 92(10): 2207-18.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/22331521
[43]
Kuntz S, Kunz C, Herrmann J, et al. Anthocyanins from fruit juices improve the antioxidant status of healthy young female volunteers without affecting anti-inflammatory parameters: results from the randomised, double-blind, placebo-controlled, cross-over ANTHONIA (ANTHOcyanins in Nutrition Investigation Alliance) study. Br J Nutr 2014; 112(6): 925-36.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/25089359
[44]
Del Bó C, Riso P, Campolo J, et al. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutr Res 2013; 33(3): 220-7.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/23507228
[45]
Weisel T, Baum M, Eisenbrand G, et al. An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotechnol J 2006; 1(4): 388-97.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/16892265
[46]
Kaspar KL, Park JS, Brown CR, Mathison BD, Navarre DA, Chew BP. Pigmented potato consumption alters oxidative stress and inflammatory damage in men. J Nutr 2011; 141(1): 108-11.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/21106930
[47]
Kropat C, Mueller D, Boettler U, et al. Modulation of Nrf2-dependent gene transcription by bilberry anthocyanins in vivo. Mol Nutr Food Res 2013; 57(3): 545-50.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/23349102
[48]
Karlsen A, Retterstøl L, Laake P, et al. Anthocyanins inhibit nuclear factor-kb activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr 2007; 137Available from: . https://academic.oup.com/jn/article-abstract/137/8/1951/4664955
[49]
Møller P, Loft S, Alfthan G, Freese R. Oxidative DNA damage in circulating mononuclear blood cells after ingestion of blackcurrant juice or anthocyanin-rich drink. Mutat Res 2004; 551(1-2): 119-26.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/15225586
[http://dx.doi.org/10.1016/j.mrfmmm.2004.02.020]
[50]
Ellinger S, Gordon A, Kürten M, et al. Bolus consumption of a specifically designed fruit juice rich in anthocyanins and ascorbic acid did not influence markers of antioxidative defense in healthy humans. J Agric Food Chem 2012; 60(45): 11292-300.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/23072538
[51]
Bowtell JL, Sumners DP, Dyer A, Fox P, Mileva KN. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med Sci Sports Exerc 2011; 43(8): 1544-51.
[http://dx.doi.org/10.1249/MSS.0b013e31820e5adc] [PMID: 21233776]
[52]
Hutchison AT, Flieller EB, Dillon KJ, Leverett BD. Black currant nectar reduces muscle damage and inflammation following a bout of high-intensity eccentric contractions. J Diet Suppl 2016; 13(1): 1-15.
[http://dx.doi.org/10.3109/19390211.2014.952864] [PMID: 25153307]
[53]
Lyall KA, Hurst SM, Cooney J, et al. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am J Physiol Regul Integr Comp Physiol 2009; 297(1): R70-81.
[http://dx.doi.org/10.1152/ajpregu.90740.2008] [PMID: 19403859]
[54]
McAnulty LS, Nieman DC, Dumke CL, et al. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl Physiol Nutr Metab 2011; 36(6): 976-84.
[http://dx.doi.org/10.1139/h11-120] [PMID: 22111516]
[55]
Carvalho-Peixoto J, Moura MRL, et al.Consumption of açai (Euterpe oleracea Mart.) functional beverage reduces muscle stress and improves effort tolerance in elite athletes: a randomized controlled intervention study. Appl Physiol Nutr Metab 2015; 40(7): 725-33.Available from: . http://www.ncbi.nlm.nih.gov/pubmed/26140415
[56]
Halpern Stephen H. DMJ Jadad scale for reporting randomized controlled trials. Evidence-based Obstet Anesth 2005; pp. 237-8.Available from: . https://onlinelibrary.wiley.com/ doi/pdf/10.1002/9780470988343.app1

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy