Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Is Technical-Grade Chlordane an Obesogen?

Author(s): Juliana F. Silva, Bruno P. Moreira, Luís Rato, Maria de Lourdes Pereira, Pedro F. Oliveira and Marco G. Alves*

Volume 28, Issue 3, 2021

Published on: 21 January, 2020

Page: [548 - 568] Pages: 21

DOI: 10.2174/0929867327666200121122208

Price: $65

Open Access Journals Promotions 2
Abstract

The prevalence of obesity has tripled in recent decades and is now considered an alarming public health problem. In recent years, a group of endocrine disruptors, known as obesogens, have been directly linked to the obesity epidemic. Its etiology is generally associated with a sedentary lifestyle, a high-fat diet and genetic predisposition, but environmental factors, such as obesogens, have also been reported as contributors for this pathology. In brief, obesogens are exogenous chemical compounds that alter metabolic processes and/or energy balance and appetite, thus predisposing to weight gain. Although this theory is still recent, the number of compounds with suspected obesogenic activity has steadily increased over the years, though many of them remain a matter of debate. Technical-grade chlordane is an organochlorine pesticide widely present in the environment, albeit at low concentrations. Highly lipophilic compounds can be metabolized by humans and animals into more toxic and stable compounds that are stored in fat tissue and consequently pose a danger to the human body, including the physiology of adipose tissue, which plays an important role in weight regulation. In addition, technical-grade chlordane is classified as a persistent organic pollutant, a group of chemicals whose epidemiological studies are associated with metabolic disorders, including obesity. Herein, we discuss the emerging roles of obesogens as threats to public health. We particularly discuss the relevance of chlordane persistence in the environment and how its effects on human and animal health provide evidence for its role as an endocrine disruptor with possible obesogenic activity.

Keywords: Obesity, obesogens, endocrine disruptor, organochlorine, persistent organic pollutant, technical-grade chlordane.

[1]
W.H.O.. Obesity 2017. Available at: http://www.who.int/topics/obesity/en/(Accessed: 5 December, 2017)
[2]
Yang, C.; Kong, A.P.S.; Cai, Z.; Chung, A.C.K. Persistent organic pollutants as risk factors for obesity and diabetes. Curr. Diab. Rep., 2017, 17(12), 132.
[http://dx.doi.org/10.1007/s11892-017-0966-0] [PMID: 29098478]
[3]
W.H.O. Obesity and Overweight 2018. Available at: https://www.who.int/news-room/fact-sheets/detail/obesityandoverweight(Accessed: 10 December, 2017)
[4]
Skinner, A.C.; Ravanbakht, S.N.; Skelton, J.A.; Perrin, E.M.; Armstrong, S.C. Prevalence of obesity and severe obesity in US children, 1999-2016. Pediatrics, 2018, 141(3)e20173459
[http://dx.doi.org/10.1542/peds.2017-3459] [PMID: 29483202]
[5]
Jebb, S. Obesity: causes and consequences. Women’s. Health Med., 2004, 1(1), 38-41.
[http://dx.doi.org/10.1383/wohm.1.1.38.55418]
[6]
Logue, J.; Murray, H.M.; Welsh, P.; Shepherd, J.; Packard, C.; Macfarlane, P.; Cobbe, S.; Ford, I.; Sattar, N. Obesity is associated with fatal coronary heart disease independently of traditional risk factors and deprivation. Heart, 2011, 97(7), 564-568.
[http://dx.doi.org/10.1136/hrt.2010.211201] [PMID: 21324888]
[7]
Zammit, C.; Liddicoat, H.; Moonsie, I.; Makker, H. Obesity and respiratory diseases. Int. J. Gen. Med., 2010, 3, 335-343.
[http://dx.doi.org/10.2147/ijgm.s11926] [PMID: 21116339]
[8]
Wolin, K.Y.; Carson, K.; Colditz, G.A. Obesity and cancer. Oncologist, 2010, 15(6), 556-565.
[http://dx.doi.org/10.1634/theoncologist.2009-0285] [PMID: 20507889]
[9]
Al-Goblan, A.S.; Al-Alfi, M.A.; Khan, M.Z. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes., 2014, 7, 587-591.
[http://dx.doi.org/10.2147/DMSO.S67400] [PMID: 25506234]
[10]
Jungheim, E.S.; Travieso, J.L.; Carson, K.R.; Moley, K.H. Obesity and reproductive function. Obstet. Gynecol. Clin. North Am., 2012, 39(4), 479-493.
[http://dx.doi.org/10.1016/j.ogc.2012.09.002] [PMID: 23182555]
[11]
W.H.O. Portugal - WHO Country Profile. 2017. Available at: https://www.euro.who.int/__data/assets/pdf_file/0007/355993/Health-Profile-Portugal-Eng.pdf(Accessed: 5 Jauary, 2018)
[12]
Klimentidis, Y.C.; Beasley, T.M.; Lin, H.Y.; Murati, G.; Glass, G.E.; Guyton, M.; Newton, W.; Jorgensen, M.; Heymsfield, S.B.; Kemnitz, J.; Fairbanks, L.; Allison, D.B. Canaries in the coal mine: a cross-species analysis of the plurality of obesity epidemics. Proc. Biol. Sci., 2011, 278(1712), 1626-1632.
[http://dx.doi.org/10.1098/rspb.2010.1890] [PMID: 21106594]
[13]
Lustig, R.H. Childhood obesity: behavioral aberration or biochemical drive? Reinterpreting the first law of thermodynamics. Nat. Clin. Pract. Endocrinol. Metab., 2006, 2(8), 447-458.
[http://dx.doi.org/10.1038/ncpendmet0220] [PMID: 16932334]
[14]
Baillie-Hamilton, P.F. Chemical toxins: a hypothesis to explain the global obesity epidemic. J. Altern. Complement. Med., 2002, 8(2), 185-192.
[http://dx.doi.org/10.1089/107555302317371479] [PMID: 12006126]
[15]
Grün, F.; Blumberg, B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology, 2006, 147(6)(Suppl.), S50-S55.
[http://dx.doi.org/10.1210/en.2005-1129] [PMID: 16690801]
[16]
Ritter, L.; Solomon, K.; Forget, J.; Stemeroff, M.; O’leary, C. A review of selected persistent organic pollutants. In: . International Programme on Chemical Safety (IPCS); PCS/95.39. Geneva: World Health Organization; , 1995; 65, p. 66.
[17]
Ruzzin, J. Public health concern behind the exposure to persistent organic pollutants and the risk of metabolic diseases. BMC Public Health, 2012, 12, 298.
[http://dx.doi.org/10.1186/1471-2458-12-298] [PMID: 22520265]
[18]
Dearth, M.A.; Hites, R.A. Complete analysis of technical chlordane using negative ionization mass spectrometry. Environ. Sci. Technol., 1991, 25(2), 245-254.
[http://dx.doi.org/10.1021/es00014a005]
[19]
Eisler, R. Chlordane. Eisler’s Encyclopedia of Environmentally Hazardous Priority Chemicals; Elsevier, 2007.
[20]
Bondy, G.S.; Newsome, W.H.; Armstrong, C.L.; Suzuki, C.A.M.; Doucet, J.; Fernie, S.; Hierlihy, S.L.; Feeley, M.M.; Barker, M.G. Trans-nonachlor and cis-nonachlor toxicity in Sprague-dawley rats: comparison with technical chlordane. Toxicol. Sci., 2000, 58(2), 386-398.
[http://dx.doi.org/10.1093/toxsci/58.2.386] [PMID: 11099650]
[21]
Bondy, G.; Armstrong, C.; Coady, L.; Doucet, J.; Robertson, P.; Feeley, M.; Barker, M. Toxicity of the chlordane metabolite oxychlordane in female rats: clinical and histopathological changes. Food Chem. Toxicol., 2003, 41(2), 291-301.
[http://dx.doi.org/10.1016/s0278-6915(02)00229-6] [PMID: 12480304]
[22]
Eisler, R. Chlordane Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. Contaminant Hazard Reviews Report 21; Biological Report 85(1.21), 1990.
[23]
Holtcamp, W. Obesogens: an environmental link to obesity. Environ. Health Perspect., 2012, 120(2), a62-a68.
[http://dx.doi.org/10.1289/ehp.120-a62] [PMID: 22296745]
[24]
NIEHS. Endocrine Disruptors 2017. Available at: https://www.niehs.nih.gov/health/topics/agents/endocrine/index.cfm2017(Accessed: 15 Jauary, 2018)
[25]
Schug, T.T.; Johnson, A.F.; Birnbaum, L.S.; Colborn, T.; Guillette, L.J., Jr; Crews, D.P.; Collins, T.; Soto, A.M.; Vom Saal, F.S.; McLachlan, J.A.; Sonnenschein, C.; Heindel, J.J. Minireview: endocrine disruptors: past lessons and future directions. Mol. Endocrinol., 2016, 30(8), 833-847.
[http://dx.doi.org/10.1210/me.2016-1096] [PMID: 27477640]
[26]
Kabir, E.R.; Rahman, M.S.; Rahman, I. A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharmacol., 2015, 40(1), 241-258.
[http://dx.doi.org/10.1016/j.etap.2015.06.009] [PMID: 26164742]
[27]
Colborn, T.; Clement, C. Chemically-Induced Alterations in Sexual and Functional Development: The Wildlife/Human Connection, 1992.
[28]
Guillette, L.J., Jr; Gross, T.S.; Masson, G.R.; Matter, J.M.; Percival, H.F.; Woodward, A.R. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ. Health Perspect., 1994, 102(8), 680-688.
[http://dx.doi.org/10.1289/ehp.94102680] [PMID: 7895709]
[29]
Guillette, L.J. Jr.; Pickford, D.B.; Crain, D.A.; Rooney, A.A.; Percival, H.F. Reduction in penis size and plasma testosterone concentrations in juvenile alligators living in a contaminated environment. Gen. Comp. Endocrinol., 1996, 101(1), 32-42.
[http://dx.doi.org/10.1006/gcen.1996.0005] [PMID: 8713642]
[30]
Fry, D.M. Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ. Health Perspect., 1995, 103(Suppl. 7), 165-171.
[http://dx.doi.org/10.1289/ehp.95103s7165] [PMID: 8593865]
[31]
Smith, O.W. Diethylstilbestrol in the prevention and treatment of complications of pregnancy. Am. J. Obstet. Gynecol., 1948, 56(5), 821-834.
[http://dx.doi.org/10.1016/0002-9378(48)90440-2] [PMID: 18888213]
[32]
Kaufman, R.H.; Adam, E.; Hatch, E.E.; Noller, K.; Herbst, A.L.; Palmer, J.R.; Hoover, R.N. Continued follow-up of pregnancy outcomes in diethylstilbestrol-exposed offspring. Obstet. Gynecol., 2000, 96(4), 483-489.
[http://dx.doi.org/10.1016/s0029-7844(00)00959-5] [PMID: 11004345]
[33]
Bergman, Å.; Heindel, J.J.; Jobling, S.; Kidd, K.; Zoeller, T.R. State of the Science of Endocrine Disrupting Chemicals 2012; World Health Organization, 2013.
[34]
Patisaul, H.B.; Jefferson, W. The pros and cons of phytoestrogens. Front. Neuroendocrinol., 2010, 31(4), 400-419.
[http://dx.doi.org/10.1016/j.yfrne.2010.03.003] [PMID: 20347861]
[35]
Tempfer, C.B.; Froese, G.; Heinze, G.; Bentz, E-K.; Hefler, L.A.; Huber, J.C. Side effects of phytoestrogens: a meta-analysis of randomized trials. Am. J. Med., 2009, 122(10), 939-46.e9.
[http://dx.doi.org/10.1016/j.amjmed.2009.04.018] [PMID: 19786161]
[36]
Albini, A.; Rosano, C.; Angelini, G.; Amaro, A.; Esposito, A.I.; Maramotti, S.; Noonan, D.M.; Pfeffer, U. Exogenous hormonal regulation in breast cancer cells by phytoestrogens and endocrine disruptors. Curr. Med. Chem., 2014, 21(9), 1129-1145.
[http://dx.doi.org/10.2174/0929867321666131129124640] [PMID: 24304271]
[37]
Darbre, P.D. Endocrine disruptors and obesity. Curr. Obes. Rep., 2017, 6(1), 18-27.
[http://dx.doi.org/10.1007/s13679-017-0240-4] [PMID: 28205155]
[38]
Gore, A.C.; Crews, D.; Doan, L.L.; La Merrill, M.; Patisaul, H.; Zota, A. Introduction to endocrine disrupting chemicals (EDCs); Endo. Soc., 2014, pp. 1-69.
[39]
Eskenazi, B.; Chevrier, J.; Rosas, L.G.; Anderson, H.A.; Bornman, M.S.; Bouwman, H.; Chen, A.; Cohn, B.A.; de Jager, C.; Henshel, D.S.; Leipzig, F.; Leipzig, J.S.; Lorenz, E.C.; Snedeker, S.M.; Stapleton, D. The pine river statement: human health consequences of DDT use. Environ. Health Perspect., 2009, 117(9), 1359-1367.
[http://dx.doi.org/10.1289/ehp.11748] [PMID: 19750098]
[40]
Benjamin, S.; Masai, E.; Kamimura, N.; Takahashi, K.; Anderson, R.C.; Faisal, P.A. Phthalates impact human health: epidemiological evidences and plausible mechanism of action. J. Hazard. Mater., 2017, 340, 360-383.
[http://dx.doi.org/10.1016/j.jhazmat.2017.06.036] [PMID: 28800814]
[41]
Diamanti-Kandarakis, E.; Bourguignon, J-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev., 2009, 30(4), 293-342.
[http://dx.doi.org/10.1210/er.2009-0002] [PMID: 19502515]
[42]
Marques-Pinto, A.; Carvalho, D. Human infertility: are endocrine disruptors to blame? Endocr. Connect., 2013, 2(3), R15-R29.
[http://dx.doi.org/10.1530/EC-13-0036] [PMID: 23985363]
[43]
Giwercman, A.; Rylander, L.; Lundberg Giwercman, Y. Influence of endocrine disruptors on human male fertility. Reprod. Biomed. Online, 2007, 15(6), 633-642.
[http://dx.doi.org/10.1016/S1472-6483(10)60530-5] [PMID: 18062860]
[44]
Bujan, L.; Mansat, A.; Pontonnier, F.; Mieusset, R. Time series analysis of sperm concentration in fertile men in Toulouse, France between 1977 and 1992. BMJ, 1996, 312(7029), 471-472.
[http://dx.doi.org/10.1136/bmj.312.7029.471] [PMID: 8597677]
[45]
Dobrzyńska, M.M. Phthalates - widespread occurrence and the effect on male gametes. Part 2. The effects of phthalates on male gametes and on the offspring. Rocz. Panstw. Zakl. Hig., 2016, 67(3), 209-221.
[PMID: 27546318]
[46]
McLachlan, J.A.; Simpson, E.; Martin, M. Endocrine disrupters and female reproductive health. Best Pract. Res. Clin. Endocrinol. Metab., 2006, 20(1), 63-75.
[http://dx.doi.org/10.1016/j.beem.2005.09.009] [PMID: 16522520]
[47]
Souter, I.; Smith, K.W.; Dimitriadis, I.; Ehrlich, S.; Williams, P.L.; Calafat, A.M.; Hauser, R. The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments. Reprod. Toxicol., 2013, 42, 224-231.
[http://dx.doi.org/10.1016/j.reprotox.2013.09.008] [PMID: 24100206]
[48]
Machtinger, R.; Combelles, C.M.; Missmer, S.A.; Correia, K.F.; Williams, P.; Hauser, R.; Racowsky, C. Bisphenol-A and human oocyte maturation in vitro. Hum. Reprod., 2013, 28(10), 2735-2745.
[http://dx.doi.org/10.1093/humrep/det312] [PMID: 23904465]
[49]
Calsolaro, V.; Pasqualetti, G.; Niccolai, F.; Caraccio, N.; Monzani, F. Thyroid disrupting chemicals. Int. J. Mol. Sci., 2017, 18(12)E2583
[http://dx.doi.org/10.3390/ijms18122583] [PMID: 29194390]
[50]
Moriyama, K.; Tagami, T.; Akamizu, T.; Usui, T.; Saijo, M.; Kanamoto, N.; Hataya, Y.; Shimatsu, A.; Kuzuya, H.; Nakao, K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab., 2002, 87(11), 5185-5190.
[http://dx.doi.org/10.1210/jc.2002-020209] [PMID: 12414890]
[51]
Zoeller, R.T.; Dowling, A.L.; Vas, A.A. Developmental exposure to polychlorinated biphenyls exerts thyroid hormone-like effects on the expression of RC3/neurogranin and myelin basic protein messenger ribonucleic acids in the developing rat brain. Endocrinology, 2000, 141(1), 181-189.
[http://dx.doi.org/10.1210/endo.141.1.7273] [PMID: 10614638]
[52]
Crofton, K.M. Developmental disruption of thyroid hormone: correlations with hearing dysfunction in rats. Risk Anal., 2004, 24(6), 1665-1671.
[http://dx.doi.org/10.1111/j.0272-4332.2004.00557.x] [PMID: 15660619]
[53]
Lee, E.; Kim, T.H.; Choi, J.S.; Nabanata, P.; Kim, N.Y.; Ahn, M.Y.; Jung, K.K.; Kang, I.H.; Kim, T.S.; Kwack, S.J.; Park, K.L.; Kim, S.H.; Kang, T.S.; Lee, J.; Lee, B.M.; Kim, H.S. Evaluation of liver and thyroid toxicity in Sprague-dawley rats after exposure to polybrominated diphenyl ether BDE-209. J. Toxicol. Sci., 2010, 35(4), 535-545.
[http://dx.doi.org/10.2131/jts.35.535] [PMID: 20686340]
[54]
Talsness, C.E. Overview of toxicological aspects of polybrominated diphenyl ethers: a flame-retardant additive in several consumer products. Environ. Res., 2008, 108(2), 158-167.
[http://dx.doi.org/10.1016/j.envres.2008.08.008] [PMID: 18949835]
[55]
Zoeller, R.T.; Brown, T.R.; Doan, L.L.; Gore, A.C.; Skakkebaek, N.E.; Soto, A.M.; Woodruff, T.J.; Vom Saal, F.S. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology, 2012, 153(9), 4097-4110.
[http://dx.doi.org/10.1210/en.2012-1422] [PMID: 22733974]
[56]
Meier, U.; Gressner, A.M. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin. Chem., 2004, 50(9), 1511-1525.
[http://dx.doi.org/10.1373/clinchem.2004.032482] [PMID: 15265818]
[57]
Rui, L. Brain regulation of energy balance and body weight. Rev. Endocr. Metab. Disord., 2013, 14(4), 387-407.
[http://dx.doi.org/10.1007/s11154-013-9261-9] [PMID: 23990408]
[58]
Heindel, J.J.; Blumberg, B.; Cave, M.; Machtinger, R.; Mantovani, A.; Mendez, M.A.; Nadal, A.; Palanza, P.; Panzica, G.; Sargis, R.; Vandenberg, L.N.; Vom Saal, F. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol., 2017, 68, 3-33.
[http://dx.doi.org/10.1016/j.reprotox.2016.10.001] [PMID: 27760374]
[59]
Lee, M.K.; Blumberg, B. Transgenerational effects of obesogens. Basic Clin. Pharmacol. Toxicol., 2019, 125(Suppl. 3), 44-57.
[http://dx.doi.org/10.1111/bcpt.13214] [PMID: 30801972]
[60]
Heindel, J.J.; Blumberg, B. Environmental obesogens: mechanisms and controversies. Annu. Rev. Pharmacol. Toxicol., 2019, 59, 89-106.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021304] [PMID: 30044726]
[61]
Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab., 2004, 89(6), 2548-2556.
[http://dx.doi.org/10.1210/jc.2004-0395] [PMID: 15181022]
[62]
Müllerová, D.; Kopecký, J. White adipose tissue: storage and effector site for environmental pollutants. Physiol. Res., 2007, 56(4), 375-381.
[PMID: 16925464]
[63]
Chevrier, J.; Dewailly, E.; Ayotte, P.; Mauriège, P.; Després, J.P.; Tremblay, A. Body weight loss increases plasma and adipose tissue concentrations of potentially toxic pollutants in obese individuals. Int. J. Obes. Relat. Metab. Disord., 2000, 24(10), 1272-1278.
[http://dx.doi.org/10.1038/sj.ijo.0801380] [PMID: 11093288]
[64]
Barrett, J.R. POPs vs. fat: persistent organic pollutant toxicity targets and is modulated by adipose tissue. Environ. Health Perspect., 2013, 121(2), a61.
[http://dx.doi.org/10.1289/ehp.121-a61] [PMID: 23380189]
[65]
Li, S.; Washburn, K.A.; Moore, R.; Uno, T.; Teng, C.; Newbold, R.R.; McLachlan, J.A.; Negishi, M. Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res., 1997, 57(19), 4356-4359.
[PMID: 9331098]
[66]
Wu, Q.; Ohsako, S.; Ishimura, R.; Suzuki, J.S.; Tohyama, C. Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biol. Reprod., 2004, 70(6), 1790-1797.
[http://dx.doi.org/10.1095/biolreprod.103.025387] [PMID: 14960483]
[67]
Bernal, A.J.; Jirtle, R.L. Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res. A Clin. Mol. Teratol., 2010, 88(10), 938-944.
[http://dx.doi.org/10.1002/bdra.20685] [PMID: 20568270]
[68]
Rubin, B.S.; Murray, M.K.; Damassa, D.A.; King, J.C.; Soto, A.M. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ. Health Perspect., 2001, 109(7), 675-680.
[http://dx.doi.org/10.1289/ehp.01109675] [PMID: 11485865]
[69]
Newbold, R.R.; Padilla-Banks, E.; Snyder, R.J.; Jefferson, W.N. Developmental exposure to estrogenic compounds and obesity. Birth Defects Res. A Clin. Mol. Teratol., 2005, 73(7), 478-480.
[http://dx.doi.org/10.1002/bdra.20147] [PMID: 15959888]
[70]
Atanasov, A.G.; Tam, S.; Röcken, J.M.; Baker, M.E.; Odermatt, A. Inhibition of 11 beta-hydroxysteroid dehydrogenase type 2 by dithiocarbamates. Biochem. Biophys. Res. Commun., 2003, 308(2), 257-262.
[http://dx.doi.org/10.1016/S0006-291X(03)01359-7] [PMID: 12901862]
[71]
Atanasov, A.G.; Nashev, L.G.; Tam, S.; Baker, M.E.; Odermatt, A. Organotins disrupt the 11beta-hydroxysteroid dehydrogenase type 2-dependent local inactivation of glucocorticoids. Environ. Health Perspect., 2005, 113(11), 1600-1606.
[http://dx.doi.org/10.1289/ehp.8209] [PMID: 16263518]
[72]
Kirchner, S.; Kieu, T.; Chow, C.; Casey, S.; Blumberg, B. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol. Endocrinol., 2010, 24(3), 526-539.
[http://dx.doi.org/10.1210/me.2009-0261] [PMID: 20160124]
[73]
Janesick, A.; Blumberg, B. Obesogens, stem cells and the developmental programming of obesity. Int. J. Androl., 2012, 35(3), 437-448.
[http://dx.doi.org/10.1111/j.1365-2605.2012.01247.x] [PMID: 22372658]
[74]
Saitoh, M.; Yanase, T.; Morinaga, H.; Tanabe, M.; Mu, Y.M.; Nishi, Y.; Nomura, M.; Okabe, T.; Goto, K.; Takayanagi, R.; Nawata, H. Tributyltin or triphenyltin inhibits aromatase activity in the human granulosa-like tumor cell line KGN. Biochem. Biophys. Res. Commun., 2001, 289(1), 198-204.
[http://dx.doi.org/10.1006/bbrc.2001.5952] [PMID: 11708799]
[75]
Grün, F.; Blumberg, B. Endocrine disrupters as obesogens. Mol. Cell. Endocrinol., 2009, 304(1-2), 19-29.
[http://dx.doi.org/10.1016/j.mce.2009.02.018] [PMID: 19433244]
[76]
Rosen, E.D.; Sarraf, P.; Troy, A.E.; Bradwin, G.; Moore, K.; Milstone, D.S.; Spiegelman, B.M.; Mortensen, R.M. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell, 1999, 4(4), 611-617.
[http://dx.doi.org/10.1016/S1097-2765(00)80211-7] [PMID: 10549292]
[77]
Lu, M.; Sarruf, D.A.; Talukdar, S.; Sharma, S.; Li, P.; Bandyopadhyay, G.; Nalbandian, S.; Fan, W.; Gayen, J.R.; Mahata, S.K.; Webster, N.J.; Schwartz, M.W.; Olefsky, J.M. Brain PPAR-γ promotes obesity and is required for the insulin-sensitizing effect of thiazolidinediones. Nat. Med., 2011, 17(5), 618-622.
[http://dx.doi.org/10.1038/nm.2332] [PMID: 21532596]
[78]
Ryan, K.K.; Li, B.; Grayson, B.E.; Matter, E.K.; Woods, S.C.; Seeley, R.J. A role for central nervous system PPAR-γ in the regulation of energy balance. Nat. Med., 2011, 17(5), 623-626.
[http://dx.doi.org/10.1038/nm.2349] [PMID: 21532595]
[79]
Dubois, V.; Eeckhoute, J.; Lefebvre, P.; Staels, B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J. Clin. Invest., 2017, 127(4), 1202-1214.
[http://dx.doi.org/10.1172/JCI88894] [PMID: 28368286]
[80]
Muscogiuri, G.; Barrea, L.; Laudisio, D.; Savastano, S.; Colao, A. Obesogenic endocrine disruptors and obesity: myths and truths. Arch. Toxicol., 2017, 91(11), 3469-3475.
[http://dx.doi.org/10.1007/s00204-017-2071-1] [PMID: 28975368]
[81]
Lauritzen, H.B.; Larose, T.L.; Øien, T.; Sandanger, T.M.; Odland, J.Ø.; van de Bor, M.; Jacobsen, G.W. Prenatal exposure to persistent organic pollutants and child overweight/obesity at 5-year follow-up: a prospective cohort study. Environ. Health, 2018, 17(1), 9.
[http://dx.doi.org/10.1186/s12940-017-0338-x] [PMID: 29347948]
[82]
Kadawathagedara, M.; de Lauzon-Guillain, B.; Botton, J. Environmental contaminants and child’s growth. J. Dev. Orig. Health Dis., 2018, 9(6), 632-641.
[http://dx.doi.org/10.1017/S2040174418000995] [PMID: 30720417]
[83]
Janesick, A.S.; Blumberg, B. Obesogens: an emerging threat to public health. Am. J. Obstet. Gynecol., 2016, 214(5), 559-565.
[http://dx.doi.org/10.1016/j.ajog.2016.01.182] [PMID: 26829510]
[84]
Chamorro-García, R.; Sahu, M.; Abbey, R.J.; Laude, J.; Pham, N.; Blumberg, B. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environ. Health Perspect., 2013, 121(3), 359-366.
[http://dx.doi.org/10.1289/ehp.1205701] [PMID: 23322813]
[85]
Darbre, P.D. Endocrine disruption and disorders of energy metabolism; Endocrine Disruption and Human Health, 2015, pp. 273-285.
[http://dx.doi.org/10.1016/B978-0-12-801139-3.00015-6]
[86]
Jones, K.C.; de Voogt, P. Persistent organic pollutants (POPs): state of the science. Environ. Pollut., 1999, 100(1-3), 209-221.
[http://dx.doi.org/10.1016/S0269-7491(99)00098-6] [PMID: 15093119]
[87]
Beyer, W.N.; Meador, J.P. Environmental Contaminants in Biota: Interpreting Tissue Concentrations, 2nd ed; CRC Press, 2011.
[88]
ATSDR. Toxicological profile for chlordane. Department of Health and Human Services; Public Health Service, 2018.
[89]
Ingle, L. A monograph on chlordane. Toxicological and Pharmacological Properties, A Monograph on Chlordane, , 1965.
[90]
Seager, J. Carson’s Silent Spring: A Reader’s Guide; Bloomsbury Academic, 2014.
[91]
Aldrich, F.D.; Holmes, J.H. Acute chlordane intoxication in a child. Case report with toxicological data. Arch. Environ. Health, 1969, 19(1), 129-132.
[http://dx.doi.org/10.1080/00039896.1969.10666814] [PMID: 5785970]
[92]
Chlordane and heptachlor. IARC Monogr. Eval. Carcinog. Risks Hum., 1991, 53, 115-175.
[PMID: 1842578]
[93]
Beeman, R.W.; Matsumura, F. Metabolism of cis-and trans-chlordane by a soil microorganism. J. Agric. Food Chem., 1981, 29(1), 84-89.
[http://dx.doi.org/10.1021/jf00103a023]
[94]
Fuentes, M.S.; Raimondo, E.E.; Amoroso, M.J.; Benimeli, C.S. Removal of a mixture of pesticides by a Streptomyces consortium: influence of different soil systems. Chemosphere, 2017, 173, 359-367.
[http://dx.doi.org/10.1016/j.chemosphere.2017.01.044] [PMID: 28126570]
[95]
Reinke, E.N.; Deck, A.T. Wildlife toxicity assessment for chlordane. In:Wildlife Toxicity Assessments for Chemicals of Military Concern; Marc A, Williams Gunda; Reddy, Michael J.; Quinn, Mark S.; Johnson, , Eds.; Elsevier, 2015, pp. 385-411.
[http://dx.doi.org/10.1016/B978-0-12-800020-5.00022-3]
[96]
EPA. Chlordane, heptachlor, aldrin, and dieldrin technical support document (Draft). In: In: O.o.P.P.a.O.o.P.a.T; , 1987.
[97]
Louis, J.B.; Kisselbach, K.C. Jr. Indoor air levels of chlordane and heptachlor following termiticide applications. Bull. Environ. Contam. Toxicol., 1987, 39(6), 911-918.
[http://dx.doi.org/10.1007/BF01689578] [PMID: 3440147]
[98]
Kamble, S.T.; Ogg, C.L.; Gold, R.E.; Vance, A.D. Exposure of applicators and residents to chlordane and heptachlor when used for subterranean termite control. Arch. Environ. Contam. Toxicol., 1992, 22(3), 253-259.
[http://dx.doi.org/10.1007/BF00212082] [PMID: 1616308]
[99]
Byun, G.H.; Moon, H.B.; Choi, J.H.; Hwang, J.; Kang, C.K. Biomagnification of persistent chlorinated and brominated contaminants in food web components of the Yellow Sea. Mar. Pollut. Bull., 2013, 73(1), 210-219.
[http://dx.doi.org/10.1016/j.marpolbul.2013.05.017] [PMID: 23768977]
[100]
Ford, W.M.; Hill, E.P. Organochlorine pesticides in soil sediments and aquatic animals in the Upper Steele Bayou watershed of Mississippi. Arch. Environ. Contam. Toxicol., 1991, 20(2), 161-167.
[http://dx.doi.org/10.1007/BF01055900]
[101]
Falandysz, J. Quantity of chlordane intake with seafood in Poland. Rocz. Panstw. Zakl. Hig., 2000, 51(3), 229-239.
[PMID: 11138479]
[102]
Tashiro, S.; Matsumura, F. Metabolism of trans-nonachlor and related chlordane components in rat and man. Arch. Environ. Contam. Toxicol., 1978, 7(1), 113-127.
[http://dx.doi.org/10.1007/BF02332042] [PMID: 666363]
[103]
Hirasawa, F.; Takizawa, Y. Accumulation and declination of chlordane congeners in mice. Toxicol. Lett., 1989, 47(2), 109-117.
[http://dx.doi.org/10.1016/0378-4274(89)90065-9] [PMID: 2741174]
[104]
Nomeir, A.A.; Hajjar, N.P. Metabolism of chlordane in mammals. Rev. Environ. Contam. Toxicol., 1987, 100, 1-22.
[http://dx.doi.org/10.1007/978-1-4612-4804-0_1] [PMID: 3313546]
[105]
Institute of Medicine (US) Committee on Curriculum Development in Environmental Medicine. Environmental medicine: integrating a missing element into medical education.Pope, A.M.; Rall, D.P., Ed.; Washington (DC): National Academies Press (US);; , 1995.
[http://dx.doi.org/10.17226/4795 25121193]
[106]
Kawano, M.; Nishiyama, N.; Tatsukawa, R.; Shimada, T. In vitro degradation of trans-chlordane and oxychlordane by rat liver microsomes. Chemosphere, 1989, 19(12), 1829-1833.
[http://dx.doi.org/10.1016/0045-6535(89)90006-4]
[107]
Brimfield, A.A.; Street, J.C.; Futrell, J.; Chatfield, D.A. Identification of products arising from the metabolism of cis- and trans-chlordane in rat liver microsomes in vitro: outline of a possible metabolic pathway. Pestic. Biochem. Physiol., 1978, 9(1), 84-95.
[http://dx.doi.org/10.1016/0048-3575(78)90069-X]
[108]
Suzaki, E.; Inoue, B.; Okimasu, E.; Ogata, M.; Utsumi, K. Stimulative effect of chlordane on the various functions of the guinea pig leukocytes. Toxicol. Appl. Pharmacol., 1988, 93(1), 137-145.
[http://dx.doi.org/10.1016/0041-008X(88)90033-6] [PMID: 2832973]
[109]
Ohno, Y.; Kawanishi, T.; Takahashi, A.; Nakaura, S.; Kawashima, K.; Tanaka, S.; Takanaka, A.; Omori, Y.; Sekita, H.; Uchiyama, M. Comparisons of the toxicokinetic parameters in rats determined for low and high dose of gamma-chlordane. J. Toxicol. Sci., 1986, 11(2), 111-123.
[http://dx.doi.org/10.2131/jts.11.111] [PMID: 3723612]
[110]
Derbes, V.J.; Dent, J.H.; Forrest, W.W.; Johnson, M.F. Fatal chlordane poisoning. J. Am. Med. Assoc., 1955, 158(15), 1367-1369.
[http://dx.doi.org/10.1001/jama.1955.02960150037011a] [PMID: 13242360]
[111]
Nye, D.E.; Dorough, H.W. Fate of insecticides administered endotracheally to rats. Bull. Environ. Contam. Toxicol., 1976, 15(3), 291-296.
[http://dx.doi.org/10.1007/BF01812638] [PMID: 1268343]
[112]
Kutz, F.; Yobs, A.; Strassman, S. Organochlorine pesticide residues in human adipose tissue. Bulletin of the Society of Pharmacological and Environmental Pathologists, 1976, 4(1), 17-19.
[http://dx.doi.org/10.1177/019262337600400102]
[113]
Kutz, F.W.; Strassman, S.C.; Sperling, J.F. Survey of selected organochlorine pesticides in the general population of the United States: fiscal years 1970-1975. Ann. N. Y. Acad. Sci., 1979, 320, 60-68.
[http://dx.doi.org/10.1111/j.1749-6632.1979.tb56593.x] [PMID: 287404]
[114]
Barquet, A.; Morgade, C.; Pfaffenberger, C.D. Determination of organochlorine pesticides and metabolites in drinking water, human blood serum, and adipose tissue. J. Toxicol. Environ. Health, 1981, 7(3-4), 469-479.
[http://dx.doi.org/10.1080/15287398109529995] [PMID: 7288899]
[115]
Biros, F.J.; Enos, H.F. Oxychlordane residues in human adipose tissue. Bull. Environ. Contam. Toxicol., 1973, 10(5), 257-260.
[http://dx.doi.org/10.1007/BF01684812] [PMID: 4766127]
[116]
Ogata, M.; Izushi, F. Effects of chlordane on parameters of liver and muscle toxicity in man and experimental animals. Toxicol. Lett., 1991, 56(3), 327-337.
[http://dx.doi.org/10.1016/0378-4274(91)90161-X] [PMID: 2035178]
[117]
Jitsunari, F.; Asakawa, F.; Shiraishi, H.; Choi, J.O.; Suna, S.; Yoshihara, K.; Fukunaga, I.; Takeda, N. Tissue concentrations of chlordanes in mice after long-term exposures to technical grade chlordane at indoor air levels. Environ. Health Prev. Med., 1999, 3(4), 184-189.
[http://dx.doi.org/10.1007/BF02932256] [PMID: 21432523]
[118]
Taguchi, S.; Yakushiji, T. Influence of termite treatment in the home on the chlordane concentration in human milk. Arch. Environ. Contam. Toxicol., 1988, 17(1), 65-71.
[http://dx.doi.org/10.1007/BF01055155] [PMID: 3337553]
[119]
CDC. Fourth National Report on Human Exposure to Environmental Chemical. Centers for Disease Control and Prevention, Department of Health and Human Services, 2019.
[120]
Fång, J.; Nyberg, E.; Winnberg, U.; Bignert, A.; Bergman, Å. Spatial and temporal trends of the Stockholm Convention POPs in mothers’ milk - a global review. Environ. Sci. Pollut. Res. Int., 2015, 22(12), 8989-9041.
[http://dx.doi.org/10.1007/s11356-015-4080-z] [PMID: 25913228]
[121]
Barnett, R.W.; D’Ercole, A.J.; Cain, J.D.; Arthur, R.D. Organochlorine pesticide residues in human milk samples from women living in Northwest and Northeast Mississippi, 1973-75. Pestic. Monit. J., 1979, 13(2), 47-51.
[PMID: 514793]
[122]
Strassman, S.C.; Kutz, F.W. Insecticide residues in human milk from Arkansas and Mississippi, 1973-74. Pestic. Monit. J., 1977, 10(4), 130-133.
[PMID: 854395]
[123]
Fujii, Y.; Ito, Y.; Harada, K.H.; Hitomi, T.; Koizumi, A.; Haraguchi, K. Comparative survey of levels of chlorinated cyclodiene pesticides in breast milk from some cities of China, Korea and Japan. Chemosphere, 2012, 89(4), 452-457.
[http://dx.doi.org/10.1016/j.chemosphere.2012.05.098] [PMID: 22743181]
[124]
Klaassen, C.D.; Casarett, L.J.; Doull, J. Casarett and Doull’s Toxicology: the Basic Science of Poisons, 8th ed; McGraw-Hill Education, 2013.
[125]
Fishman, B.E.; Gianutsos, G. Inhibition of 4-aminobutyric acid (GABA) turnover by chlordane. Toxicol. Lett., 1985, 26(2-3), 219-223.
[http://dx.doi.org/10.1016/0378-4274(85)90170-5] [PMID: 4035713]
[126]
Bidlack, W.R. Casarett & Doull’s Toxicology: the Basic Science of Poisons, 6th ed; Taylor & Francis, 2013, pp. 289-290.
[http://dx.doi.org/10.1080/07315724.2002.10719223]
[127]
Kretschmer, X.C.; Baldwin, W.S. CAR and PXR: xenosensors of endocrine disrupters? Chem. Biol. Interact., 2005, 155(3), 111-128.
[http://dx.doi.org/10.1016/j.cbi.2005.06.003] [PMID: 16054614]
[128]
Kliewer, S.A.; Goodwin, B.; Willson, T.M. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr. Rev., 2002, 23(5), 687-702.
[http://dx.doi.org/10.1210/er.2001-0038] [PMID: 12372848]
[129]
EPA. Summary of Reported Pesticide Incidents Involving Chlordane, 1980.
[130]
Ortega, P.; Hayes, W.J. Jr.; Durham, W.F. Pathologic changes in the liver of rats after feeding low levels of various insecticides. AMA Arch. Pathol., 1957, 64(6), 614-622.
[PMID: 13478250]
[131]
McConnachie, P.R.; Zahalsky, A.C. Immune alterations in humans exposed to the termiticide technical chlordane. Arch. Environ. Health, 1992, 47(4), 295-301.
[http://dx.doi.org/10.1080/00039896.1992.9938365] [PMID: 1497384]
[132]
den Tonkelaar, E.M.; van Esch, G.J. No-effect levels of organochlorine pesticides based on induction of microsomal liver enzymes in short-term toxicity experiments. Toxicology, 1974, 2(4), 371-380.
[http://dx.doi.org/10.1016/0300-483X(74)90030-4] [PMID: 4137085]
[133]
W.H.O. Some thyrotropic agents. IARC Monogr. Eval. Carcinog. Risks Hum., 2001, 79, 1-725.
[PMID: 11766267]
[134]
Cantor, K.P.; Blair, A.; Everett, G.; Gibson, R.; Burmeister, L.F.; Brown, L.M.; Schuman, L.; Dick, F.R. Pesticides and other agricultural risk factors for non-Hodgkin’s lymphoma among men in Iowa and Minnesota. Cancer Res., 1992, 52(9), 2447-2455.
[PMID: 1568215]
[135]
Colt, J.S.; Davis, S.; Severson, R.K.; Lynch, C.F.; Cozen, W.; Camann, D.; Engels, E.A.; Blair, A.; Hartge, P. Residential insecticide use and risk of non-Hodgkin’s lymphoma. Cancer Epidemiol. Biomarkers Prev., 2006, 15(2), 251-257.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0556] [PMID: 16492912]
[136]
Spinelli, J.J.; Ng, C.H.; Weber, J.P.; Connors, J.M.; Gascoyne, R.D.; Lai, A.S.; Brooks-Wilson, A.R.; Le, N.D.; Berry, B.R.; Gallagher, R.P. Organochlorines and risk of non-Hodgkin lymphoma. Int. J. Cancer, 2007, 121(12), 2767-2775.
[http://dx.doi.org/10.1002/ijc.23005] [PMID: 17722095]
[137]
Quintana, P.J.; Delfino, R.J.; Korrick, S.; Ziogas, A.; Kutz, F.W.; Jones, E.L.; Laden, F.; Garshick, E. Adipose tissue levels of organochlorine pesticides and polychlorinated biphenyls and risk of non-Hodgkin’s lymphoma. Environ. Health Perspect., 2004, 112(8), 854-861.
[http://dx.doi.org/10.1289/ehp.6726] [PMID: 15175172]
[138]
Hardell, L.; Liljegren, G.; Lindstrom, G.; Vanbavel, B.; Broman, K.; Fredrikson, M.; Hagberg, H.; Nordstrom, M.; Johansson, B. Increased concentrations of chlordane in adipose tissue from non-Hodgkin’s lymphoma patients compared with controls without a malignant disease. Int. J. Oncol., 1996, 9(6), 1139-1142.
[http://dx.doi.org/10.3892/ijo.9.6.1139] [PMID: 21541622]
[139]
Purdue, M.P.; Hoppin, J.A.; Blair, A.; Dosemeci, M.; Alavanja, M.C. Occupational exposure to organochlorine insecticides and cancer incidence in the agricultural health study. Int. J. Cancer, 2007, 120(3), 642-649.
[http://dx.doi.org/10.1002/ijc.22258] [PMID: 17096337]
[140]
Hardell, L.; Carlberg, M.; Hardell, K.; Björnfoth, H.; Wickbom, G.; Ionescu, M.; van Bavel, B.; Lindström, G. Decreased survival in pancreatic cancer patients with high concentrations of organochlorines in adipose tissue. Biomed. Pharmacother., 2007, 61(10), 659-664.
[http://dx.doi.org/10.1016/j.biopha.2007.04.006] [PMID: 17560068]
[141]
Mills, P.K.; Yang, R. Breast cancer risk in Hispanic agricultural workers in California. Int. J. Occup. Environ. Health, 2005, 11(2), 123-131.
[http://dx.doi.org/10.1179/oeh.2005.11.2.123] [PMID: 15875887]
[142]
Ingle, L. The toxicity of chlordane vapors. Science, 1953, 118(3060), 213-214.
[http://dx.doi.org/10.1126/science.118.3060.213] [PMID: 13089649]
[143]
Khasawinah, A.M. Chlordane residues in rat and monkey tissues following subchronic inhalation exposure to technical chlordane. Bull. Environ. Contam. Toxicol., 1989, 43(3), 459-466.
[http://dx.doi.org/10.1007/BF01701883] [PMID: 2790253]
[144]
Johnson, K.W.; Holsapple, M.P.; Munson, A.E. An immunotoxicological evaluation of gamma-chlordane. Fundam. Appl. Toxicol., 1986, 6(2), 317-326.
[PMID: 3486141]
[145]
Truhaut, R.; Gak, C. Modality and mechanism of the toxic action of organochlorine insecticides. I. Comparative study of the acute toxic effects on the hamster and the rat. Eur. J. Toxicol. Environ. Hyg., 1974, 7(3), 159-166.
[PMID: 4140096]
[146]
Casterline, J.L. Jr.; Williams, C.H.; Keys, J.; Taylor, M.J. The effect of 28-day pesticide feeding on serum and tissue enzyme activities of rats fed diets of varying casein content. Toxicol. Appl. Pharmacol., 1971, 18(3), 607-618.
[http://dx.doi.org/10.1016/S0041-008X(71)80015-7] [PMID: 5569834]
[147]
Ambrose, A.M.; Christensen, H.E.; Robbins, D.J.; Rather, L.J. Toxicological and pharmacological studies on chlordane. A.M.A. Arch. Ind. Hyg. Occup. Med., 1953, 7(3), 197-210.
[PMID: 13029945]
[148]
Stockholm Convention. The 12 Initial POPs under the Stockholm Convention; , 2001. Available at: chm.pops.int/TheConvention/ThePOPs/The12InitialPOPs/t abid/296/Default.aspx
[149]
Lallas, P.L. The Stockholm Convention on persistent organic pollutants. Am. J. Int. Law, 2001, 95(3), 692-708.
[http://dx.doi.org/10.2307/2668517]
[150]
Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol., 2016, 9(3-4), 90-100.
[http://dx.doi.org/10.1515/intox-2016-0012] [PMID: 28652852]
[151]
Ruzzin, J.; Petersen, R.; Meugnier, E.; Madsen, L.; Lock, E.J.; Lillefosse, H.; Ma, T.; Pesenti, S.; Sonne, S.B.; Marstrand, T.T.; Malde, M.K.; Du, Z.Y.; Chavey, C.; Fajas, L.; Lundebye, A.K.; Brand, C.L.; Vidal, H.; Kristiansen, K.; Frøyland, L. Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ. Health Perspect., 2010, 118(4), 465-471.
[http://dx.doi.org/10.1289/ehp.0901321] [PMID: 20064776]
[152]
Ibrahim, M.M.; Fjære, E.; Lock, E.J.; Naville, D.; Amlund, H.; Meugnier, E.; Le Magueresse Battistoni, B.; Frøyland, L.; Madsen, L.; Jessen, N.; Lund, S.; Vidal, H.; Ruzzin, J. Chronic consumption of farmed salmon containing persistent organic pollutants causes insulin resistance and obesity in mice. PLoS One, 2011, 6(9)e25170
[http://dx.doi.org/10.1371/journal.pone.0025170] [PMID: 21966444]
[153]
Min, J.Y.; Cho, J.S.; Lee, K.J.; Park, J.B.; Park, S.G.; Kim, J.Y.; Min, K.B. Potential role for organochlorine pesticides in the prevalence of peripheral arterial diseases in obese persons: results from the National Health and Nutrition Examination Survey 1999-2004. Atherosclerosis, 2011, 218(1), 200-206.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.044] [PMID: 21620405]
[154]
Lee, D.H.; Lee, I.K.; Jin, S.H.; Steffes, M.; Jacobs, D.R. Jr. Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care, 2007, 30(3), 622-628.
[http://dx.doi.org/10.2337/dc06-2190] [PMID: 17327331]
[155]
Son, H.K.; Kim, S.A.; Kang, J.H.; Chang, Y.S.; Park, S.K.; Lee, S.K.; Jacobs, D.R. Jr.; Lee, D.H. Strong associations between low-dose organochlorine pesticides and type 2 diabetes in Korea. Environ. Int., 2010, 36(5), 410-414.
[http://dx.doi.org/10.1016/j.envint.2010.02.012] [PMID: 20381150]
[156]
Lee, D.H.; Lee, I.K.; Song, K.; Steffes, M.; Toscano, W.; Baker, B.A.; Jacobs, D.R. Jr. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002. Diabetes Care, 2006, 29(7), 1638-1644.
[http://dx.doi.org/10.2337/dc06-0543] [PMID: 16801591]
[157]
Airaksinen, R.; Rantakokko, P.; Eriksson, J.G.; Blomstedt, P.; Kajantie, E.; Kiviranta, H. Association between type 2 diabetes and exposure to persistent organic pollutants. Diabetes Care, 2011, 34(9), 1972-1979.
[http://dx.doi.org/10.2337/dc10-2303] [PMID: 21816981]
[158]
Lee, D.H.; Lind, P.M.; Jacobs, D.R. Jr.; Salihovic, S.; van Bavel, B.; Lind, L. Polychlorinated biphenyls and organochlorine pesticides in plasma predict development of type 2 diabetes in the elderly: the prospective investigation of the vasculature in Uppsala Seniors (PIVUS) study. Diabetes Care, 2011, 34(8), 1778-1784.
[http://dx.doi.org/10.2337/dc10-2116] [PMID: 21700918]
[159]
Lee, D.H.; Porta, M.; Jacobs, D.R. Jr.; Vandenberg, L.N. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr. Rev., 2014, 35(4), 557-601.
[http://dx.doi.org/10.1210/er.2013-1084] [PMID: 24483949]
[160]
Gauthier, M.S.; Rabasa-Lhoret, R.; Prud’homme, D.; Karelis, A.D.; Geng, D.; van Bavel, B.; Ruzzin, J. The metabolically healthy but obese phenotype is associated with lower plasma levels of persistent organic pollutants as compared to the metabolically abnormal obese phenotype. J. Clin. Endocrinol. Metab., 2014, 99(6), E1061-E1066.
[http://dx.doi.org/10.1210/jc.2013-3935] [PMID: 24606089]
[161]
Alonso-Magdalena, P.; Quesada, I.; Nadal, A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2011, 7(6), 346-353.
[http://dx.doi.org/10.1038/nrendo.2011.56] [PMID: 21467970]
[162]
Howell, G., 3rd; Mangum, L. Exposure to bioaccumulative organochlorine compounds alters adipogenesis, fatty acid uptake, and adipokine production in NIH3T3-L1 cells.Toxicol. In Vitro; , 2011, 25, pp. (1)394-402.
[http://dx.doi.org/10.1016/j.tiv.2010.10.015] [PMID: 21044676]
[163]
Antuna-Puente, B.; Feve, B.; Fellahi, S.; Bastard, J.P. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab., 2008, 34(1), 2-11.
[http://dx.doi.org/10.1016/j.diabet.2007.09.004] [PMID: 18093861]
[164]
Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 1997, 46(1), 3-10.
[http://dx.doi.org/10.2337/diab.46.1.3] [PMID: 8971073]
[165]
Kim, S.; Park, J.; Kim, H.J.; Lee, J.J.; Choi, G.; Choi, S.; Kim, S.; Kim, S.Y.; Lee, D.H.; Moon, H.B.; Kim, S.; Choi, K. Association between several persistent organic pollutants in serum and adipokine levels in breast milk among lactating women of Korea. Environ. Sci. Technol., 2015, 49(13), 8033-8040.
[http://dx.doi.org/10.1021/acs.est.5b00520] [PMID: 26054256]
[166]
Boeke, C.E.; Mantzoros, C.S.; Hughes, M.D.L.; Rifas-Shiman, L. S.; Villamor, E.; Zera, C.A.; Gillman, M.W. Differential associations of leptin with adiposity across early childhood. Obesity (Silver Spring), 2013, 21(7), 1430-1437.
[http://dx.doi.org/10.1002/oby.20314] [PMID: 23408391]
[167]
Mantzoros, C.S.; Rifas-Shiman, S.L.; Williams, C.J.; Fargnoli, J.L.; Kelesidis, T.; Gillman, M.W. Cord blood leptin and adiponectin as predictors of adiposity in children at 3 years of age: a prospective cohort study. Pediatrics, 2009, 123(2), 682-689.
[http://dx.doi.org/10.1542/peds.2008-0343] [PMID: 19171638]
[168]
Miralles, O.; Sánchez, J.; Palou, A.; Picó, C. A physiological role of breast milk leptin in body weight control in developing infants. Obesity (Silver Spring), 2006, 14(8), 1371-1377.
[http://dx.doi.org/10.1038/oby.2006.155] [PMID: 16988079]
[169]
John, G.K.; Mullin, G.E. The gut microbiome and obesity. Curr. Oncol. Rep., 2016, 18(7), 45.
[http://dx.doi.org/10.1007/s11912-016-0528-7] [PMID: 27255389]
[170]
Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122), 1027-1031.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[171]
Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.; Leonard, P.; Li, J.; Burgdorf, K.; Grarup, N.; Jørgensen, T.; Brandslund, I.; Nielsen, H.B.; Juncker, A.S.; Bertalan, M.; Levenez, F.; Pons, N.; Rasmussen, S.; Sunagawa, S.; Tap, J.; Tims, S.; Zoetendal, E.G.; Brunak, S.; Clément, K.; Doré, J.; Kleerebezem, M.; Kristiansen, K.; Renault, P.; Sicheritz-Ponten, T.; de Vos, W.M.; Zucker, J.D.; Raes, J.; Hansen, T.; Bork, P.; Wang, J.; Ehrlich, S.D.; Pedersen, O. MetaHIT consortium. Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500(7464), 541-546.
[http://dx.doi.org/10.1038/nature12506] [PMID: 23985870]
[172]
Tousignant, K.; Uno, J. The effect of obesogens on the microbiota and systemic health in zebrafish. The FASEB J., 2015, 29(1), 850-852.
[173]
Lai, K.P.; Chung, Y.T.; Li, R.; Wan, H.T.; Wong, C.K.C. Bisphenol A alters gut microbiome: comparative metagenomics analysis. Environ. Pollut., 2016, 218, 923-930.
[http://dx.doi.org/10.1016/j.envpol.2016.08.039] [PMID: 27554980]
[174]
Rosenfeld, C.S. Gut dysbiosis in animals due to environmental chemical exposures. Front. Cell. Infect. Microbiol., 2017, 7, 396-396.
[http://dx.doi.org/10.3389/fcimb.2017.00396] [PMID: 28936425]
[175]
Zhang, H.; DiBaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.; Rittmann, B.E.; Krajmalnik-Brown, R. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA, 2009, 106(7), 2365-2370.
[http://dx.doi.org/10.1073/pnas.0812600106] [PMID: 19164560]
[176]
Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring), 2010, 18(1), 190-195.
[http://dx.doi.org/10.1038/oby.2009.167] [PMID: 19498350]
[177]
Million, M.; Maraninchi, M.; Henry, M.; Armougom, F.; Richet, H.; Carrieri, P.; Valero, R.; Raccah, D.; Vialettes, B.; Raoult, D. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes., 2012, 36(6), 817-825.
[http://dx.doi.org/10.1038/ijo.2011.153] [PMID: 21829158]
[178]
Lee, H.S.; Lee, J.C.; Lee, I.K.; Moon, H.B.; Chang, Y.S.; Jacobs, D.R., Jr; Lee, D.H. Associations among organochlorine pesticides, Methanobacteriales, and obesity in Korean women. PLoS One, 2011, 6(11)e27773
[http://dx.doi.org/10.1371/journal.pone.0027773] [PMID: 22114690]
[179]
Roos, V.; Rönn, M.; Salihovic, S.; Lind, L.; van Bavel, B.; Kullberg, J.; Johansson, L.; Ahlström, H.; Lind, P.M. Circulating levels of persistent organic pollutants in relation to visceral and subcutaneous adipose tissue by abdominal MRI. Obesity (Silver Spring), 2013, 21(2), 413-418.
[http://dx.doi.org/10.1002/oby.20267] [PMID: 23532994]
[180]
Hue, O.; Marcotte, J.; Berrigan, F.; Simoneau, M.; Doré, J.; Marceau, P.; Marceau, S.; Tremblay, A.; Teasdale, N. Plasma concentration of organochlorine compounds is associated with age and not obesity. Chemosphere, 2007, 67(7), 1463-1467.
[http://dx.doi.org/10.1016/j.chemosphere.2006.10.033] [PMID: 17126879]
[181]
Cupul-Uicab, L.A.; Klebanoff, M.A.; Brock, J.W.; Longnecker, M.P. Prenatal exposure to persistent organochlorines and childhood obesity in the US collaborative perinatal project. Environ. Health Perspect., 2013, 121(9), 1103-1109.
[http://dx.doi.org/10.1289/ehp.1205901] [PMID: 23799652]
[182]
Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R., Jr; Lee, D-H.; Shioda, T.; Soto, A.M.; vom Saal, F.S.; Welshons, W.V.; Zoeller, R.T.; Myers, J.P. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr. Rev., 2012, 33(3), 378-455.
[http://dx.doi.org/10.1210/er.2011-1050] [PMID: 22419778]
[183]
Croutch, C.R.; Lebofsky, M.; Schramm, K.W.; Terranova, P.F.; Rozman, K.K. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (HxCDD) alter body weight by decreasing insulin-like growth factor I (IGF-I) signaling. Toxicol. Sci., 2005, 85(1), 560-571.
[http://dx.doi.org/10.1093/toxsci/kfi106] [PMID: 15703265]
[184]
Wang, D.; Wang, X.; Zhang, P.; Wang, Y.; Zhang, R.; Yan, J.; Zhou, Z.; Zhu, W. The fate of technical-grade chlordane in mice fed a high-fat diet and its roles as a candidate obesogen. Environ. Pollut., 2017, 222, 532-542.
[http://dx.doi.org/10.1016/j.envpol.2016.11.028] [PMID: 28041837]
[185]
McGlynn, K.A.; Quraishi, S.M.; Graubard, B.I.; Weber, J.P.; Rubertone, M.V.; Erickson, R.L. Persistent organochlorine pesticides and risk of testicular germ cell tumors. J. Natl. Cancer Inst., 2008, 100(9), 663-671.
[http://dx.doi.org/10.1093/jnci/djn101] [PMID: 18445826]
[186]
Aragozzini, F.; Ferrari, A.; Pacini, N.; Gualandris, R. Indole-3-lactic acid as a tryptophan metabolite produced by Bifidobacterium spp. Appl. Environ. Microbiol., 1979, 38(3), 544-546.
[http://dx.doi.org/10.1128/AEM.38.3.544-546.1979] [PMID: 533277]
[187]
Cassidy, R.A.; Vorhees, C.V.; Minnema, D.J.; Hastings, L. The effects of chlordane exposure during pre- and postnatal periods at environmentally relevant levels on sex steroid-mediated behaviors and functions in the rat. Toxicol. Appl. Pharmacol., 1994, 126(2), 326-337.
[http://dx.doi.org/10.1006/taap.1994.1123] [PMID: 8209386]
[188]
Haake, J.; Kelley, M.; Keys, B.; Safe, S. The effects of organochlorine pesticides as inducers of testosterone and benzo[a]pyrene hydroxylases. Gen. Pharmacol., 1987, 18(2), 165-169.
[http://dx.doi.org/10.1016/0306-3623(87)90244-8] [PMID: 3569844]
[189]
Cranmer, J.M.; Cranmer, M.F.; Goad, P.T. Prenatal chlordane exposure: effects on plasma corticosterone concentrations over the lifespan of mice. Environ. Res., 1984, 35(1), 204-210.
[http://dx.doi.org/10.1016/0013-9351(84)90128-2] [PMID: 6489289]
[190]
Mayes, J.S.; Watson, G.H. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes. Rev., 2004, 5(4), 197-216.
[http://dx.doi.org/10.1111/j.1467-789X.2004.00152.x] [PMID: 15458395]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy