Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Emerging Potential of Naturally Occurring Autophagy Modulators Against Neurodegeneration

Author(s): Md. Ataur Rahman*, Md Rezanur Rahman, Toyfiquz Zaman, Md. Sahab Uddin, Rokibul Islam, Mohamed M. Abdel-Daim and Hyewhon Rhim*

Volume 26, Issue 7, 2020

Page: [772 - 779] Pages: 8

DOI: 10.2174/1381612826666200107142541

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Naturally-occurring products derived from living organisms have been shown to modulate various pharmacological and biological activities. Natural products protect against various diseases, which could be used for therapeutic assistance. Autophagy, a lysosome-mediated self-digestion pathway, has been implicated in a range of pathophysiological conditions and has recently gained attention for its role in several neurodegenerative diseases.

Methods: In this current review, we emphasized the recent progress made in our understanding of the molecular mechanism of autophagy in different cellular and mouse models using naturally-occurring autophagy modulators for the management of several neurodegenerative diseases.

Results: Accumulating evidence has revealed that a wide variety of natural compounds such as alkaloids, polyphenols, terpenoids, xanthonoids, flavonoids, lignans, disaccharides, glycolipoproteins, and saponins are involved in the modulation of the autophagy signaling pathway. These natural products have been used to treat various neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis, spinocerebellar ataxia, neuroblastoma, and glioblastoma. Although a number of synthetic autophagy regulators have been recognized as encouraging neurodegenerative therapeutic candidates, natural autophagy- regulating compounds have been of further interest as potential disease therapeutics, as they cause insignificant side effects.

Conclusion: Existing in vitro and in vivo data are promising and highlight that naturally-occurring autophagyregulating compounds play an important role in the prevention and treatment of neurodegenerative disorders.

Keywords: Natural products, autophagy, neurodegeneration, therapeutic potential, glycolipoproteins, lignans.

[1]
Zhang SF, Wang XL, Yang XQ, Chen N. Autophagy-associated targeting pathways of natural products during cancer treatment. Asian Pac J Cancer Prev 2014; 15(24): 10557-63.
[http://dx.doi.org/10.7314/APJCP.2014.15.24.10557] [PMID: 25605139]
[2]
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132(1): 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[3]
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43: 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[4]
Nihira K, Miki Y, Ono K, Suzuki T, Sasano H. An inhibition of p62/SQSTM1 caused autophagic cell death of several human carcinoma cells. Cancer Sci 2014; 105(5): 568-75.
[http://dx.doi.org/10.1111/cas.12396] [PMID: 24618016]
[5]
Rosenfeldt MT, Ryan KM. The multiple roles of autophagy in cancer. Carcinogenesis 2011; 32(7): 955-63.
[http://dx.doi.org/10.1093/carcin/bgr031] [PMID: 21317301]
[6]
Wang P, Zhu L, Sun D, et al. Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 2017; 22(3): 325-56.
[http://dx.doi.org/10.1007/s10495-016-1335-1] [PMID: 27988811]
[7]
Kantara C, O’Connell M, Sarkar S, Moya S, Ullrich R, Singh P. Curcumin promotes autophagic survival of a subset of colon cancer stem cells, which are ablated by DCLK1-siRNA. Cancer Res 2014; 74(9): 2487-98.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3536] [PMID: 24626093]
[8]
Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 2007; 72(1): 29-39.
[http://dx.doi.org/10.1124/mol.106.033167] [PMID: 17395690]
[9]
Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 2007; 3(6): 635-7.
[http://dx.doi.org/10.4161/auto.4916] [PMID: 17786026]
[10]
Boridy S, Le PU, Petrecca K, Maysinger D. Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells. Cell Death Dis 2014; 5 e1216
[http://dx.doi.org/10.1038/cddis.2014.182] [PMID: 24810052]
[11]
Xi G, Hu X, Wu B, et al. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett 2011; 307(2): 141-8.
[http://dx.doi.org/10.1016/j.canlet.2011.03.026] [PMID: 21511395]
[12]
Li Q, Yue Y, Chen L, et al. Resveratrol sensitizes carfilzomib-induced apoptosis via promoting oxidative stress in multiple myeloma cells. Front Pharmacol 2018; 9: 334.
[http://dx.doi.org/10.3389/fphar.2018.00334] [PMID: 29867453]
[13]
Chu SC, Hsieh YS, Yu CC, Lai YY, Chen PN. Thymoquinone induces cell death in human squamous carcinoma cells via caspase activation-dependent apoptosis and LC3-II activation-dependent autophagy. PLoS One 2014; 9(7) e101579
[http://dx.doi.org/10.1371/journal.pone.0101579] [PMID: 25000169]
[14]
Pazhouhi M, Sariri R, Rabzia A, Khazaei M. Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line. Iran J Basic Med Sci 2016; 19(8): 890-8.
[PMID: 27746872]
[15]
Liu B, Wen X, Cheng Y. Survival or death: disequilibrating the oncogenic and tumor suppressive autophagy in cancer. Cell Death Dis 2013; 4 e892
[http://dx.doi.org/10.1038/cddis.2013.422] [PMID: 24176850]
[16]
Kim KH, Lee MS. Autophagy-a key player in cellular and body metabolism. Nat Rev Endocrinol 2014; 10(6): 322-37.
[http://dx.doi.org/10.1038/nrendo.2014.35] [PMID: 24663220]
[17]
Martinez-Vicente M. Autophagy in neurodegenerative diseases: From pathogenic dysfunction to therapeutic modulation. Semin Cell Dev Biol 2015; 40: 115-26.
[http://dx.doi.org/10.1016/j.semcdb.2015.03.005] [PMID: 25843774]
[18]
Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013; 368(7): 651-62.
[http://dx.doi.org/10.1056/NEJMra1205406] [PMID: 23406030]
[19]
Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441(7095): 885-9.
[http://dx.doi.org/10.1038/nature04724] [PMID: 16625204]
[20]
Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441(7095): 880-4.
[http://dx.doi.org/10.1038/nature04723] [PMID: 16625205]
[21]
Williams A, Jahreiss L, Sarkar S, et al. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 2006; 76: 89-101.
[http://dx.doi.org/10.1016/S0070-2153(06)76003-3] [PMID: 17118264]
[22]
Xilouri M, Stefanis L. Autophagy in the central nervous system: implications for neurodegenerative disorders. CNS Neurol Disord Drug Targets 2010; 9(6): 701-19.
[http://dx.doi.org/10.2174/187152710793237421] [PMID: 20942791]
[23]
Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev 2012; 2012 428010
[http://dx.doi.org/10.1155/2012/428010] [PMID: 22685618]
[24]
Davinelli S, Sapere N, Visentin M, Zella D, Scapagnini G. Enhancement of mitochondrial biogenesis with polyphenols: combined effects of resveratrol and equol in human endothelial cells. Immun Ageing 2013; 10(1): 28.
[http://dx.doi.org/10.1186/1742-4933-10-28] [PMID: 23842073]
[25]
Zhang Z, Zheng L, Zhao Z, Shi J, Wang X, Huang J. Grape seed proanthocyanidins inhibit H2O2-induced osteoblastic MC3T3-E1 cell apoptosis via ameliorating H2O2-induced mitochondrial dysfunction. J Toxicol Sci 2014; 39(5): 803-13.
[http://dx.doi.org/10.2131/jts.39.803] [PMID: 25242411]
[26]
Ahmed AH, Hamada M, Shinada T, et al. The structure of (-)-kaitocephalin bound to the ligand binding domain of the (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamate receptor, GluA2. J Biol Chem 2012; 287(49): 41007-13.
[http://dx.doi.org/10.1074/jbc.M112.416362] [PMID: 23076153]
[27]
Kempuraj D, Madhappan B, Christodoulou S, et al. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol 2005; 145(7): 934-44.
[http://dx.doi.org/10.1038/sj.bjp.0706246] [PMID: 15912140]
[28]
Xu Z, Chen S, Li X, Luo G, Li L, Le W. Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res 2006; 31(10): 1263-9.
[http://dx.doi.org/10.1007/s11064-006-9166-z] [PMID: 17021948]
[29]
Wang J, Ho L, Zhao W, et al. Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 2008; 28(25): 6388-92.
[http://dx.doi.org/10.1523/JNEUROSCI.0364-08.2008] [PMID: 18562609]
[30]
Mandel SA, Amit T, Kalfon L, Reznichenko L, Weinreb O, Youdim MB. Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG). J Alzheimers Dis 2008; 15(2): 211-22.
[http://dx.doi.org/10.3233/JAD-2008-15207] [PMID: 18953110]
[31]
Uddin MS, Stachowiak A, Mamun AA, et al. Autophagy and Alzheimer’s disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci 2018; 10: 04.
[http://dx.doi.org/10.3389/fnagi.2018.00004] [PMID: 29441009]
[32]
Uddin MS, Mamun AA, Labu ZK, Hidalgo-Lanussa O, Barreto GE, Ashraf GM. Autophagic dysfunction in Alzheimer’s disease: cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis. J Cell Physiol 2019; 234(6): 8094-112.
[http://dx.doi.org/10.1002/jcp.27588] [PMID: 30362531]
[33]
Grossi C, Rigacci S, Ambrosini S, et al. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology. PLoS One 2013; 8(8) e71702
[http://dx.doi.org/10.1371/journal.pone.0071702] [PMID: 23951225]
[34]
Luccarini I, Grossi C, Rigacci S, et al. Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ß toxicity: biochemical, epigenetic and functional correlates. Neurobiol Aging 2015; 36(2): 648-63.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.08.029] [PMID: 25293421]
[35]
Rigacci S, Miceli C, Nediani C, et al. Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: a mechanistic insight. Oncotarget 2015; 6(34): 35344-57.
[http://dx.doi.org/10.18632/oncotarget.6119] [PMID: 26474288]
[36]
Zhu Z, Yan J, Jiang W, et al. Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J Neurosci 2013; 33(32): 13138-49.
[http://dx.doi.org/10.1523/JNEUROSCI.4790-12.2013] [PMID: 23926267]
[37]
Rezai-Zadeh K, Arendash GW, Hou H, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 2008; 1214: 177-87.
[http://dx.doi.org/10.1016/j.brainres.2008.02.107] [PMID: 18457818]
[38]
Lee JW, Lee YK, Ban JO, et al. Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 2009; 139(10): 1987-93.
[http://dx.doi.org/10.3945/jn.109.109785] [PMID: 19656855]
[39]
Jeon SY, Bae K, Seong YH, Song KS. Green tea catechins as a BACE1 (beta-secretase) inhibitor. Bioorg Med Chem Lett 2003; 13(22): 3905-8.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.018] [PMID: 14592472]
[40]
Lu C, Guo Y, Yan J, et al. Design, synthesis, and evaluation of multitarget-directed resveratrol derivatives for the treatment of Alzheimer’s disease. J Med Chem 2013; 56(14): 5843-59.
[http://dx.doi.org/10.1021/jm400567s] [PMID: 23799643]
[41]
de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM. Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta 2016; 1860(4): 727-45.
[http://dx.doi.org/10.1016/j.bbagen.2016.01.017] [PMID: 26802309]
[42]
Uddin MS, Mamun AA, Jakaria M, et al. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Science of the Total Environment 2019; 707: 1-12. In Press
[http://dx.doi.org/10.1016/j.scitotenv.2019.135624]
[43]
Filomeni G, Graziani I, De Zio D, et al. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 2012; 33(4): 767-85.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.021] [PMID: 20594614]
[44]
Wang ZY, Liu JY, Yang CB, et al. Neuroprotective natural products for the treatment of Parkinson’s disease by targeting the autophagy-lysosome pathway: a systematic review. Phytother Res 2017; 31(8): 1119-27.
[http://dx.doi.org/10.1002/ptr.5834] [PMID: 28504367]
[45]
Lu JH, Tan JQ, Durairajan SS, et al. Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy 2012; 8(1): 98-108.
[http://dx.doi.org/10.4161/auto.8.1.18313] [PMID: 22113202]
[46]
Sasazawa Y, Sato N, Umezawa K, Simizu S. Conophylline protects cells in cellular models of neurodegenerative diseases by inducing mammalian target of rapamycin (mTOR)-independent autophagy. J Biol Chem 2015; 290(10): 6168-78.
[http://dx.doi.org/10.1074/jbc.M114.606293] [PMID: 25596530]
[47]
Jiang TF, Zhang YJ, Zhou HY, et al. Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol 2013; 8(1): 356-69.
[http://dx.doi.org/10.1007/s11481-012-9431-7] [PMID: 23325107]
[48]
Guo YJ, Dong SY, Cui XX, et al. Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res 2016; 60(10): 2161-75.
[http://dx.doi.org/10.1002/mnfr.201600111] [PMID: 27296520]
[49]
Ferretta A, Gaballo A, Tanzarella P, et al. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta 2014; 1842(7): 902-15.
[http://dx.doi.org/10.1016/j.bbadis.2014.02.010] [PMID: 24582596]
[50]
He Q, Koprich JB, Wang Y, et al. Treatment with trehalose prevents behavioral and neurochemical deficits produced in an AAV α-synuclein rat model of Parkinson’s disease. Mol Neurobiol 2016; 53(4): 2258-68.
[http://dx.doi.org/10.1007/s12035-015-9173-7] [PMID: 25972237]
[51]
Wu AG, Wong VK, Xu SW, et al. Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells. Int J Mol Sci 2013; 14(11): 22618-41.
[http://dx.doi.org/10.3390/ijms141122618] [PMID: 24248062]
[52]
Cai CZ, Zhou HF, Yuan NN, et al. Natural alkaloid harmine promotes degradation of alpha-synuclein via PKA-mediated ubiquitin-proteasome system activation. Phytomedicine 2019; 61 152842
[http://dx.doi.org/10.1016/j.phymed.2019.152842] [PMID: 31048127]
[53]
Rahman MA, Rhim H. Therapeutic implication of autophagy in neurodegenerative diseases. BMB Rep 2017; 50(7): 345-54.
[http://dx.doi.org/10.5483/BMBRep.2017.50.7.069] [PMID: 28454606]
[54]
Wong VK, Wu AG, Wang JR, Liu L, Law BY. Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy. Molecules 2015; 20(3): 3496-514.
[http://dx.doi.org/10.3390/molecules20033496] [PMID: 25699594]
[55]
Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 2007; 282(8): 5641-52.
[http://dx.doi.org/10.1074/jbc.M609532200] [PMID: 17182613]
[56]
Jiang W, Wei W, Gaertig MA, Li S, Li XJ. Therapeutic Effect of Berberine on Huntington’s disease transgenic mouse model. PLoS One 2015; 10(7) e0134142
[http://dx.doi.org/10.1371/journal.pone.0134142] [PMID: 26225560]
[57]
Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 6: 171.
[http://dx.doi.org/10.4103/2152-7806.169561] [PMID: 26629397]
[58]
Castillo K, Nassif M, Valenzuela V, et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 2013; 9(9): 1308-20.
[http://dx.doi.org/10.4161/auto.25188] [PMID: 23851366]
[59]
Sun YM, Lu C, Wu ZY. Spinocerebellar ataxia: relationship between phenotype and genotype - a review. Clin Genet 2016; 90(4): 305-14.
[http://dx.doi.org/10.1111/cge.12808] [PMID: 27220866]
[60]
Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 2010; 133(Pt 1): 93-104.
[http://dx.doi.org/10.1093/brain/awp292] [PMID: 20007218]
[61]
Singhal J, Nagaprashantha LD, Vatsyayan R. Ashutosh, Awasthi S, Singhal SS. Didymin induces apoptosis by inhibiting N-Myc and upregulating RKIP in neuroblastoma. Cancer Prev Res (Phila) 2012; 5(3): 473-83.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0318] [PMID: 22174364]
[62]
Kwon YH, Bishayee K, Rahman A, Hong JS, Lim SS, Huh SO. Morus alba accumulates reactive oxygen species to initiate apoptosis via foxo-caspase 3-dependent pathway in neuroblastoma cells. Mol Cells 2015; 38(7): 630-7.
[http://dx.doi.org/10.14348/molcells.2015.0030] [PMID: 25921607]
[63]
Rahman MA, Bishayee K, Sadra A, Huh SO. Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim Biophys Acta, Gen Subj 2017; 1861(2): 23-36.
[http://dx.doi.org/10.1016/j.bbagen.2016.10.025] [PMID: 27815218]
[64]
Singhal SS, Singhal S, Singhal P, Singhal J, Horne D, Awasthi S. Didymin: an orally active citrus flavonoid for targeting neuroblastoma. Oncotarget 2017; 8(17): 29428-41.
[http://dx.doi.org/10.18632/oncotarget.15204] [PMID: 28187004]
[65]
Rahman MA, Kim NH, Yang H, Huh SO. Angelicin induces apoptosis through intrinsic caspase-dependent pathway in human SH-SY5Y neuroblastoma cells. Mol Cell Biochem 2012; 369(1-2): 95-104.
[http://dx.doi.org/10.1007/s11010-012-1372-1] [PMID: 22766766]
[66]
Rahman MA, Bishayee K, Huh SO. Angelica polymorpha maxim induces apoptosis of human sh-sy5y neuroblastoma cells by regulating an intrinsic caspase pathway. Mol Cells 2016; 39(2): 119-28.
[http://dx.doi.org/10.14348/molcells.2016.2232] [PMID: 26674967]
[67]
Venkatesan R, Shim WS, Yeo EJ, Kim SY. Lactucopicrin potentiates neuritogenesis and neurotrophic effects by regulating Ca2+/CaMKII/ATF1 signaling pathway. J Ethnopharmacol 2017; 198: 174-83.
[http://dx.doi.org/10.1016/j.jep.2016.12.035] [PMID: 28011163]
[68]
Rahman MA, Kim NH, Huh SO. Cytotoxic effect of gambogic acid on SH-SY5Y neuroblastoma cells is mediated by intrinsic caspase-dependent signaling pathway. Mol Cell Biochem 2013; 377(1-2): 187-96.
[http://dx.doi.org/10.1007/s11010-013-1584-z] [PMID: 23404459]
[69]
Rahman MA, Yang H, Kim NH, Huh SO. Induction of apoptosis by Dioscorea nipponica Makino extracts in human SH-SY5Y neuroblastoma cells via mitochondria-mediated pathway. Anim Cells Syst 2014; 18: 41-51.
[http://dx.doi.org/10.1080/19768354.2014.880372]
[70]
Rahman MA, Hong JS, Huh SO. Antiproliferative properties of Saussurea lappa Clarke root extract in SH-SY5Y neuroblastoma cells via intrinsic apoptotic pathway. Anim Cells Syst 2015; 19: 119-26.
[http://dx.doi.org/10.1080/19768354.2015.1008041]
[71]
Ostrom QT, Gittleman H, Fulop J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncol 2015; 17(Suppl. 4): iv1-iv62.
[http://dx.doi.org/10.1093/neuonc/nov189] [PMID: 26511214]
[72]
Vengoji R, Macha MA, Batra SK, Shonka NA. Natural products: a hope for glioblastoma patients. Oncotarget 2018; 9(31): 22194-219.
[http://dx.doi.org/10.18632/oncotarget.25175] [PMID: 29774132]
[73]
Yuan Y, Xue X, Guo RB, Sun XL, Hu G. Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway. CNS Neurosci Ther 2012; 18(7): 536-46.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00319.x] [PMID: 22530672]
[74]
Kou X, Chen N. Resveratrol as a natural autophagy regulator for prevention and treatment of Alzheimer’s disease. Nutrients 2017; 9(9): 9.
[PMID: 28837083]
[75]
Shah A, Chao J, Legido-Quigley C, Chang RC. Oxyresveratrol exerts ATF4- and Grp78-mediated neuroprotection against endoplasmic reticulum stress in experimental Parkinson’s disease. Nutr Neurosci 2019; 1-16. In Printing
[http://dx.doi.org/10.1080/1028415X.2019.1613764] [PMID: 31100053]
[76]
Papaevgeniou N, Sakellari M, Jha S, et al. 18α-Glycyrrhetinic acid proteasome activator decelerates aging and alzheimer’s disease progression in Caenorhabditis elegans and neuronal cultures. Antioxid Redox Signal 2016; 25(16): 855-69.
[http://dx.doi.org/10.1089/ars.2015.6494] [PMID: 26886723]
[77]
Rahman MA, Bishayee K, Habib K, Sadra A, Huh SO. 18α-Glycyrrhetinic acid lethality for neuroblastoma cells via de-regulating the Beclin-1/Bcl-2 complex and inducing apoptosis. Biochem Pharmacol 2016; 117: 97-112.
[http://dx.doi.org/10.1016/j.bcp.2016.08.006] [PMID: 27520483]
[78]
Wang J, Gines S, MacDonald ME, Gusella JF. Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation. BMC Neurosci 2005; 6: 1.
[http://dx.doi.org/10.1186/1471-2202-6-1] [PMID: 15649316]
[79]
Kim HJ, Jung SW, Kim SY, et al. Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J Ginseng Res 2018; 42(4): 401-11.
[http://dx.doi.org/10.1016/j.jgr.2017.12.008] [PMID: 30337800]
[80]
Jo MG, Ikram M, Jo MH, et al. Gintonin mitigates MPTP-induced loss of nigrostriatal dopaminergic neurons and accumulation of α-synuclein via the Nrf2/HO-1 pathway. Mol Neurobiol 2019; 56(1): 39-55.
[http://dx.doi.org/10.1007/s12035-018-1020-1] [PMID: 29675576]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy