Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Exosomes: Carriers of Pro-Fibrotic Signals and Therapeutic Targets in Fibrosis

Author(s): Mengyu Li, Mao Jiang, Jie Meng* and Lijian Tao*

Volume 25, Issue 42, 2019

Page: [4496 - 4509] Pages: 14

DOI: 10.2174/1381612825666191209161443

Price: $65

Open Access Journals Promotions 2
Abstract

Exosomes are nano-sized extracellular vesicles that are released by a variety of cells. Exosomes contain cargo from cells they derived, including lipids, proteins and nucleic acids. The bilayer lipid membrane structure of exosomes protects these contents from degradation, allowing them for intercellular communication. The role of exosomes in fibrotic diseases is increasingly being valued. Exosomes, as carriers of profibrotic signals, are involved in the development of fibrotic diseases, and also regulate fibrosis by transmitting signals that inhibit fibrosis or inflammation. Exosomes mobilize and activate a range of effector cells by targeted delivery of bioactive information. Exosomes can also reflect the condition of cells, tissues and organisms, and thus become potential biomarkers of fibrotic diseases. Exosomes from bone marrow stem cells support biological signaling that regulates and inhibits fibrosis and thus initially used in the treatment of fibrotic diseases. This article briefly summarizes the role of exosomes in the pathogenesis and treatment of fibrotic diseases and raises some issues that remain to be resolved.

Keywords: Exosomes, fibrosis, hepatic stellate cells, macrophages, epithelials, fibrocite, podocyte, mesenchymal stem cell.

[1]
Fujita Y, Kadota T, Araya J, Ochiya T, Kuwano K. Clinical application of mesenchymal stem cell-derived extracellular vesicle-based therapeutics for inflammatory lung diseases. J Clin Med 2018; 7(10): 355.
[http://dx.doi.org/10.3390/jcm7100355] [PMID: 30322213]
[2]
Rockey DC, Bell PD, Hill JA. Fibrosis - a common pathway to organ injury and failure. N Engl J Med 2015; 373(1): 96.
[http://dx.doi.org/10.1056/NEJMra1300575] [PMID: 26132959]
[3]
Rosenbloom J, Castro SV, Jimenez SA. Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies. Ann Intern Med 2010; 152(3): 159-66.
[http://dx.doi.org/10.7326/0003-4819-152-3-201002020-00007] [PMID: 20124232]
[4]
Ho YY, Lagares D, Tager AM, Kapoor M. Fibrosis--a lethal component of systemic sclerosis. Nat Rev Rheumatol 2014; 10(7): 390-402.
[http://dx.doi.org/10.1038/nrrheum.2014.53] [PMID: 24752182]
[5]
Cowper SE, Su LD, Bhawan J, Robin HS, LeBoit PE. Nephrogenic fibrosing dermopathy. Am J Dermatopathol 2001; 23(5): 383-93.
[http://dx.doi.org/10.1097/00000372-200110000-00001] [PMID: 11801769]
[6]
Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214(2): 199-210.
[http://dx.doi.org/10.1002/path.2277] [PMID: 18161745]
[7]
Karsdal MA, Manon-Jensen T, Genovese F, et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2015; 308(10): G807-30.
[http://dx.doi.org/10.1152/ajpgi.00447.2014] [PMID: 25767261]
[8]
Caspi O, Huber I, Kehat I, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 2007; 50(19): 1884-93.
[http://dx.doi.org/10.1016/j.jacc.2007.07.054] [PMID: 17980256]
[9]
Ohnishi S, Sumiyoshi H, Kitamura S, Nagaya N. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett 2007; 581(21): 3961-6.
[http://dx.doi.org/10.1016/j.febslet.2007.07.028] [PMID: 17662720]
[10]
Zhao L, Liu X, Zhang Y, et al. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction. Exp Cell Res 2016; 344(1): 30-9.
[http://dx.doi.org/10.1016/j.yexcr.2016.03.024] [PMID: 27025401]
[11]
Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009; 19(2): 43-51.
[http://dx.doi.org/10.1016/j.tcb.2008.11.003] [PMID: 19144520]
[12]
Camussi G, Deregibus M-C, Bruno S, Grange C, Fonsato V, Tetta C. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 2011; 1(1): 98-110.
[PMID: 21969178]
[13]
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30: 255-89.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[14]
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 2010; 107(14): 6328-33.
[http://dx.doi.org/10.1073/pnas.0914843107] [PMID: 20304794]
[15]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[16]
Nouraee N, Mowla SJ. miRNA therapeutics in cardiovascular diseases: promises and problems. Front Genet 2015; 6: 232.
[http://dx.doi.org/10.3389/fgene.2015.00232] [PMID: 26175755]
[17]
van Rooij E, Olson EN. Searching for miR-acles in cardiac fibrosis. Circ Res 2009; 104(2): 138-40.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.192492] [PMID: 19179664]
[18]
Martins VR, Dias MS, Hainaut P. Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr Opin Oncol 2013; 25(1): 66-75.
[http://dx.doi.org/10.1097/CCO.0b013e32835b7c81] [PMID: 23165142]
[19]
D’Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 2012; 26(12): 1287-99.
[http://dx.doi.org/10.1101/gad.192351.112] [PMID: 22713869]
[20]
Maheshwari S, Singh AK, Arya RK, Pandey D, Singh A, Datta D. Exosomes: emerging players of intercellular communication in tumor microenvironment. Discoveries (Craiova) 2014; 2 e26
[http://dx.doi.org/10.15190/d.2014.18]
[21]
Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol 2014; 306(7): C621-33.
[http://dx.doi.org/10.1152/ajpcell.00228.2013] [PMID: 24452373]
[22]
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9(8): 581-93.
[http://dx.doi.org/10.1038/nri2567] [PMID: 19498381]
[23]
Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on extracellular vesicles: physiological role and signalling properties of extracellular membrane vesicles. Int J Mol Sci 2016; 17(2): 171.
[http://dx.doi.org/10.3390/ijms17020171] [PMID: 26861302]
[24]
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell‐derived extracellular vesicles: toward cell‐free therapeutic applications. Mol Ther 2015; 23(5): 812-23.
[http://dx.doi.org/10.1038/mt.2015.44] [PMID: 25868399]
[25]
Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 2016; 16(7): 859-71.
[http://dx.doi.org/10.1517/14712598.2016.1170804] [PMID: 27011289]
[26]
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1)1535750
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[27]
Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol 2014; 5: 442.
[http://dx.doi.org/10.3389/fimmu.2014.00442] [PMID: 25278937]
[28]
Rana S, Yue S, Stadel D, Zöller M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol 2012; 44(9): 1574-84.
[http://dx.doi.org/10.1016/j.biocel.2012.06.018] [PMID: 22728313]
[29]
Subra C, Grand D, Laulagnier K, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 2010; 51(8): 2105-20.
[http://dx.doi.org/10.1194/jlr.M003657] [PMID: 20424270]
[30]
Koga Y, Yasunaga M, Moriya Y, et al. Exosome can prevent RNase from degrading microRNA in feces. J Gastrointest Oncol 2011; 2(4): 215-22.
[PMID: 22811855]
[31]
Mardpour S, Hamidieh AA, Taleahmad S, Sharifzad F, Taghikhani A, Baharvand H. Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. J Cell Physiol 2019; 234(6): 8249-58.
[http://dx.doi.org/10.1002/jcp.27669] [PMID: 30378105]
[32]
Mentkowski KI, Snitzer JD, Rusnak S, Lang JK JK. Therapeutic potential of engineered extracellular vesicles. AAPS J 2018; 20(3): 50.
[http://dx.doi.org/10.1208/s12248-018-0211-z] [PMID: 29546642]
[33]
Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F. Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev 2013; 251(1): 125-42.
[http://dx.doi.org/10.1111/imr.12013] [PMID: 23278745]
[34]
Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 2016; 428(4): 688-92.
[http://dx.doi.org/10.1016/j.jmb.2015.09.019] [PMID: 26434508]
[35]
Qiu G, Zheng G, Ge M, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther 2018; 9(1): 320.
[http://dx.doi.org/10.1186/s13287-018-1069-9] [PMID: 30463593]
[36]
Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3′-untranslated regions. Biol Direct 2013; 8: 12.
[http://dx.doi.org/10.1186/1745-6150-8-12] [PMID: 23758897]
[37]
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[38]
Raiborg C, Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 2009; 458(7237): 445-52.
[http://dx.doi.org/10.1038/nature07961] [PMID: 19325624]
[39]
Hurley JH, Hanson PI. Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 2010; 11(8): 556-66.
[http://dx.doi.org/10.1038/nrm2937] [PMID: 20588296]
[40]
Stuffers S, Sem Wegner C, Stenmark H, Brech A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 2009; 10(7): 925-37.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00920.x] [PMID: 19490536]
[41]
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008; 319(5867): 1244-7.
[http://dx.doi.org/10.1126/science.1153124] [PMID: 18309083]
[42]
Buschow SI, Nolte-’t Hoen EN, van Niel G, et al. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 2009; 10(10): 1528-42.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00963.x] [PMID: 19682328]
[43]
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[44]
Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathwayNat. Cell Biol 2010; 12(1): 19-30.
[http://dx.doi.org/10.1038/ncb2000]
[45]
Savina A, Fader CM, Damiani MT, Colombo MI. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 2005; 6(2): 131-43.
[http://dx.doi.org/10.1111/j.1600-0854.2004.00257.x] [PMID: 15634213]
[46]
Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18(6): 883-91.
[http://dx.doi.org/10.1038/nm.2753] [PMID: 22635005]
[47]
Fader CM, Sánchez DG, Mestre MB, Colombo MI. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta 2009; 1793(12): 1901-16.
[http://dx.doi.org/10.1016/j.bbamcr.2009.09.011] [PMID: 19781582]
[48]
Montecalvo A, Shufesky WJ, Stolz DB, et al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 2008; 180(5): 3081-90.
[http://dx.doi.org/10.4049/jimmunol.180.5.3081] [PMID: 18292531]
[49]
Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183(3): 1161-72.
[http://dx.doi.org/10.1084/jem.183.3.1161] [PMID: 8642258]
[50]
Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 2009; 284(49): 34211-22.
[http://dx.doi.org/10.1074/jbc.M109.041152] [PMID: 19801663]
[51]
Fitzner D, Schnaars M, van Rossum D, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 2011; 124(Pt 3): 447-58.
[http://dx.doi.org/10.1242/jcs.074088] [PMID: 21242314]
[52]
Segura E, Guérin C, Hogg N, Amigorena S, Théry C. CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J Immunol 2007; 179(3): 1489-96.
[http://dx.doi.org/10.4049/jimmunol.179.3.1489] [PMID: 17641014]
[53]
O’Loughlin AJ, Woffindale CA, Wood MJ. Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther 2012; 12(4): 262-74.
[http://dx.doi.org/10.2174/156652312802083594] [PMID: 22856601]
[54]
Conde-Vancells J, Rodriguez-Suarez E, Embade N, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 2008; 7(12): 5157-66.
[http://dx.doi.org/10.1021/pr8004887] [PMID: 19367702]
[55]
Cho EY, Yun CH, Chae HZ, Chae HJ, Ahn T. Anionic phospholipid-induced regulation of reactive oxygen species production by human cytochrome P450 2E1. FEBS Lett 2008; 582(12): 1771-6.
[http://dx.doi.org/10.1016/j.febslet.2008.04.048] [PMID: 18472009]
[56]
Hirsova P, Ibrahim SH, Verma VK, et al. Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology 2016; 64(6): 2219-33.
[http://dx.doi.org/10.1002/hep.28814] [PMID: 27628960]
[57]
Ban LA, Shackel NA, McLennan SV. Extracellular vesicles: a new frontier in biomarker discovery for non-alcoholic fatty liver disease. Int J Mol Sci 2016; 17(3): 376.
[http://dx.doi.org/10.3390/ijms17030376] [PMID: 26985892]
[58]
Povero D, Panera N, Eguchi A, et al. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ. Cell Mol Gastroenterol Hepatol 2015; 1(6): 646-63.e4.
[http://dx.doi.org/10.1016/j.jcmgh.2015.07.007] [PMID: 26783552]
[59]
Seo W, Eun HS, Kim SY, et al. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis. Hepatology 2016; 64(2): 616-31.
[http://dx.doi.org/10.1002/hep.28644] [PMID: 27178735]
[60]
Ma HY, Xu J, Liu X, et al. The role of IL-17 signaling in regulation of the liver-brain axis and intestinal permeability in Alcoholic Liver Disease. Curr Pathobiol Rep 2016; 4(1): 27-35.
[http://dx.doi.org/10.1007/s40139-016-0097-3] [PMID: 27239399]
[61]
Borges FT, Melo SA, Özdemir BC, et al. TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 2013; 24(3): 385-92.
[http://dx.doi.org/10.1681/ASN.2012101031] [PMID: 23274427]
[62]
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci 2010; 123(Pt 24): 4195-200.
[http://dx.doi.org/10.1242/jcs.023820] [PMID: 21123617]
[63]
Arriazu E, Ruiz de Galarreta M, Cubero FJ, et al. Extracellular matrix and liver disease. Antioxid Redox Signal 2014; 21(7): 1078-97.
[http://dx.doi.org/10.1089/ars.2013.5697] [PMID: 24219114]
[64]
Friedman SL, Sheppard D, Duffield JS, Violette S. Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med 2013; 5(167) 167sr1
[http://dx.doi.org/10.1126/scitranslmed.3004700] [PMID: 23303606]
[65]
Hollosi P, Yakushiji JK, Fong KS, Csiszar K, Fong SF. Lysyl oxidase-like 2 promotes migration in noninvasive breast cancer cells but not in normal breast epithelial cells. Int J Cancer 2009; 125(2): 318-27.
[http://dx.doi.org/10.1002/ijc.24308] [PMID: 19330836]
[66]
Shimoda M, Khokha R. Proteolytic factors in exosomes. Proteomics 2013; 13(10-11): 1624-36.
[http://dx.doi.org/10.1002/pmic.201200458] [PMID: 23526769]
[67]
de Jong OG, van Balkom BW, Gremmels H, Verhaar MC. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2. J Cell Mol Med 2016; 20(2): 342-50.
[http://dx.doi.org/10.1111/jcmm.12730] [PMID: 26612622]
[68]
Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 2006; 69(2): 213-7.
[http://dx.doi.org/10.1038/sj.ki.5000054] [PMID: 16408108]
[69]
Wu XM, Gao YB, Cui FQ, Zhang N. Exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells to promote renal fibrosis. Biol Open 2016; 5(4): 484-91.
[http://dx.doi.org/10.1242/bio.015990] [PMID: 27010029]
[70]
Qi Y, Wang X, Rose KL, et al. Activation of the endogenous renin-angiotensin-aldosterone system or aldosterone administration increases urinary exosomal sodium channel excretion. J Am Soc Nephrol 2016; 27(2): 646-56.
[http://dx.doi.org/10.1681/ASN.2014111137] [PMID: 26113616]
[71]
Oosthuyzen W, Scullion KM, Ivy JR, et al. Vasopressin regulates extracellular vesicle uptake by kidney collecting duct cells. J Am Soc Nephrol 2016; 27(11): 3345-55.
[http://dx.doi.org/10.1681/ASN.2015050568] [PMID: 27020854]
[72]
Erdbrügger U, Le TH. Extracellular vesicles in renal diseases: more than novel biomarkers? J Am Soc Nephrol 2016; 27(1): 12-26.
[http://dx.doi.org/10.1681/ASN.2015010074] [PMID: 26251351]
[73]
Faure V, Dou L, Sabatier F, et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 2006; 4(3): 566-73.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01780.x] [PMID: 16405517]
[74]
Molitoris BA. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest 2014; 124(6): 2355-63.
[http://dx.doi.org/10.1172/JCI72269] [PMID: 24892710]
[75]
Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 2010; 16: 535-43.
[76]
Kang HM, Ahn SH, Choi P, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 2015; 21(1): 37-46.
[http://dx.doi.org/10.1038/nm.3762] [PMID: 25419705]
[77]
Wang X, Wilkinson R, Kildey K, et al. Unique molecular profile of exosomes derived from primary human proximal tubular epithelial cells under diseased conditions. J Extracell Vesicles 2017; 6(1) 1314073
[http://dx.doi.org/10.1080/20013078.2017.1314073] [PMID: 28473886]
[78]
Wang B, Koh P, Winbanks C, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes 2011; 60(1): 280-7.
[http://dx.doi.org/10.2337/db10-0892] [PMID: 20952520]
[79]
Wu X, Gao Y, Xu L, et al. Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes. Sci Rep 2017; 7(1): 9371.
[http://dx.doi.org/10.1038/s41598-017-09907-6] [PMID: 28839221]
[80]
Tüfekci KU, Öner MG, Meuwissen RLJ, Genç Ş. The role of microRNAs in human diseases. Methods Mol Biol 2014; 1107: 33-50.
[http://dx.doi.org/10.1007/978-1-62703-748-8_3]
[81]
Li C-J, Liu Y, Chen Y, Yu D, Williams KJ, Liu M-L. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. Am J Pathol 2013; 182(5): 1552-62.
[http://dx.doi.org/10.1016/j.ajpath.2013.01.035] [PMID: 23499464]
[82]
Moon H-G, Kim S-H, Gao J, et al. CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke. Am J Physiol Lung Cell Mol Physiol 2014; 307(4): L326-37.
[http://dx.doi.org/10.1152/ajplung.00102.2014] [PMID: 24973403]
[83]
Chew LP, Huttenlocher D, Kedem K, Kleinberg J. Fast detection of common geometric substructure in proteins. J Comput Biol 1999; 6(3-4): 313-25.
[http://dx.doi.org/10.1089/106652799318292] [PMID: 10582569]
[84]
Fujita Y, Araya J, Ochiya T. Extracellular vesicles in smoking-related lung diseases. Oncotarget 2015; 6(41): 43144-5.
[http://dx.doi.org/10.18632/oncotarget.6556] [PMID: 26675760]
[85]
Letsiou E, Sammani S, Zhang W, et al. Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding. Am J Respir Cell Mol Biol 2015; 52(2): 193-204.
[http://dx.doi.org/10.1165/rcmb.2013-0347OC] [PMID: 25029266]
[86]
Stolzenburg LR, Harris A. Microvesicle-mediated delivery of miR-1343: impact on markers of fibrosis. Cell Tissue Res 2018; 371(2): 325-38.
[http://dx.doi.org/10.1007/s00441-017-2697-6] [PMID: 29022142]
[87]
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112(12): 1776-84.
[http://dx.doi.org/10.1172/JCI200320530] [PMID: 14679171]
[88]
Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134(6): 1655-69.
[http://dx.doi.org/10.1053/j.gastro.2008.03.003] [PMID: 18471545]
[89]
Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115(2): 209-18.
[http://dx.doi.org/10.1172/JCI24282] [PMID: 15690074]
[90]
Kisseleva T, Brenner DA. Fibrogenesis of parenchymal organs. Proc Am Thorac Soc 2008; 5(3): 338-42.
[http://dx.doi.org/10.1513/pats.200711-168DR] [PMID: 18403330]
[91]
Scholten D, Osterreicher CH, Scholten A, et al. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology 2010; 139(3): 987-98.
[http://dx.doi.org/10.1053/j.gastro.2010.05.005] [PMID: 20546735]
[92]
Chu AS, Diaz R, Hui JJ, et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 2011; 53(5): 1685-95.
[http://dx.doi.org/10.1002/hep.24206] [PMID: 21520179]
[93]
Arias M, Lahme B, Van de Leur E, Gressner AM, Weiskirchen R. Adenoviral delivery of an antisense RNA complementary to the 3′ coding sequence of transforming growth factor-beta1 inhibits fibrogenic activities of hepatic stellate cells. Cell Growth Differ 2002; 13(6): 265-73.
[PMID: 12114216]
[94]
Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1. J Hepatol 1999; 30(1): 48-60.
[http://dx.doi.org/10.1016/S0168-8278(99)80007-5] [PMID: 9927150]
[95]
Sysa P, Potter JJ, Liu X, Mezey E. Transforming growth factor-beta1 up-regulation of human alpha(1)(I) collagen is mediated by Sp1 and Smad2 transacting factors. DNA Cell Biol 2009; 28(9): 425-34.
[http://dx.doi.org/10.1089/dna.2009.0884] [PMID: 19558215]
[96]
Dooley S, ten Dijke P. TGF-β in progression of liver disease. Cell Tissue Res 2012; 347(1): 245-56.
[http://dx.doi.org/10.1007/s00441-011-1246-y] [PMID: 22006249]
[97]
Huang G, Brigstock DR. Regulation of hepatic stellate cells by connective tissue growth factor. Front Biosci 2012; 17: 2495-507.
[http://dx.doi.org/10.2741/4067] [PMID: 22652794]
[98]
Charrier A, Chen R, Chen L, et al. Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver. Surgery 2014; 156(3): 548-55.
[http://dx.doi.org/10.1016/j.surg.2014.04.014] [PMID: 24882759]
[99]
Chen L, Charrier A, Zhou Y, et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology 2014; 59(3): 1118-29.
[http://dx.doi.org/10.1002/hep.26768] [PMID: 24122827]
[100]
Chen L, Chen R, Velazquez VM, Brigstock DR. Fibrogenic signaling is suppressed in hepatic stellate cells through targeting of connective tissue growth factor (CCN2) by cellular or exosomal microRNA-199a-5p. Am J Pathol 2016; 186(11): 2921-33.
[http://dx.doi.org/10.1016/j.ajpath.2016.07.011] [PMID: 27662798]
[101]
Zhang XW, Zhou JC, Peng D, et al. Disrupting the TRIB3-SQSTM1 interaction reduces liver fibrosis by restoring autophagy and suppressing exosome-mediated HSC activation. Autophagy 2019; 1-15.
[http://dx.doi.org/10.1080/15548627.2019.1635383] [PMID: 31286822]
[102]
Liu R, Li X, Zhu W, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis. Hepatology 2019; 70(4): 1317-35.
[http://dx.doi.org/10.1002/hep.30662] [PMID: 30985008]
[103]
Chen L, Chen R, Kemper S, Charrier A, Brigstock DR. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: role of exosomes in horizontal transfer of Twist1. Am J Physiol Gastrointest Liver Physiol 2015; 309(6): G491-9.
[http://dx.doi.org/10.1152/ajpgi.00140.2015] [PMID: 26229009]
[104]
Wang R, Ding Q, Yaqoob U, et al. Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J Biol Chem 2015; 290(52): 30684-96.
[http://dx.doi.org/10.1074/jbc.M115.671735] [PMID: 26534962]
[105]
Kisseleva T, Uchinami H, Feirt N, et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 2006; 45(3): 429-38.
[http://dx.doi.org/10.1016/j.jhep.2006.04.014] [PMID: 16846660]
[106]
LeBleu VS, Taduri G, O’Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis. Nat Med 2013; 19(8): 1047-53.
[http://dx.doi.org/10.1038/nm.3218] [PMID: 23817022]
[107]
Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 2004; 36(4): 598-606.
[http://dx.doi.org/10.1016/j.biocel.2003.10.005] [PMID: 15010326]
[108]
Bellini A, Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 2007; 87(9): 858-70.
[http://dx.doi.org/10.1038/labinvest.3700654] [PMID: 17607298]
[109]
Geiger A, Walker A, Nissen E. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice. Biochem Biophys Res Commun 2015; 467(2): 303-9.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.166] [PMID: 26454169]
[110]
Wang T, Feng Y, Sun H, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am J Pathol 2012; 181(6): 1911-20.
[http://dx.doi.org/10.1016/j.ajpath.2012.08.022] [PMID: 23159215]
[111]
Yang J, Yu X, Xue F, Li Y, Liu W, Zhang S. Exosomes derived from cardiomyocytes promote cardiac fibrosis via myocyte-fibroblast cross-talk. Am J Transl Res 2018; 10(12): 4350-66.
[PMID: 30662677]
[112]
Działo E, Rudnik M, Koning RI, et al. WNT3a and WNT5a transported by exosomes activate WNT signaling pathways in human cardiac fibroblasts. Int J Mol Sci 2019; 20(6): 1436.
[http://dx.doi.org/10.3390/ijms20061436] [PMID: 30901906]
[113]
Wang YY, Tang LQ, Wei W. Berberine attenuates podocytes injury caused by exosomes derived from high glucose-induced mesangial cells through TGFβ1-PI3K/AKT pathway. Eur J Pharmacol 2018; 824: 185-92.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.034] [PMID: 29378192]
[114]
Munkonda MN, Akbari S, Landry C, et al. Podocyte-derived microparticles promote proximal tubule fibrotic signaling via p38 MAPK and CD36. J Extracell Vesicles 2018; 7(1)1432206
[http://dx.doi.org/10.1080/20013078.2018.1432206] [PMID: 29435202]
[115]
Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006; 130(2): 435-52.
[http://dx.doi.org/10.1053/j.gastro.2005.10.055] [PMID: 16472598]
[116]
Cheever AW, Williams ME, Wynn TA, et al. Anti-IL-4 treatment of Schistosoma mansoni-infected mice inhibits development of T cells and non-B, non-T cells expressing Th2 cytokines while decreasing egg-induced hepatic fibrosis. J Immunol 1994; 153(2): 753-9.
[PMID: 8021510]
[117]
Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 1999; 104(6): 777-85.
[http://dx.doi.org/10.1172/JCI7325] [PMID: 10491413]
[118]
Novobrantseva TI, Majeau GR, Amatucci A, et al. Attenuated liver fibrosis in the absence of B cells. J Clin Invest 2005; 115(11): 3072-82.
[http://dx.doi.org/10.1172/JCI24798] [PMID: 16276416]
[119]
Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010; 30(3): 245-57.
[http://dx.doi.org/10.1055/s-0030-1255354] [PMID: 20665377]
[120]
Lupher ML Jr, Gallatin WM. Regulation of fibrosis by the immune system. Adv Immunol 2006; 89: 245-88.
[http://dx.doi.org/10.1016/S0065-2776(05)89006-6] [PMID: 16682276]
[121]
Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 2011; 80(9): 915-25.
[http://dx.doi.org/10.1038/ki.2011.217] [PMID: 21814171]
[122]
Fallowfield JA, Mizuno M, Kendall TJ, et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 2007; 178(8): 5288-95.
[http://dx.doi.org/10.4049/jimmunol.178.8.5288] [PMID: 17404313]
[123]
Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005; 115(1): 56-65.
[http://dx.doi.org/10.1172/JCI200522675] [PMID: 15630444]
[124]
Kaviratne M, Hesse M, Leusink M, et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J Immunol 2004; 173(6): 4020-9.
[http://dx.doi.org/10.4049/jimmunol.173.6.4020] [PMID: 15356151]
[125]
Olman MA. Beyond TGF-beta: a prostaglandin promotes fibrosis. Nat Med 2009; 15(12): 1360-1.
[http://dx.doi.org/10.1038/nm1209-1360] [PMID: 19966771]
[126]
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12): 958-69.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[127]
Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity 2005; 23(4): 344-6.
[http://dx.doi.org/10.1016/j.immuni.2005.10.001] [PMID: 16226499]
[128]
Khalil N, Bereznay O, Sporn M, Greenberg AH. Macrophage production of transforming growth factor beta and fibroblast collagen synthesis in chronic pulmonary inflammation. J Exp Med 1989; 170(3): 727-37.
[http://dx.doi.org/10.1084/jem.170.3.727] [PMID: 2475572]
[129]
Said EA, Dupuy FP, Trautmann L, et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med 2010; 16(4): 452-9.
[http://dx.doi.org/10.1038/nm.2106] [PMID: 20208540]
[130]
Shouval DS, Biswas A, Goettel JA, et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 2014; 40(5): 706-19.
[http://dx.doi.org/10.1016/j.immuni.2014.03.011] [PMID: 24792912]
[131]
Zigmond E, Bernshtein B, Friedlander G, et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 2014; 40(5): 720-33.
[http://dx.doi.org/10.1016/j.immuni.2014.03.012] [PMID: 24792913]
[132]
Issa R, Zhou X, Trim N, et al. Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCl4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration. FASEB J 2003; 17(1): 47-9.
[http://dx.doi.org/10.1096/fj.02-0494fje] [PMID: 12475903]
[133]
Misharin AV, Morales-Nebreda L, Reyfman PA, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 2017; 214(8): 2387-404.
[http://dx.doi.org/10.1084/jem.20162152] [PMID: 28694385]
[134]
Yao MY, Zhang WH, Ma WT, Liu QH, Xing LH, Zhao GF. microRNA-328 in exosomes derived from M2 macrophages exerts a promotive effect on the progression of pulmonary fibrosis via FAM13A in a rat model. Exp Mol Med 2019; 51(6): 63.
[http://dx.doi.org/10.1038/s12276-019-0255-x] [PMID: 31164635]
[135]
Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 2007; 110(9): 3234-44.
[http://dx.doi.org/10.1182/blood-2007-03-079152] [PMID: 17666571]
[136]
Lv LL, Feng Y, Wen Y, et al. Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation. J Am Soc Nephrol 2018; 29(3): 919-35.
[http://dx.doi.org/10.1681/ASN.2017050523] [PMID: 29295871]
[137]
Xu R, Zhang Z, Wang FS. Liver fibrosis: mechanisms of immune-mediated liver injury. Cell Mol Immunol 2012; 9(4): 296-301.
[http://dx.doi.org/10.1038/cmi.2011.53] [PMID: 22157623]
[138]
Connolly MK, Bedrosian AS, Mallen-St Clair J, et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Invest 2009; 119(11): 3213-25.
[PMID: 19855130]
[139]
Zhang X, Lou J, Bai L, Chen Y, Zheng S, Duan Z. Immune regulation of intrahepatic regulatory T cells in fibrotic livers of mice. Med Sci Monit 2017; 23: 1009-16.
[http://dx.doi.org/10.12659/MSM.899725] [PMID: 28235976]
[140]
Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol 2015; 40: 72-81.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.009] [PMID: 25724562]
[141]
Kim SH, Lechman ER, Bianco N, et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 2005; 174(10): 6440-8.
[http://dx.doi.org/10.4049/jimmunol.174.10.6440] [PMID: 15879146]
[142]
Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011; 2: 282.
[http://dx.doi.org/10.1038/ncomms1285] [PMID: 21505438]
[143]
Carraro G, Shrestha A, Rostkovius J, et al. miR-142-3p balances proliferation and differentiation of mesenchymal cells during lung development. Development 2014; 141(6): 1272-81.
[http://dx.doi.org/10.1242/dev.105908] [PMID: 24553287]
[144]
Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2010; 182(2): 220-9.
[http://dx.doi.org/10.1164/rccm.200911-1698OC] [PMID: 20395557]
[145]
Huang C-F, Sun C-C, Zhao F, et al. miR-33a, an important marker and putative therapeutic target in chronic HBV-induced fibrosis. RNA Dis 2015; 1.
[146]
Njock MS, Guiot J, Henket MA, et al. Sputum exosomes: promising biomarkers for idiopathic pulmonary fibrosis. Thorax 2019; 74(3): 309-12.
[http://dx.doi.org/10.1136/thoraxjnl-2018-211897] [PMID: 30244194]
[147]
Lv LL, Cao YH, Pan MM, et al. CD2AP mRNA in urinary exosome as biomarker of kidney disease. Clin Chim Acta 2014; 428: 26-31.
[http://dx.doi.org/10.1016/j.cca.2013.10.003] [PMID: 24144866]
[148]
Lv LL, Cao YH, Ni HF, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol 2013; 305(8): F1220-7.
[http://dx.doi.org/10.1152/ajprenal.00148.2013] [PMID: 23946286]
[149]
Benito-Martin A, Ucero AC, Zubiri I, et al. Osteoprotegerin in exosome-like vesicles from human cultured tubular cells and urine. PLoS One 2013; 8(8) e72387
[http://dx.doi.org/10.1371/journal.pone.0072387] [PMID: 24058411]
[150]
Trnka P, Ivanova L, Hiatt MJ, Matsell DG. Urinary biomarkers in obstructive nephropathy. Clin J Am Soc Nephrol 2012; 7(10): 1567-75.
[http://dx.doi.org/10.2215/CJN.09640911] [PMID: 22859744]
[151]
Ren G, Chen X, Dong F, et al. Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med 2012; 1(1): 51-8.
[http://dx.doi.org/10.5966/sctm.2011-0019] [PMID: 23197640]
[152]
Berardis S, Lombard C, Evraerts J, et al. Gene expression profiling and secretome analysis differentiate adult-derived human liver stem/progenitor cells and human hepatic stellate cells. PLoS One 2014; 9(1) e86137
[http://dx.doi.org/10.1371/journal.pone.0086137] [PMID: 24516514]
[153]
Milosavljevic N, Gazdic M, Simovic Markovic B, et al. Mesenchymal stem cells attenuate liver fibrosis by suppressing Th17 cells - an experimental study. Transpl Int 2018; 31(1): 102-15.
[http://dx.doi.org/10.1111/tri.13023] [PMID: 28805262]
[154]
Ortiz LA, Dutreil M, Fattman C, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 2007; 104(26): 11002-7.
[http://dx.doi.org/10.1073/pnas.0704421104] [PMID: 17569781]
[155]
Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207: 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[156]
Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 2010; 18(9): 1606-14.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[157]
Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 2014; 1846(1): 75-87.
[PMID: 24747178]
[158]
Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant 2016; 25(5): 829-48.
[http://dx.doi.org/10.3727/096368915X689622] [PMID: 26423725]
[159]
Mobasheri A, Kalamegam G, Musumeci G, Batt ME. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas 2014; 78(3): 188-98.
[http://dx.doi.org/10.1016/j.maturitas.2014.04.017] [PMID: 24855933]
[160]
Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci 2014; 15(3): 4142-57.
[http://dx.doi.org/10.3390/ijms15034142] [PMID: 24608926]
[161]
Nicolay NH, Lopez Perez R, Debus J, Huber PE. Mesenchymal stem cells - A new hope for radiotherapy-induced tissue damage? Cancer Lett 2015; 366(2): 133-40.
[http://dx.doi.org/10.1016/j.canlet.2015.06.012] [PMID: 26166559]
[162]
Camussi G, Deregibus MC, Cantaluppi V. Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem Soc Trans 2013; 41(1): 283-7.
[http://dx.doi.org/10.1042/BST20120192] [PMID: 23356298]
[163]
Melzer C, von der Ohe J, Hass R. Concise review: Crosstalk of mesenchymal stroma/stem-like cells with cancer cells provides therapeutic potential. Stem Cells 2018; 36(7): 951-68.
[http://dx.doi.org/10.1002/stem.2829] [PMID: 29603861]
[164]
Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2013; 22(6): 845-54.
[http://dx.doi.org/10.1089/scd.2012.0395] [PMID: 23002959]
[165]
Li J, Ghazwani M, Zhang Y, et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J Hepatol 2013; 58(3): 522-8.
[http://dx.doi.org/10.1016/j.jhep.2012.11.011] [PMID: 23178710]
[166]
Wen S, Dooner M, Cheng Y, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia 2016; 30(11): 2221-31.
[http://dx.doi.org/10.1038/leu.2016.107] [PMID: 27150009]
[167]
Shentu TP, Huang TS, Cernelc-Kohan M, et al. Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular vesicles blocks myofibroblastic differentiation. Sci Rep 2017; 7(1): 18052.
[http://dx.doi.org/10.1038/s41598-017-18288-9] [PMID: 29273797]
[168]
Shentu TP, Wong S, Espinoza C, Cernelc-Kohan M, Hagood J. Extracellular vesicles isolated from human mesenchymal stem cells promote resolution of pulmonary fibrosis. FASEB J 2016; 30: 160-2.
[169]
Choi M, Ban T, Rhim T. Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Mol Cells 2014; 37(2): 133-9.
[http://dx.doi.org/10.14348/molcells.2014.2317] [PMID: 24598998]
[170]
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 2015; 13: 308-22.
[http://dx.doi.org/10.1186/s12967-015-0642-6] [PMID: 26386558]
[171]
Wang B, Yao K, Huuskes BM, et al. Mesenchymal stem cells deliver exogenous microRNA-let7c via exosomes to attenuate renal fibrosis. Mol Ther 2016; 24(7): 1290-301.
[http://dx.doi.org/10.1038/mt.2016.90] [PMID: 27203438]
[172]
Fang S, Xu C, Zhang Y, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-beta/SMAD2 pathway during wound healing. Stem Cells Transl Med 2016; 5(10): 1425-39.
[http://dx.doi.org/10.5966/sctm.2015-0367] [PMID: 27388239]
[173]
Qian X, Xu C, Fang S, et al. Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis C virus infection. Stem Cells Transl Med 2016; 5(9): 1190-203.
[http://dx.doi.org/10.5966/sctm.2015-0348] [PMID: 27496568]
[174]
Gatti S, Bruno S, Deregibus MC, et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 2011; 26(5): 1474-83.
[http://dx.doi.org/10.1093/ndt/gfr015] [PMID: 21324974]
[175]
Chen L, Chen R, Kemper S, Cong M, You H, Brigstock DR. Therapeutic effects of serum extracellular vesicles in liver fibrosis. J Extracell Vesicles 2018; 7(1) 1461505
[http://dx.doi.org/10.1080/20013078.2018.1461505] [PMID: 29696080]
[176]
Royce SG, Patel KP, Mao W, Zhu D, Lim R, Samuel CS. Serelaxin enhances the therapeutic effects of human amnion epithelial cell-derived exosomes in experimental models of lung disease. Br J Pharmacol 2019; 176(13): 2195-208.
[http://dx.doi.org/10.1111/bph.14666] [PMID: 30883698]
[177]
Alfaifi M, Eom YW, Newsome PN, Baik SK. Mesenchymal stromal cell therapy for liver diseases. J Hepatol 2018; 68(6): 1272-85.
[http://dx.doi.org/10.1016/j.jhep.2018.01.030] [PMID: 29425678]
[178]
Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther 2019; 10(1): 98.
[http://dx.doi.org/10.1186/s13287-019-1204-2] [PMID: 30885249]
[179]
Ebrahim N, Ahmed IA, Hussien NI, et al. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway. Cells 2018; 7(12) E226
[http://dx.doi.org/10.3390/cells7120226] [PMID: 30467302]
[180]
Shao L, Zhang Y, Pan X, et al. Knockout of beta-2 microglobulin enhances cardiac repair by modulating exosome imprinting and inhibiting stem cell-induced immune rejection. Cell Mol Life Sci 2019. In Press
[http://dx.doi.org/10.1007/s00018-019-03220-3] [PMID: 31312880]
[181]
Shojaati G, Khandaker I, Funderburgh ML, et al. Mesenchymal stem cells reduce corneal fibrosis and inflammation via extracellular vesicle-mediated delivery of miRNA. Stem Cells Transl Med 2019; 8(11): 1192-201.
[http://dx.doi.org/10.1002/sctm.18-0297] [PMID: 31290598]
[182]
Deng S, Zhou X, Ge Z, et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol 2019; 114 105564
[http://dx.doi.org/10.1016/j.biocel.2019.105564] [PMID: 31276786]
[183]
Zhang Y, Zhang HE, Liu Z. MicroRNA-147 suppresses proliferation, invasion and migration through the AKT/mTOR signaling pathway in breast cancer. Oncol Lett 2016; 11(1): 405-10.
[http://dx.doi.org/10.3892/ol.2015.3842] [PMID: 26870225]
[184]
Fang S, Xu C, Zhang Y, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal micrornas suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Transl Med 2016; 5(10): 1425-39.
[http://dx.doi.org/10.5966/sctm.2015-0367] [PMID: 27388239]
[185]
Fiore EJ, Mazzolini G, Aquino JB. Mesenchymal stem/stromal cells in liver fibrosis: recent findings, old/new caveats and future perspectives. Stem Cell Rev Rep 2015; 11(4): 586-97.
[http://dx.doi.org/10.1007/s12015-015-9585-9] [PMID: 25820543]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy