Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Antibacterial Activity of Steroids Isolated from the Madagascar Marine Sponge Biemna laboutei: Δ7 Steroids as New Potential Agents Against Pathogenic Bacteria

Author(s): Rahanira Ralambondrahety, Aurélie Couzinet-Mossion, Vony Rabesaotra, Onja Andriambeloson, Gilles Barnathan, Marcelle Rakotovao and Gaëtane Wielgosz-Collin*

Volume 11, Issue 1, 2021

Published on: 04 December, 2019

Page: [57 - 62] Pages: 6

DOI: 10.2174/2210315509666191204123011

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Nowadays, the efficiency of antibiotics is endangered by the development of resistant bacterial strains. Consequently, novel bioactive agents are intensively searched. Marine sponges are well-known for being major sources of bioactive compounds, including unusual sterols. Until now, among sterols, noteworthy antibacterial activity has been reported exclusively for Δ5 sterols.

Objectives: This study aims to describe the steroid composition of the marine sponge Biemna laboutei collected in the North coast of Madagascar, and the antibacterial activity of steroid mixture against human pathogenic strains.

Methods: Sponge was extracted in CHCl3/MeOH. Free steroids were separated from other lipids by column chromatography with dichloromethane as specific eluent. Free sterols/steroids and sterol acetates were analysed by gas chromatography coupled with mass spectrometry. Antibacterial activity of steroid fractions was assessed for eight strains using agar diffusion with cellulose disks.

Results: Neutral lipids were the major lipid class (79.1% of total lipids). The dichloromethane eluted fraction contained only free steroids giving rise to the identification of eleven compounds. These components presented exclusively Δ7 unsaturation, including lathosterol as the major one (38.4%) and four 3-oxo-steroids (11.8%). The steroid fraction of B. laboutei has exhibited inhibitory activity against pathogenic strains but more particularly against gram(+) Bacillus cereus (MIC of 12.5 μg/mL) and Staphylococcus aureus (MIC of 25 μg/mL) strains. This latter bacterium causes several illnesses, some of those strains being antibiotic-resistant and this becomes a worldwide health problem.

Conclusion: This is the first report for an antibacterial activity of a mixture of Δ7 steroids against a resistant strain of S. aureus to many antibiotics.

Keywords: Marine invertebrates, Biemnidae sponge, Indian Ocean, lipids, Δ7 steroid compounds, Staphylococcus aureus.

Graphical Abstract
[1]
Richardson, L.A. Understanding and overcoming antibiotic resistance. PLoS Biol., 2017, 15(8)e2003775
[http://dx.doi.org/10.1371/journal.pbio.2003775] [PMID: 28832581]
[2]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2017, 34(3), 235-294.
[http://dx.doi.org/10.1039/C6NP00124F] [PMID: 28290569]
[3]
Mehbub, M.F.; Lei, J.; Franco, C.; Zhang, W. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Mar. Drugs, 2014, 12(8), 4539-4577.
[http://dx.doi.org/10.3390/md12084539] [PMID: 25196730]
[4]
Djerassi, C.; Silva, C.J. Biosynthetic studies of marine lipids. 41. Sponge sterols: origin and biosynthesis. Acc. Chem. Res., 1991, 24(12), 371-378.
[http://dx.doi.org/10.1021/ar00012a003]
[5]
Pejin, B.; Iodice, C.; Tommonaro, G.; Stanimirovic, B.; Ciric, A.; Glamoclija, J.; Nikolic, M.; De Rosa, S.; Sokovic, M. Further in vitro evaluation of antimicrobial activity of the marine sesquiterpene hydroquinone avarol. Curr. Pharm. Biotechnol., 2014, 15(6), 583-588.
[http://dx.doi.org/10.2174/138920101506140910152253] [PMID: 25213366]
[6]
Luo, X.; Su, P.; Zhang, W. Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar. Drugs, 2015, 13(7), 4231-4254.
[http://dx.doi.org/10.3390/md13074231] [PMID: 26184233]
[7]
Do, H.Q.; Van Landeghem, L.; Wielgosz-Collin, G.; Takoudju, M.; Huvelin, J-M.; Kornprobst, J-M.; Bard, J-M.; Barnathan, G.; Nazih, H. Unusual sterolic mixture, and 24-isopropylcholesterol, from the sponge Ciocalypta sp. reduce cholesterol uptake and basolateral secretion in Caco-2 cells. J. Cell. Biochem., 2009, 106(4), 659-665.
[http://dx.doi.org/10.1002/jcb.22047] [PMID: 19160412]
[8]
Kavita, K.; Singh, V.K.; Jha, B. 24-Branched Δ5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiol. Res., 2014, 169(4), 301-306.
[http://dx.doi.org/10.1016/j.micres.2013.07.002] [PMID: 23910454]
[9]
Youssef, D.T.A.; Badr, J.M.; Shaala, L.A.; Mohamed, G.A.; Bamanie, F.H. Ehrenasterol and biemnic acid; new bioactive compounds from the Red Sea sponge Biemna ehrenbergi. Phytochem. Lett., 2015, 12, 296-301.
[http://dx.doi.org/10.1016/j.phytol.2015.04.024]
[10]
Zeng, C.M.; Ishibashi, M.; Kobayashi, J. Biemnasterol, a new cytotoxic sterol with the rare 22,25-diene side chain, isolated from the marine sponge Biemna sp. J. Nat. Prod., 1993, 56(11), 2016-2018.
[http://dx.doi.org/10.1021/np50101a027] [PMID: 8289069]
[11]
Huang, X-C.; Guo, Y-W.; Song, G-Q. Fortisterol, a novel steroid with an unusual seven-membered lactone ring B from the Chinese marine sponge Biemna fortis Topsent. J. Asian Nat. Prod. Res., 2006, 8(6), 485-489.
[http://dx.doi.org/10.1080/10286020410001690127] [PMID: 16931421]
[12]
Gros, E.; Martin, M.T.; Sorres, J.; Moriou, C.; Vacelet, J.; Frederich, M.; Aknin, M.; Kashman, Y.; Gauvin-Bialecki, A.; Al-Mourabit, A. Netamines O–S, five new tricyclic guanidine alkaloids from the Madagascar sponge Biemna laboutei, and their antimalarial activities. Chem. Biodivers., 2015, 12(11), 1725-1733.
[http://dx.doi.org/10.1002/cbdv.201400350] [PMID: 26567950]
[13]
Goviden-Soulange, J.; Marie, D.; Kauroo, S.; Beesoo, R.; Ramanjooloo, A. Antibacterial properties of marine sponges from Mauritius waters. Trop. J. Pharm. Res., 2014, 13(2), 249-254.
[http://dx.doi.org/10.4314/tjpr.v13i2.13]
[14]
Van Soest, R.W.M.; Boury-Esnault, N.; Hooper, J.N.A.; Rützler, K.; de Voogd, N.J.; Alvarez, B.; Hadju, E.; Pisera, A.B.; Manconi, R.; Schönberg, C.; Klautau, M.; Picton, B.; Kelly, M.; Vacelet, J.; Dohrmann, M.; Díaz, M-C.; Cárdenas, P.; Carballo, J.L.; Ríos, P.; Downey, R. World Porifera database., Biemna laboutei Schmidt, 1862. Available from: . http://www.marinespecies.org/aphia.php?p=taxdetails&id=168264
[15]
Goad, J.L.; Akihisa, T. Analysis of sterols; Blackie Academic & Professional: London, 1997.
[http://dx.doi.org/ 10.1007/978-94-009-1447-6]
[16]
Parks, O.W.; Schwartz, D.P.; Keeney, M.; Damico, J.N. Isolation of delta-7-cholesten-3-one from butterfat. Nature, 1966, 210(5034), 416-417.
[http://dx.doi.org/10.1038/210416a0] [PMID: 5963236]
[17]
Rösecke, J.; König, W.A. Constituents of various wood-rotting basidiomycetes. Phytochemistry, 2000, 54(6), 603-610.
[http://dx.doi.org/10.1016/S0031-9422(00)00165-5] [PMID: 10963454]
[18]
Itoh, T.; Kikuchi, Y.; Tamura, T.; Matsumoto, T. Two 3-oxo steroids in Thea sinensis seeds. Phytochemistry, 1981, 20(1), 175-176.
[http://dx.doi.org/10.1016/0031-9422(81)85245-4]
[19]
Jain, A.C.; Gupta, S.K. The isolation of lanosta-7,9(11),24-trien-3β,21-diol from the fungus Ganoderma australe. Phytochemistry, 1984, 23(3), 686-687.
[http://dx.doi.org/10.1016/S0031-9422(00)80410-0]
[20]
Delseth, C.; Kashman, Y.; Djerassi, C. Ergosta‐5,7,9(11),22‐tetraen‐3β‐ol and its 24ξ‐ethyl homolog, two new marine sterols from the Red Sea sponge Biemna fortis. Helv. Chim. Acta, 1979, 62(6), 2037-2045.
[http://dx.doi.org/10.1002/hlca.19790620633]
[21]
Huang, X-C.; Liu, H-L.; Guo, Y-W. Chemical constituents of marine sponge Biemna fortis Topsent. Chin. J. Nat. Med., 2008, 6(5), 348-354.
[http://dx.doi.org/10.3724/SP.J.1009.2008.00348]
[22]
Randrianirina, F.; Soares, J-L.; Ratsima, E.; Carod, J-F.; Combe, P.; Grosjean, P.; Richard, V.; Talarmin, A. In vitro activities of 18 antimicrobial agents against Staphylococcus aureus isolates from the Institut Pasteur of Madagascar. Ann. Clin. Microbiol. Antimicrob., 2007, 6(5), 5.
[http://dx.doi.org/10.1186/1476-0711-6-5] [PMID: 17521424]
[23]
Cheng, Z-B.; Xiao, H.; Fan, C-Q.; Lu, Y-N.; Zhang, G.; Yin, S. Bioactive polyhydroxylated sterols from the marine sponge Haliclona crassiloba. Steroids, 2013, 78(14), 1353-1358.
[http://dx.doi.org/10.1016/j.steroids.2013.10.004] [PMID: 24161529]
[24]
Lu, Y.; Zhao, M. Two highly acetylated sterols from the marine sponge Dysidea sp. Z. Für Naturforschung B, 2016, 72(1), 49-52.
[http://dx.doi.org/10.1515/znb-2016-0156]
[25]
Niedermeyer, T.H.J.; Lindequist, U.; Mentel, R.; Gördes, D.; Schmidt, E.; Thurow, K.; Lalk, M. Antiviral terpenoid constituents of Ganoderma pfeifferi. J. Nat. Prod., 2005, 68(12), 1728-1731.
[http://dx.doi.org/10.1021/np0501886] [PMID: 16378363]
[26]
Smania, A., Jr; Monache, F.D.; Smania, E. de F. A.; Cuneo, R. S. Antibacterial activity of steroidal compounds isolated from Ganoderma applanatum (Pers.) Pat. (Aphyllophoromycetideae) fruit body. Int. J. Med. Mushrooms, 1999, 1(4), 325-330.
[http://dx.doi.org/10.1615/IntJMedMushr.v1.i4.40]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy